

Abstract - Networks of compromised machines called botnets
are one of the most threatening adversaries over the Internet
due in large part to the difficulty of identifying botnet traffic
patterns. We have witnessed that existing signature-based
detection and protection methods are ineffective in dealing
with new unknown bots. By slightly modifying the code of an
existing bot, bot commanders can bypass most signature based
mechanisms. We believe that by analyzing bot traffic for
malicious patterns, it is possible to develop a taxonomy of bot
characteristics and in turn use these characteristics to develop
risks which will ultimately be used in the decision making
process of allowing or blocking traffic. In this paper, we
introduce our Honeynet-based Bot Analysis Architecture
which is the first step towards our Risk-Aware Network-centric
Malware Detection and Prevention Framework. We discuss
our current architecture and how it could be realized towards
identifying unknown bots and other malware. In addition, we
discuss our results and lessons learned from this work.

 Index Terms – Network Security, Botnet Analysis, Honeynet

I. INTRODUCTION

Botnets are one of the largest problems that computers on
the Internet face. Commanders of these botnets have their
own purposes for their army of compromised machines
ranging from spam for hire to distributed denial of service
(DDoS) and phishing attacks. Pertaining to corporate
networks, the primary problem botnets present is their
capability to perform DDoS attacks [1]. Enterprises that
offer web services have a difficult time in distinguishing a
DDoS attack from a spike in legitimate customers
accessing their service sites [2]. Also, enterprises have to
protect their corporate networks from becoming part of a
botnet through malware propagation. Malware of
different types have been around for the decade.
However, there has recently been a surge in various ploys
that seek user’s credentials, credit card numbers or other
sensitive information. Malware includes a broad range of
techniques that snoop on a user’s activity, deploy Trojan
horses, exploit with key and mouse logging software, and

 This work was supported, in part, by funds provided by
National Science Foundation (NSF-DUE-0416042), Department
of Defense (H98230-05-1-0119 and H98230-06-1-0128) and e-
Business Technology Institute at UNC Charlotte. All
correspondence should be addressed to Dr. Gail-Joon Ahn
(gahn@uncc.edu).

finally allow an adversary to control compromised
machines in use [3, 4, and 5]. In this paper, we describe
our Honeynet-based Bot Analysis Architecture which
includes collecting bots, running them on an offline
simulated network, and installing them on an open
analysis system to connect with their command and
control center. We use the actual collected bots to connect
to their command and control centers instead of simulated
attack bots, sometimes called “drones”. We use our
analysis template to discover characteristics of each
individual bot. This template has proved to be an
invaluable learning tool for students to interact with
malware in the wild. In the future such characteristics
will be used to determine relevant risk values of specific
network patterns for making signature-based detection
more effective.

The rest of the paper is organized as follows. Section II
discusses background information and related works. The
Honeynet-based Bot Analysis Architecture is presented in
Section III. In Section IV, we discuss our analysis
method along with the results. Section V concludes this
paper with a brief description of future work.

II. BACKGROUND TECHNOLOGIES AND RELATED WORK

Honeynets have been used to learn as much about bots
and the attacker sending bots as possible [6]. Even though
this approach allows us to gather attackers’ footprints, a
systematic data analysis method is still needed. In the
botnet, the command and control is where the attacker
sends commands to the botnet. Currently most malicious
bots use IRC to communicate with the command and
control. IRC’s built-in multicast capabilities make it easy
for the commander to send orders to all the bots in the
botnet without much effort [7]. A more destructive form
of communication for bots is with the P2P protocol.
These bots contain P2P clients and can communicate with
one another without the use of a central command center.
With this type of command and control the attacker can
initiate commands by posing as a peer anywhere in the
network. Other forms of command and control are also
being used to a lesser degree, such as instant messaging
and cellular phones. As researchers continue to find ways
to protect against IRC based command and control
structures, the number of botnets controlled by other

Collecting and Analyzing Bots in a Systematic
Honeynet-based Testbed Environment

Napoleon C. Paxton, Gail-Joon Ahn, Richard Kelly, Kevin Pearson, and Bei-Tseng Chu
University of North Carolina at Charlotte

Proceedings of the 11th Colloquium for Information Systems Security Education
Boston University

Boston, MA June 4-7, 2007

ISBN 1-933510-96-7/$15.00 ©2007 CISSE 76

protocols will continue to increase. As mentioned earlier,
DDoS attacks are extremely difficult to detect. Most
existing mechanisms have limitations to properly
distinguish botnet traffic from legitimate traffic,
generating a high false positive rate [8]. A high false
positive rate may be its own denial of service, since
legitimate traffic is blocked from accessing the network.
Botnets continue to be a growing threat until a
trustworthy mechanism is presented that effectively
detects and blocks botnet attacks while allowing a very
low false positive rate [9, 10].

