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Abstract—Modern software applications are commonly built
by leveraging pre-fabricated modules, e.g. application program-
ming interfaces (APIs), which are essential to implement the
desired functionalities of software applications, helping reduce
the overall development costs and time. When APIs deal with
security-related functionality, it is critical to ensure they comply
with their design requirements since otherwise unexpected flaws
and vulnerabilities may be consequently occurred. Often, such
APIs may lack sufficient specification details, or may implement
a semantically-different version of a desired security model to
enforce, thus possibly complicating the runtime enforcement of se-
curity properties and making it harder to minimize the existence
of serious vulnerabilities. This paper proposes a novel approach
to address such a critical challenge by leveraging the notion of
software assertions. We focus on security requirements in role-
based access control models and show how proper verification
at the source-code level can be performed with our proposed
approach as well as with automated state-of-the-art assertion-
based techniques.

I. INTRODUCTION

In recent years, there has been an increasing interest
in leveraging heterogeneous pre-fabricated software modules,
e.g. application programming interfaces (APIs) and software
development kits (SDKs), in order to not only reduce the
overall development costs and time in producing high-quality
applications, but also minimize the number of incorrect be-
haviors (bugs) observed in the final product. However, recent
literature has shown that such modules often lack the proper
specification details (in the form of formal or informal specifi-
cation) that are essential to guide how a given module can be
used correctly for implementing security-related functionality
[1] [2]. Such a problem may potentially become the source
of serious security vulnerabilities, as developers may not be
fully aware of the omissions and flaws they may introduce
into their applications by failing to implement a security model
in a proper way. In order to solve this problem, we propose
an assertion-based approach to capture security requirements
of security models and create well-defined representations of
those requirements. This way, the security features could be
effectively understood by all participants in the software devel-
opment process so that they can leverage these features when
implementing security-related functionalities for multi-module
applications while being engaged in a highly-collaborative
environment at the same time. These assertion-based security
specifications would be used in conjunction with existing state-
of-the-art methodologies and tools to verify security properties

at the source-code level. In this paper, we choose the well-
known role-based access control (RBAC) [3] as security model
to enforce access control requirements over an application that
is in turn composed of several heterogeneous modules. Also,
we utilize existing tools to verify a set of security properties,
thus providing a way to locate and possibly correct potential
security vulnerabilities in software applications.

This paper is organized as follows: we start by providing
some background in Section II. Next, we examine the general
problem, as well as the problem instance discussed in this
paper in Section III. We then present our approach in Section
IV, and a case study depicting three Java-based software
applications and an experimental process in Section V. In
Section VI, we provide some discussion on the benefits and
observed shortcomings of our approach as well as some related
work. Finally, Section VII presents directives for our future
work and concludes the paper.

II. BACKGROUND

Software assertions are commonly described as formal
constraints intended to describe what a software system is
expected to do at runtime, and are commonly written as
annotations in the system’s source code [4]. Using assertions,
developers can specify what conditions are expected to be valid
before and after a certain portion of code gets executed, e.g.
the expected range of values intended for the parameter of
a given function. Design by contract (DBC) [5] is a software
development methodology based on assertions and the assump-
tion that the developers and the prospective users (clients) of
a given software module establish a contract between each
other in order for the module to be used correctly. Commonly,
such a contract is defined in terms of assertions in the form
of pre and post conditions, among other related constructs.
Before using a DBC-based software module M, clients must
make sure that M’s preconditions hold. In a similar fashion,
developers must guarantee that M’s postconditions hold once
it has finished execution, assuming its corresponding precondi-
tions were satisfied beforehand. The Java Modeling Language
(JML) [6], is a behavioral interface specification language
(BISL) for Java, with a rich support for DBC contracts. Using
JML, the behavior of Java modules can be specified using
pre and post conditions, as well as class invariants, which are
commonly expressed in the form of assertions, and are added
to Java source code as the form of comment such as //@

or /*@...@*/. Fig. 1 shows an excerpt of a Java interface
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1 public interface Account{

2

3 //@ public instance model double balance;

4

5 //@ public invariant balance > 0.0;

6

7 /*@ public normal_behavior

8 @ requires amt > 0.0;

9 @ assignable balance;

10 @ ensures balance == (\old(balance) - amt);

11 @*/

12 public void withdraw(double amt)

13 throws SecurityException;

14

15 }

Fig. 1: An Excerpt of a JML-annotated Banking Application.

named Account, which belongs to a banking application and
has been annotated with JML specifications. A summary of the
JML features exercised in this paper can be found in [6] and
[7].