Defending networks against botnet attacks is an emerging
issue in network security and cyber crime research
communities. To our knowledge, there are only a few
works using risk as a deciding factor such as a newly
released McAfee’s Advanced Botnet Protection in
Intrusion Prevention System [8]. This tool takes a similar
approach of our framework in that it uses a proxy to
accept or block traffic that appears to be botnet related. It
does not use the risk value rigorously but mainly relies on
a signature based approach. Our architecture is very
similar to the approach as noted by Rajab, Zarfoss,
Monrose, and Terzis [11]. Some key differences are that
instead of creating “drones” to connect to a command and
control, we “install” the actual bot on a honeypot to
connect to its command and control. Our correlation
system component is also a major difference in that we
are keeping track of similarities in the bots and the
sources that download the bots. Their approach is also
more geared towards discovering the level of activity of
botnets on the Internet without discovering characteristics
for identifying similar unknown variants of each bot and
corresponding botnet traffic. Dagon, Gu, Zou, Grizzard,
Dwivedi, Lee, and R. Lipton introduced a taxonomy of
botnets to provide a response to botnets by degrading or
disrupting them [12]. This method involved discovery and
proactive attack to the botnet. In this paper, we focus on a
bot taxonomy to build up properties for our risk-aware
mechanism. Some earlier works addressed issues on
tracking botnets [13]. Such works adopted sensors and
honeypots to investigate a pathway to and from botnets.
Our approach uses a virtual space such as honeypots to
capture bots and track botnets. In addition, we attempt to
move one step forward by providing a way to categorize
the bots and to record scanning activities targeted for
vulnerable services. This allows us to grasp more details
of the intent of the adversary and gives us a way to keep
track of what services are being attacked the most.

III. HONEYNET-BASED BOT ANALYSIS ARCHITECTURE

1Our honeynet testbed was created to satisfy three major
requirements:

• Systematically collect and analyze malware
traffic over the Internet

• Comprehensively discover characteristics and
unique behaviors of malware

• Dynamically determine associated risks and
generate corresponding detection rules.

In this section we discuss the components of the
architecture without having any specific tools in mind.
Any tool that can perform the tasks described here can be
used as part of the architecture. This requirement is to
ensure the extensibility of our architecture. Figure 1 is a
visual representation of our architecture.

Malware Collection and Network Monitoring: Before we
can discover what the risks are in a network, we need to
discover how attack code reacts with the system. To
realize this goal, a collection system is proposed that
collects bots to be dynamically analyzed. Dynamic
analysis occurs by ensuring that the collection system
emulates each of the services on the network it is
protecting. We capture bots by emulating the vulnerable
services. Also, this system provides protection against
significant involvement in attacks after the bot has been
run on the system. It uses firewall and intrusion
protection techniques, such as limiting or dropping
packets leaving the protected network.

Closed & Open Analysis System Component: This
component takes the binary captured in the collection
system and runs it on a closed network environment. This
is a necessary step to discover certain aspects of the
malware before putting it on the open analysis system and
opening it up to the network. The closed analysis
component has the capability to use attack commands
found in the binary and perform simulated attacks using a
Perl script. These attacks are only run in the simulated
network and will give insight to what the binary is made
to be used for. It includes the discovered hard-coded
DNS addresses, attack commands, and other functionality
of the bot. Eventually more functionality will be
identified from the closed analysis such as patterns from
the virtually simulated attacks that can be performed
within the closed analysis system. The open analysis
component of this system allows us to inject a malicious
bot into a computer and connect back to its original
destination. This enable us to isolate the bot from the
network and monitor its traffic in a more controlled way
instead of waiting to be infected and then monitoring the

1 To date we have satisfied the first major requirement and are well on
our way to satisfying the other two. More information is given on steps
to satisfy the remaining two requirements in section 5.

Proceedings of the 11th Colloquium for Information Systems Security Education
Boston University

Boston, MA June 4-7, 2007

ISBN 1-933510-96-7/$15.00 ©2007 CISSE 77

traffic passively. The strings are pulled from the binary
as it is being run in memory, thereby negating any
obfuscation techniques.