In recent years, the American National Institute of Stan-
dards (ANSI) released a standard document that provides well-
defined descriptions of the main components and functions that
define RBAC [8], and it is mostly based on the well-known Z
specification language [9]. In addition, a dedicated profile has
been introduced to provide support for expressing RBAC poli-
cies by taking both the aforementioned ANSI RBAC standard
as a reference foundation as well as the well-known eXtensible
Access Control Markup Language (XACML), which is a
standard language for supporting the distributed definition and
storage & enforcement of rich access control policies [10],
[11].

III. PROBLEM DESCRIPTION

As mentioned earlier, recent literature includes examples
showing that mission-critical applications, e.g. banking mobile
applications, have suffered from serious security vulnerabilities
derived from an incorrect use of their supporting security APIs
at the source-code level [1], [2]. Among the possible causes
of this problem, insufficient software specifications, including
the definition of prerequisites and hidden assumptions, as well
as the existence of multiple semantic variations of a given
security model, e.g., the lack of foundation on a standardized,
well-defined model serving as a reference, are cited as common
sources of incorrect implementations. Moreover, the problem
gets aggravated by the lack of effective software verification
procedures at the source-code level, which could affect the
chances of identifying and potentially correcting security vul-
nerabilities exhibited by applications before deploying in a
production system. In this paper, we address an instance of this
problem by choosing RBAC as the security model to enforce
access control requirements in a software application that is
in turn composed of several modules. Each of them possibly
implements a different version of RBAC whose semantics may
or may not strictly adhere to an existing RBAC reference
model such as the one described in [8]. We therefore aim
to verify that such heterogeneous modules, when used to
build a target application, correctly enforce a well-defined
and consistent high-level RBAC policy, despite the differences
they may exhibit with respect to their inner workings related
to RBAC features, which could eventually result in security
vulnerabilities.

Fig. 2 (a) and Fig. 2 (b) show a Java-based example where
a high-level RBAC policy is enforced at runtime by placing
authorization checks before performing security-sensitive op-
erations. In both instances, a policy depicts a role manager
as a senior role to teller, and allows for users, who are
assigned to roles that happen to be senior to manager, to
execute both the transfer and withdraw operations, whereas
users holding teller role are allowed to execute the withdraw
operation only. Fig. 2 (a) shows a Java class BankAccount,
which leverages the Spring Framework API [12] for imple-
menting an authorization check (lines 7-16). Similarly, Fig.
2 (b) shows another class DebitBankAccount depicting
an authorization check using the Apache Shiro API [13]
(lines 7-11). In such a setting, it is desirable to evaluate
the correct enforcement of the aforementioned RBAC policy
as follows: first, the authorization checks depicted in both
examples must correctly specify the roles that are allowed to
execute each of the security-sensitive operations. For instance,
the authorization check depicted in Fig. 2 (a) incorrectly allows
for another role agent to also execute the withdraw method,
which in turn represents a potential security vulnerability.
Second, the role hierarchy depicted in the high-level policy
must be correctly implemented at the source-code level by
leveraging both APIs. As roles that happen to be senior to role
manager should be allowed to execute both the transfer

and withdraw methods, the role hierarchy must be correctly
implemented by placing accurate authorization checks within
the source code. In addition, the role hierarchy must be also
defined correctly in the supporting API configuration files. as
an incorrect implementation, e.g. missing role names within
the XML files defined for the Spring API, may prevent users
with the role manager from executing the transfer method.
A more serious problem may be originated if users with the
role teller are allowed to execute the transfer method.
Finally, if users with the role manager are allowed to execute
the transfer method, but are disallowed from executing
the withdraw method (Fig. 2 (b)) by incorrectly configuring
the Spring API depicted in Fig. 2 (a), a given object of class
DebitBankAccount may be left in an inconsistent state,
thus also creating a serious security problem.