Pattern Correlation System Component: The pattern
correlation system takes input from the open analysis and
closed analysis systems and creates an intelligence report
to display the alert events that are identified from the bot
installed. This intelligence report is used to discover
patterns in the traffic and correlations between logs. The
goal of the correlation system is to gather as much
information (characteristics) about each individual bot as
possible and correlate the results with other bots to
discover a taxonomy of each bot Each bot taxonomy will
have a list of its own characteristics as well as references
to other bots that use or have any connection with the bot
entry in the taxonomy. This information is referenced by
the risk-aware engine. The purpose of the taxonomy is to
provide a comprehensive identity for the bot so the
characteristics provided by the identity will lead to an
accurate assessment of the risks they present. A
taxonomy updater is also needed to keep the taxonomy up
to date and accurate. When a new correlation is found in
a bot, its taxonomy entry will change to reflect the new
correlation. All other bot taxonomies that are cross-
referenced by that bot will then be updated by the
taxonomy updater. The repository is a central collection
of all the logs in our architecture. This gives the
administrator a macro view of the protection system and
provides an aggregated view of the attackers on the
network. The repository holds statistics and geographical
information on the logs and presents them as input to the
risk-aware engine to be used as a factor in the assignment
of risk to the traffic.

Figure 1: Honeynet-based Bot Analysis Architecture

IV. ANALYSIS METHOD

In this section, we describe how we have analyzed the
bots and what tools were used in our components.

A. Tools Used in Analysis

• Malware Collection: Component for capturing
and storing binaries. We used two tools to
accomplish this.

o Nepenthes – A low interaction honeypot
for capturing malware [14], [15].

o MySQL – Our database of choice for
storing the malware [16].

• Closed Analysis: Component for analyzing each

captured binary offline before allowing it to be
run in its native environment. To implement this
component we utilize one tool.

o Sandnet – Sandnet emulates the Internet
and gives us the ability to act as the
command and control by sending
commands found in the strings to a
python script that allows us to issue the
bot commands [17].

• Open Analysis: Component for analyzing each

binary in its native environment. We currently
use seven tools to perform this analysis.

o VMWare – This tool gives us the ability
to run our bots on an operating system
image that can be quickly restored to
the previous system state. This allows
us to quickly switch from bots to bots in
our analysis process [18].

o Perileyez – A malware analysis tool that
compares snapshots of the system and
produces all the changes made. We run
this tool before we place the bot on the
honeypot and to observe any immediate
changes it makes [19].

o Sebek – A root kit used to collect all the
system calls from a client and server.
We use this root kit to record all the
commands given from the bot master to
the bot [20].

o Wireshark – This tool analyzes network
packets. We use this as a learning tool
to manually analyze packets [21].

o Honeywall – It monitors all packets in
and out of our architecture. It also
provides us with data control, which is
our fail-safe shutdown method to avoid
being an active participant in a botnet
attack [6].

o Maxmind Database – Tool for
displaying the location of an IP on a
world map. We use this tool to map the
source locations of where the malware
was downloaded from [22].

Proceedings of the 11th Colloquium for Information Systems Security Education
Boston University

Boston, MA June 4-7, 2007

ISBN 1-933510-96-7/$15.00 ©2007 CISSE 78

o Norton AntiVirus and ClamAV – We
use this tool to determine whether the
antivirus signature and categorization
for each bot exist [23, 24].

B. Malware Interaction

This section discusses the steps of how the malware
interacts with our components including each tool’s role
in our architecture.

Malware collection is achieved using Nepenthes, a
program that emulates Microsoft Windows services to
incite automated attacks1. When an attack occurs,
Nepenthes logs the malicious activities and attempts to
download any binaries associated with the attack. The
downloaded malware is automatically stored in a MySQL
database on the architecture, as well as the originating IP
address, and run through two anti-virus engines, Norton
10 Corporate and ClamAV. The anti-virus engine results
are then stored in the database. Our Maxmind Database
detects the source of the bot and adds an entry on a map
of the world to geographically visualize the location of
the bot.

For our Closed Analysis we use a simulated environment.
Although, Norman Sandbox is the most popular malware
simulation environment, we use a tool called Sandnet.
Sandnet provides an isolated environment and a virtual
network for the piece of malware to execute. The
environment consists of two computers, a Sandnet Server
and Sandnet Client. After the initial execution of
malware, an md5sum file, memory dump file and network
traffic logs are sent to the Sandnet Server from the
Sandnet Client. Using a specifically designed Perl script
we can recompile the memory dump file and running the
Linux command (strings –a <file>) to obtain the strings
off of the malware. The strings allow us to determine
commands used by the malware as well as target areas
that the malware will be likely to hit. Furthermore,
Sandnet is able to simulate various types of servers, the
most important being an IRC server since this is the most
notorious avenue for sending malware commands.

Our Open Analysis provides connection to the internet.
The live execution environment is notably more verbose
than using Sandnet. To begin, VMWare workstation is
used to create a default installation of Windows XP,
Service Pack 1. After the image is created, Sebek is
installed onto the image. Sebek is a kernel based data
capturing tool and captures the processes used by the
image, sending them as packets across the network.

To obtain the files added, deleted and changed by the
malware the tool Perileyez is run on the image. The

1 We have currently captured Windows based malware.

initial snapshot of the image is taken once Sebek and
Perileyez are installed and after the malware is executed,
a second snapshot is taken. By comparing the two
snapshots we can identify alterations the malware makes
to the image including changes to drivers, DLLs,
processes, ports and remote connections as well as any
files changed.

Capturing and analyzing network traffic is the final step
in running a live execution environment. To capture all
network traffic generated by the virtual environment, we
use a Honeywall. The Honeywall is able to capture all
network packets that are sent and received by the image.
These packets are merged into PCAP files and sent to a
central server at the end of each day. Currently we have
found it useful to separate the PCAP files into four hour
segments, giving us six slices for each day. By
segmenting the file, it allows us to locate suspicious data
more easily. Using the tool Wireshark, we can look at the
daily PCAP files and determine the actions of the
malware for the previous day. One PCAP file can display
IRC conversations, secondary injections attempts, DNS
queries, propagation scans and HTTP conversations as
well as any other type of network traffic.

C. Analysis Methods and Results

We analyze our collected malware using a predefined
method. The list below shows the content of each
analysis. Each week information security students share
their findings on bot characteristics using this template
with other students and faculty. This has greatly
increased their competency in analyzing these bots within
their native environment.

• Identification: MD5 value and anti-virus engine
results

• Source of Infection: network traffic analysis
related to the location where the malware
downloaded from.

• System Interaction: system state report which
includes files added, unloaded drivers, unloaded
dlls and so on.

• DNS queries: identification of domain names
for command and control servers and
corresponding ISP information

• IRC Communications: collection of live IRC
conversation and any traffic related to scanning
and secondary injection

Most of the malware that we have examined have
exhibited similar behavior. Figure 2 is a snapshot from
our bot repository. It shows our number of total binaries
as opposed to the number of binaries that were actually
detected. As we notice, both Norton Antivirus and
ClamAV did not detect about 25% of the bots that were
downloaded in Nepenthes. When started, at least one and

Proceedings of the 11th Colloquium for Information Systems Security Education
Boston University

Boston, MA June 4-7, 2007

ISBN 1-933510-96-7/$15.00 ©2007 CISSE 79

as high as fourteen executable were installed on the
image. Ports were opened, processes shutdown and/or
restarted and new registry keys created. The malware
usually restarts legitimate Windows processes so that it
may append itself to that process. For example,
msmgs.exe is the MSN Messenger process and, by
default, is loaded on startup causing the malware to be
reloaded every time the machine is restarted. In a high
number of instances, the malware “hardens” the system to
prevent other bots from infecting the machine with any
further attacks and leaves the system still accessible, so
that the casual user would not notice much difference.
Only a small number of times has a piece of malware
completely disabled the image causing it to be unusable.

To use a concrete example, the malware Trojan.Mybot-
7663 initially loaded the files lssas.exe and fswinsys.exe,
which are registered as the W32.AGOBOT.RL Trojan
and Worm.Ircbot.Gen respectively. It furthered its assault
by unloading 90 drivers from memory including
cdrom.sys, ultimately rendering the CDROM useless. It
proceeded to unload 250 DLL files and deleted 77
services, most notably the secondary logon service
causing major problems in logging into the image. After
opening a few select ports, the malware terminated 16
processes, many system critical. These processes
included lsass.exe, winlogon.exe, and services.exe and
even though all were eventually restarted it is safe to
assume that they were tampered with.