IV. OUR APPROACH: ASSERTION-BASED APPLICATION

CONSTRUCTION

In order to provide a solution to the problem described
in Section III, we propose an approach that combines the
concepts of specification modeling and software assertions for
describing security features at the source-code level. These so-
called assertion-based security models are intended to provide
compact, well-defined and consistent descriptions that may
serve as a common reference for implementing security-related
functionality. Our approach strives to fill in the gap between
high-level descriptions of security features, which are mostly
abstract and implementation-agnostic, and supporting descrip-
tions focused at the source-code level, which are intended to
cope with both security-related and behavioral-based specifi-
cations. As it will be described in Section VI, previous work
has also explored the use of software assertions and DBC-
like contracts for specifying access control policies. However,
our approach is intended to leverage the modeling capabilities
offered by software specification languages using a well-
defined reference description of a security model as a source,



1 import org.springframework.security.core.*;

2 public class BankAccount implements Account{

3

4 public void withdraw(double amt)

5 throws SecurityException{

6

7 Iterator iter = SecurityContextHolder

8 .getAuthorities().iterator();

9

10 while(iter.hasNext()){

11 GrantedAuthority auth = iter.next();

12 if (!auth.getAuthority().equals("teller") ||

13 !auth.getAuthority().equals("agent")){

14 throw new SecurityException("Access Denied");

15 }

16 }

17 this.balance -= amt;

18 }

19 }

(a) Spring Framework API.

1 import org.apache.shiro.*;

2 public class DebitBankAccount{

3

4 public void transfer(double amt, BankAccount acc)

5 throws SecurityException{

6

7 if(!SecurityUtils.getSubject().hasRole("manager")){

8

9 throw new SecurityException("Access Denied");

10

11 }

12

13 acc.withdraw(amt);

14 this.balance += amt;

15

16 }

17

18

19 }

(b) Apache Shiro API.

Fig. 2: Enforcing an RBAC Policy by Leveraging Heterogeneous Security Modules.

in such a way it not only allows for the correct communication,
enforcement and verification of security-related functionality,
but it also becomes independent of any supporting APIs used
at the source-code level, thus potentially allowing for its de-
ployment over applications composed of several heterogeneous
modules as shown in Fig. 3: an assertion-based security model
is intended to be enforced over a target application that is
in turn composed of two modules leveraging security APIs
and two modules whose security-related functionality has been
implemented from scratch. This way, the semantic differences
exhibited by such modules, as shown in Section III, can be
effectively mitigated. Moreover, by leveraging state-of-the-
art methodologies based on assertions, effective automated
verification of security properties at the source-code level
becomes feasible, thus providing a means for discovering and
possibly correcting potential security vulnerabilities.

To address the problem instance discussed in this paper,
we leverage the JML modeling capabilities, e.g. model classes
[7], to describe the ANSI RBAC standard described in Section
II. Later on, these model classes are used to create assertion-
based constraints, which are in turn incorporated into the DBC
contracts devised for each module in an application. This way,
a high-level RBAC policy can be specified at the source-code
level by translating it into assertion-based constraints included
in DBC contracts. Following our running example, Fig. 4
shows an excerpt of a model class JMLRBACRole, which de-
picts the role component and some of its related functionalities
as devised in the ANSI RBAC standard, e.g. role hierarchies.
Such a model class is leveraged in Fig. 5 to augment the
JML-based contract depicted in Fig. 1 with security-related
assertions restricting the execution of the withdraw method
to users who activate a role senior to teller. We start by defining
a model variable role, of type JMLRBACRole (line 5),
which is later used for defining access control constraints in the
two specification cases depicted in Fig. 5: the first specification
case, depicted in lines 9-14, allows one to properly execute
the withdraw method, e.g. deducting from the balance of a
given account, only if the object stored in the role variable
represents a role senior to teller1. The second specification

1Following the ANSI RBAC standard, a given role is always senior to itself.

Module1

(API1)

Module2

(API2)

Module3
Own

Code

Software Application

Assertion-based Security Model

Fig. 3: Deploying Assertion-based Security Models over a
Multi-module Application.

1 package edu.asu.sefcom.ac.rbac;

2 public class JMLRBACRole

3 extends JMLRBACAbstractRole{

4

5 public boolean isSeniorRoleOf(

6 JMLRBACAbstractRole role){

7

8 if(this.equals(role)){ return true; }

9

10 return getAllJuniorRoles().contains(role);

11 }

12 }

Fig. 4: An Excerpt of a JML Model Class Depicting an
ANSI RBAC Role Component.

case, shown in lines 16-20, allows for the withdraw method
to throw a runtime exception if the aforementioned constraint
is found to be false. In addition, such a specification case also
prevents any modification to the state (e.g. private fields) of a
given object of type BankAccount from taking place.

Fig. 7 depicts our approach: a high-level RBAC policy,
which is encoded by means of the dedicated RBAC profile
provided by XACML [11], is translated into a series of DBC
contracts. Later on, such contracts, along with the source code



1 //@ model import edu.asu.sefcom.ac.rbac.*;

2 public interface Account{

3

4 //@ public instance model double balance;

5 //@ public instance model JMLRBACRole role;

6

7 //@ public invariant balance > 0.0;

8

9 /*@ public normal_behavior

10 @ requires amt > 0.0;

11 @ assignable balance;

12 @ ensures role.isSeniorRoleOf(

13 @ new JMLRBACRole("teller")) ==>

14 @ (balance == \old(balance) - amt);

15 @ also

16 @ public exceptional_behavior

17 @ requires !role.isSeniorRoleOf(

18 @ new JMLRBACRole("teller"));

19 @ assignable \nothing;

20 @ signals_only SecurityException;

21 @*/

22 public void withdraw(double amt)

23 throws SecurityException;

24

25 }

Fig. 5: Enhancing a DBC contract with Access Control
Assertions.

1 import org.springframework.security.core.*;

2 public class BankAccount implements Account{

3

4 //@ public represents role <- mapRole();

5

6 /*@ public pure model JMLRBACRole mapRole(){

7 @

8 @ JMLRBACRole newRole = new JMLRBACRole("");

9 @ RBACMonitor monitor = new RBACMonitor();

10 @

11 @ Iterator iter = SecurityContextHolder

12 @ .getAuthorities().iterator();

13 @

14 @ while(iter.hasNext()){

15 @ GrantedAuthority auth = iter.next();

16 @ if (auth.getAuthority().equals("teller")){

17 @ newRole = new JMLRBACRole("teller");

18 @ }

19 @ }

20 @

21 @ return newRole;

22 @ }

23 @*/

24 ...

25 }

Fig. 6: An Excerpt Showing a JML Abstraction Function.

for a given software application, are fed into JML-based auto-
mated tools for verification purposes. Since such an application
may be in turn composed of heterogeneous modules and each
of them possibly represents a different API for implementing
security-related functionality, e.g. enforcing an RBAC policy,
the configuration files for such APIs must be also taken into
account when leveraging automated tools for verification, as
described in Section III. In order to automate the creation of
DBC contracts such as the ones depicted in Fig. 5, we designed
an automated tool that translates RBAC policies encoded in
the RBAC XACML profile into JML-based specifications, thus
relieving policy designers and software architects from crafting
such contracts manually and eliminating a potential source for
errors.

<xml ...>

<....>

<..../>

Java 
Source 
Code

DBC/JML 
Contracts

+
RBAC XACML 

Policy Files
JML-based 
Verification

Tools

API
Config. 
Files

+

Fig. 7: A Framework for Assertion-based Security Assurance.

As described in Section I, we aim to provide the verification
of security properties by leveraging an approach based on
automated unit testing [14] as well as the JML specifications
depicting the assertion-based models described above. For
such a purpose, we adopt JET [14], which is a dedicated
tool tailored for providing automated runtime testing of Java
modules with JML-based assertions, e.g. classes. Using JET,
testers can verify the correctness of a Java module by checking
the implementation of each method against their corresponding
JML specifications. In addition, we also aim to provide support
for finding possible security vulnerabilities by means of static
techniques. For such a purpose, we leverage the ESC/Java2 tool
[6], which is based on a theorem prover and internally builds
verification conditions (VCs) from the source code being ana-
lyzed, and its corresponding JML-based specifications, which
the theorem prover then attempts to prove, thus allowing for the
automated analysis of whole code modules without running the
applications. In particular, ESC/Java2 uses modular reasoning
[15], which is regarded as an effective technique when used
in combination with static checking since code sections can
be analyzed and their JML-based specifications can be proved
by inspecting the specification contracts of the methods they
call within their method bodies. Later, in Section V, we
present our findings on leveraging both techniques in a set
of case studies depicting mission-critical Java applications.
In order to support the verification process just described,
proper constructs are needed to map the modeling features
included in DBC contracts (as depicted in Fig. 5) and the
implementation source code of each heterogeneous module.
For such a purpose, we leverage the features offered by the
JML abstraction functions [7], which allow for JML model
features to be properly mapped to source-code level constructs,
thus providing a way to verify that each heterogeneous module
implements a given high-level policy correctly. As an example,
Fig. 6 shows an excerpt where a JML model method is
used to map the source code implementing security features
as provided by the Spring Framework API with the model
features depicted in Fig. 5.

In general, the correct enforcement of a security model may
involve the following cases: first, a high-level security policy,
which is based on a well-defined security model definition,
should be correctly defined and all policy conflicts must have
been resolved, e.g. evaluating a given RBAC policy by using
techniques such as the ones discussed in [16]. Second, access
to all protected resources within a given application, e.g. the
withdraw operation depicted in Fig. 5, is guarded by an



TABLE I: Distribution of Responsibilities for Enforcing an
Assertion-based Security Model In a Collaborative Setting.

Actor Description of Tasks

Security Domain Experts

Develop an assertion-based security model by

using a precise definition as a reference, e.g. using

the ANSI RBAC standard. (See Fig. 4).

Security Policy Administrators

Instantiate the security model to be enforced, e.g.

specification of an RBAC policy based on the

ANSI RBAC standard.

Software Architects

Incorporate the security policy into DBC con-

structs by specifying assertion-based constraints

(See Fig. 5).

Code Developers

Correctly implement the DBC specifications de-

fined by software architects (including security

checks). Provide a mapping between the security

model and the security APIs used for implemen-

tation purposes (See Fig. 6).

Code Testers

Verify both the functional and the security related

aspects of a given software application based on

their DBC specifications (See Section V).

authorization check (adhering to the well-known principle of
complete mediation). Following our example, authorization
checks should depict the RBAC constructs defined in the over-
all policy, e.g. checking for the correct roles and/or permissions
before executing any sensitive operation. Third, supporting
components for the security model features is implemented
correctly, e.g. RBAC role hierarchies. Finally, we also require
that the detection of runtime policy violations is implemented
properly, e.g. exception handling and data consistency. With
this in mind, for the problem instance addressed in this paper,
we make the following assumptions: first, the ANSI RBAC
model is well-understood by all participants in the software
development process, e.g. policy designers, software architects
and developers. Second, the assertion-based specification of the
security model is correct: in other words, it has been verified
beforehand. Third, any supporting RBAC modules, including
security APIs and SDKs, have been implemented correctly,
even though their semantics with respect to RBAC may differ,
as addressed in Section III.

Finally, our approach is intended to be carried out by
the different participants in the software development process,
in such a way that the process of constructing vulnerability-
free software becomes a collaborative responsibility shared by
all involved actors, obviously including the source-code level
developers. Table I shows a summary of the tasks devised for
each participant.

V. CASE STUDY

In order to provide a proof-of-concept implementation of
our approach, we developed a reference description of the
security model under study by using a set of JML model
classes based on the case illustrated in Fig. 4. Such a reference
model contains 960 lines of code grouped in 17 Java classes,
including 1,383 lines of JML specifications depicting the
functionality desired for RBAC as described in the ANSI
RBAC standard. For our case study, we leveraged a pair
of open-source Java applications: OSCAR EMR [17], which
is a rich web-based software platform tailored for handling
electronic health records (EMR). It consists of approximately
35,000 lines of code organized into 110 classes and 35
packages. In addition, we also leveraged JMoney [18], a

TABLE II: A Sample RBAC Policy for Evaluation Purposes.

Role Junior Roles Sample Allowed Operations

Employee - deposit

Teller Employee withdraw, deposit

Agent Employee close, deposit

Manager Teller, Agent transfer, withdraw, deposit, close

financial application consisting of 7,500 lines of code grouped
into 45 classes. Finally, we developed a banking application
depicting the running examples shown in this paper. Such an
application leverages the Apache Shiro and Spring Framework
Security APIs, as well as our own RBAC monitor developed
for implementing security-related functionality. It consists of
36 classes and contains 1,550 lines of code as well as 1,450
lines of JML specifications, which utilize our JML model
classes in DBC contracts, as shown in Fig. 5.

In order to verify the effectiveness of our approach for
detecting faulty implementations of the RBAC security model,
we followed an approach inspired in mutation testing [19]: we
inserted variations (also known as mutants) in both the source
code and the API configuration files of the applications con-
sidered in our study, in an effort to introduce inconsistencies
in the implementation of their corresponding RBAC Policies.
As an example, Fig. 8 shows different mutants introduced to
the RBAC policy shown in Table II: first, the original policy
is modified to add an unintended permission (transfer, (t))
to a role employee (Fig. 8 (a)). Such a modification creates
a potential security vulnerability as it allows employee, and
all other roles senior to it, e.g. agent and teller, to execute
an operation that was originally intended only for a role
manager. Similarly, Fig. 8 (b) shows a permission (deposit, (d))
being removed from the employee role. Such a modification
produces an inconvenience to such a role and all other roles
that happen to be senior to it, as execution of the deposit
operation will be denied at runtime. Fig. 8 (c) shows another
example where the original role hierarchy of the RBAC policy
is modified to introduce an unintended role (supervisor, (S)).
This way, the newly-introduced role creates a pair of security
vulnerabilities: first, it inherits the permissions from all junior
roles in the hierarchy, thus allowing for the execution of
unintended operations. Second, it also allows for a senior role
in the hierarchy to obtain an extra permission (audit, (a)), thus
possibly allowing them to perform unintended operations as
well. Fig. 9 shows an excerpt of an XML configuration file
depicting the role hierarchy modification shown in Fig. 8 (c)
(lines 6-8). Finally, Fig. 8 (d) shows a case when a role is
removed from a role hierarchy: teller is left aside by removing
the relationships with both the manager (senior) and the
employee (junior) roles. It expose an inappropriate permission
revocation to not only users holding the role teller, as such a
role is prevented from getting the permissions of its junior roles
(e.g. deposit, (d)), but also senior roles since it prevented from
getting the permissions assigned to teller (e.g., withdraw, (w))
including all other permissions that could be obtained from
junior roles to teller.



A. Assertion-based Verification

Following the automated testing approach described in
Section IV, we conducted a set of experiments to measure
the effectiveness of our assertion-based models, along with our
enhanced DBC contracts, in detecting the mutations introduced
into the applications tested in our case study. Such experiments
were carried out on a PC equipped with an Intel Core Duo
CPU running at 3.00 GHZ, with 4 GB of RAM, running
Microsoft Windows 7 64-Bit Enterprise Edition. First, we
measured the impact of our approach in the average execution
time of the applications. As described in [14], the JML-based
specifications depicting our model classes are translated into
runtime assertion checking (RAC) code, which is then exe-
cuted along with the original application code for verification
purposes. In order to provide a mapping between the modeling
features included in JML contracts (as depicted in Fig. 5)
and the implementation code of each heterogeneous module,
we leveraged the features offered by the JML abstraction
functions [7]: we enhanced our supporting tool described
in Section IV to also produce abstraction functions for the
referred Spring Framework and Apache Shiro APIs. We then
executed a sample trace of the Java methods exposed by our
three applications and calculated the average execution time
over 1,000 repetitions. Such a trace was created to contain
representative operations for each application, e.g. the trace
created for the OSCAR EMR application that contains Java
methods used to update patient’s personal data as well as
information about medical appointments and prescriptions.
As shown in Table III, the introduction of RAC code has a
moderate impact on the performance, which is mostly due to
the overhead introduced by the RAC code generated to process
both the JML contracts as well as the abstraction functions. We
then recorded the results obtained by our tool while attempting
to detect (kill) the mutants introduced in both the configuration
of the Security APIs as well as the authorization checks
guarding each of the Java methods contained in our sample
traces, following the approach depicted in Fig. 8. Table III
shows a report on the number of generated test cases, including
the number of meaningful ones produced by the tool. 2 Our
meaningful test cases were able to kill all the mutants inserted
into our case study applications.

In an additional experiment, we compared the time taken by
our JML model classes to detect each of the mutant generation
techniques depicted in Fig. 8. Once again, we used a trace
of Java methods depicting the main functionality for each
application, and used the automated mutant-generation tool
described before to generate different variations to an original
RBAC policy. The results, as shown in Fig. 12, show that
adding/removing a role to a given hierarchy is the most costly
mutation to be detected by the RAC code through processing
our assertion-based JML classes. This is mostly due to the way
how role hierarchies are implemented in our JML classes, by
using a series of java.util.ArrayList objects to store
references to each senior/junior role in a given hierarchy, and
allowing for such references to be inspected recursively when
determining if there is a seniority relationship between two
given roles.

2In JET, a test case T for a given method M is said to be meaningful if
the tool is able to randomly create values for M’s formal parameters in such
a way M’s preconditions involving such parameters are satisfied. Otherwise T

is said to be meaningless.
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Fig. 8: Introducing Mutants in an RBAC Policy.

1 <?xml ...>

2 ...

3 <beans:bean id="roleHierarchy" ...>

4 <beans:property name="hierarchy">

5 <beans:value>

6 manager > supervisor

7 supervisor > teller

8 supervisor > agent

9 teller > employee

10 agent > employee

11 </beans:value>

12 </beans:property>

13 </beans:bean>

14 ...

Fig. 9: Introducing Mutants in Spring Framework.

TABLE III: Experimental Data on Using JET and ESC/Java2.

Banking JMoney OSCAR

Total methods 46 136 125

JET

Analysis time per method /s 4.56 17.32 15.4

Total analysis time /s 209.76 2355 1925

Runtime overhead /s 0.97 2.34 1.78

Generated test cases 1000 1000 1000

Meaningful test cases 150 250 225

ESC/Java2

Analysis time per method /s 0.43 2.07 0.5

Total analysis time /s 19.66 281.41 63.00

As mentioned in previous sections, we also leverage the
ESC/Java2 tool for providing verification guarantees based on
static analysis techniques and our proposed approach. How-
ever, despite the support provided for JML-based constructs by
such a tool, some challenges must be addressed: first, in order
to prove the correctness of a certain source code C against
its corresponding JML contracts, the tool additionally requires
that the JML specifications of each library called within C are
available, including the specifications of additional libraries the
original ones may eventually call later on. In some cases, such
a requirement may notoriously increase the amount of VCs



1 public class Subject{

2

3 /*@ public normal_behavior

4 @ requires true;

5 @ ensures \result == true || \result == false;

6 @ also

7 @ public exceptional_behavior

8 @ requires false;

9 @ assignable \nothing;

10 @*/

11 public /*@ pure @*/ boolean hasRole(String r){

12 return true;

13 }

14 }

Fig. 10: Specifications Stubs for the Apache Shiro API.

1 public interface Account{

2

3 /*@ public normal_behavior

4 @ requires amt > 0.0;

5 @ assignable balance;

6 @ ensures

7 @ (SecurityUtils.getSubject()

8 @ .hasRole("teller") ||

9 @ SecurityUtils.getSubject()

10 @ .hasRole("manager"))

11 @ ==>

12 @ ...

13 @*/

14 public void withdraw(double amt)

15 throws SecurityException;

16 }

Fig. 11: Translating Model JML Classes.

10
2

10
3

10
4

10
5

10
6

Number of mutants introduced in RBAC Policy

Performance of JML Model CLasses against Mutation Techniques

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 
ADD PERM REM PERM ADD ROLE REM ROLE

Fig. 12: Runtime performance of a Dynamic Verification
Approach.

that need to be proved by the tool, so the verification process
becomes prohibitively expensive, resulting in the specification
creep problem [15]. Second, an additional problem arises from
the lack of support offered by the current tool for advanced
JML concepts, such as the JML model classes introduced in
Section IV and the JML abstraction functions also described
before, as the internally-produced VCs are too complex for the
tool to handle, which limits the applicability of our assertion-
based models.

Subsequently, we present an approach that addresses these
challenges while still providing verification guarantees for our
assertion-based approach. First, we addressed the specification-

creep problem. In particular, as described in Section IV,
we assumed the Security APIs leveraged within our case
study have been implemented correctly and previously verified
elsewhere. Therefore, there is no need to include their corre-
sponding source code in our verification process. Based on
this observation, we provided specification stubs for the lever-
aged Security APIs whose JML-based annotations are trivially
satisfied. Fig. 10 shows the translated JML specifications for
the method hasRole of class Subject, which implements
an authorization check in the Apache Shiro API, as shown in
Fig. 2 (b). This process can be carried out by security domain
experts for the Security APIs and must only be revised when
new API versions are released. Second, as mentioned before,
the JML model classes, which are a core part of the approach
shown in Section IV, are beyond the current capabilities of
ESC/Java2. To overcome this limitation, we provided JML
specifications that do not employ the JML model classes and
use low-level JML concepts instead. For example, the role
hierarchy depicted in Table II and Fig. 5, which checks that the
current user is granted a role senior to teller (e.g. manager),
can be translated into the JML contracts shown in Fig. 11 (lines
7-10): the references to the model class JMLRBACRole have
been substituted for the hasRole method of class Subject
provided by the Apache Shiro API, and are integrated together
by using the operator || in JML, applied to all relevant senior
roles (e.g., the manager role in line 10).

After the preparation steps, we applied our analysis tech-
nique to the applications under our case study, by following
the mutation-based approach described before. We used a
conventional Lenovo Thinkpad T510 laptop (Intel Core i7-
620M Processor, 2.66GHz, 8 GB RAM). All mutants were
automatically detected by ESC/Java2 even if they were hidden
within the many methods of our case studies. The runtime of
the three applications under our case study is given in Table III.

VI. DISCUSSION AND RELATED WORK

The experimental results depicted in Section V-A support
our claim that our approach can effectively expose the set of se-
curity vulnerabilities caused by the incorrect source-code level
implementations of security models. In our approach, we have
selected Java for our proof-of-concept implementation due to
its extensive use in practice. Moreover, we have also chosen
JML as the specification language for defining our assertion-
based security models due to its enhanced tool support as
well as its language design paradigm, which supports rich
behavioral specifications. At the same time it strives to handle
the complexity of using complex specification constructs, in
such a way it becomes suitable for average developers to use
[6]. (see Table I). We believe our approach can be extended
to other programming languages/development platforms. For
instance, Spec# [20] provides rich DBC-based specifications
for the C# language, depicting an approach similar to JML.
Moreover, our approach can be also applied to other Java-
based frameworks such as JEE [21] or Android [22], which
may help implement authorization checks for guarding access
to its core system services. Despite our success, some issues
still remain in the verification process. In particular, ESC/Java2
may produce false positives (in case the built-in theorem prover
cannot prove a VC) and false negatives (e.g., restrictions on
loop unrolling). To deal with this situation, a possible solution
may consider a runtime testing approach, like the one we have



described using the JET tool, for all methods raising warnings
by ESC/Java2, thus showing a way in which both techniques
can be to provide stronger guarantees for the verification.
Second, as shown in Table III, the number of meaningful
test cases produced by the JET tool is considerably less than
the number of test cases created, which may affect the test
coverage provided by the tool and could allow for potential
security vulnerabilities to remain hidden during the verification
process. This is mostly due to the limitations on the automated
testing technique [14]. A possible solution would adopt a static
approach for those methods whose test coverage is found to
be below a given threshold.

Our work is related to other efforts in software security:
Architectural risk analysis [23] attempts to identify security
flaws on the level of the software architecture and hence is
unrelated to the source-code level addressed in this approach.
Language-based security approaches in the sense of Jif [24]
allow software to be verified against information flow policies
rather than supporting specific security requirements for differ-
ent Security APIs. Formal verification of RBAC properties has
been already discussed in the literature [16]. These approaches
are mostly focused on verifying the correctness of RBAC
models without addressing their corresponding verification
against an implementation at the source-code level. The work
closely related to ours involves the use of DBC, which was
explored by Dragoni, et al. [25]. In addition, Belhaouari et al.
introduced an approach for the verification of RBAC properties
based on DBC [26]. Both approaches, while using DBC for
checking RBAC properties, do not include the use of reference
models to better aid the specification of DBC constraints in
the security context. Moreover, no support is provided as API-
independent constructs, such as the JML model capabilities
discussed in our approach.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem originated
by the existence of security vulnerabilities in software appli-
cations. We have shown how such vulnerabilities, which may
exist due to the lack of proper specification and verification
of security checks at the source-code level, can be tackled
by using well-defined reference models with the help of
software assertions, thus providing a reference for the correct
enforcement of security properties over applications composed
of heterogeneous modules such as APIs and SDKs. Future
work would include the introduction of assertion-based models
to better accommodate other relevant security paradigms, e.g.,
the correct usage of cryptography APIs. Also, we plan to
refine our proposed RBAC model introduced in Section IV by
introducing an automated translation from the specifications
depicted in the ANSI RBAC standard, which are written in
the Z specification language, to our supporting language JML.
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