All of the malware that we have actively examined use
some type of systematic scan, presumably for
propagation. Most of these were TCP SYN scans on a
class B subnet. If a TCP SYN scan was not used, ICMP
ping scans were used. We have noticed that DNS queries
were hard coded into the bots, using the returned IP
address to log into an IRC server and obtain secondary
injections. Some malware ran had been relatively
inactive until the completion of the secondary download
in which a propagation scan would ensue. A high number
of malware have displayed this behavior allowing us to
form the hypothesis that malware writers use other
writer’s code to ensure a small, compact binary. For
example, our Nepenthes sensor captured a process called
fswinsys.exe for the first time on May 10, 2006 and since
have seen numerous hits per day. Upon execution, we
realized that fswinsys.exe is able to initiate a propagation
scan a lot more quickly than most other malware. After
this realization we ran numerous other malware that
would download the fswinsys.exe process as a secondary
injection and used for propagation scans. This discovery
lead us to our second hypothesis, of which many of the
malware writers use previously created malware or copy
and paste code from previously created malware. For
example, the malware following the md5sum
429d74b465003ddcfd54b586705191cb (classified as a
W32.Spybot.Worm) displayed the above mentioned

behavior. Its initial execution resulted in PCAP slices
ranging from 200K to 600K. Once the secondary
injection of fswinsys.exe was complete the next slice was
7.8M. The propagation scan had a time limit associated
with it so on completion the PCAP slices fell back to its
200K to 600K average. The malware then received a
second propagation scan command the following day, but
with no time limit and a longer delay resulting in PCAP
slices ranging from 1.5M to 6.9M. This malware has
become common among our analysis team in which the
fswinsys.exe process is used to initiate large propagation
scans.

Malware use IRC channels to receive commands for
propagation scans and secondary download. Throughout
the life of our Honeynet, these bots have shown an
interesting similarity in the type of commands received. A
main focal point for all malware is the use of a
propagation scan. The common command for a
propagation scan has been .advscan <port#> <threads>
<delay> <time> <switches>. For example, the command
.advscan lsass_445 200 5 0 –r –b –s would correspond to
a randomized (-r switch), class B (-b switch) subnet scan
on port 445 using 200 threads with a 5 second delay for
an infinite amount of time. Rarely does a piece of
malware designate a time for the scan to finish so the 0 is
used to express an infinite amount of time. Furthermore,
the –s switch is a silent switch that bots will use to keep
their status from being broadcast across the IRC channel.

Figure 2: Bot Repository

V. CONCLUSION

In this paper, we have discussed our Honeynet-based Bot
Analysis Architecture. We have shown that our testbed

Proceedings of the 11th Colloquium for Information Systems Security Education
Boston University

Boston, MA June 4-7, 2007

ISBN 1-933510-96-7/$15.00 ©2007 CISSE 80

has been an invaluable learning tool for our students and
allows them to directly observe interactions of malware in
the wild. Our approach has provided us with the analysis
results necessary to move forward to our next steps which
are to determine the characteristics of incoming malware.
For the future work, our goal is to develop a risk aware
framework that will examine incoming network packets
and use malware characteristics to determine whether
network packets are suspicious or not.

VI. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
comments and suggestions.

VII. REFERENCES

[1] Phishing Reaches an All-time High in March.
Available at www.it-observer.com

[2] S. Kandula, D. Katabi, M. Jacob, and A. Berger,

“Botz-4-Sale: Surviving Organized DDoS Attacks
That Mimic Flash Crowds,” In Proceedings of
NSDI, 2005

[3] R. Dhamija and J. D. Tygar. The battle against

phishing: Dynamic security skins. Symp. On
Usable Privacy and Security, 2005.

[4] S. Saroiu, S. D. Gribble, and H. M. Levy.
Measurement and Analysis of Spyware in a
University Environment. Proc. NSDI, 2004.

[5] E. Skoudis and L. Zeltser. Malware: Fighting

Malicious Code. Prentice Hall, 2004.

[6] The Honeynet Project & Research Alliance. Know

Your Enemy: GenII Honeynets. Available at
www.honeynet.org/papers/

[7] J. Li, T. Ehrenkranz, and G. Kuenning, “Simulation

and Analysis on the Resiliency and Efficiency of
Malnets,” In the Proceedings of the 19th Workshop
on Principles of Advanced and Distributed
Simulation, 2005

[8] J. Dunn. McAfee launches first bot-killing system.

Available at www.techworld.com

[9] The Honeynet Project & Research Alliance,

"Know Your Enemy: Tracking Botnets,”
Available at www.honeynet.org/papers/

[10] T. Holz, “A Short Visit to the Bot Zoo,” Security &

Privacy Magazine, IEEE 2005

[11] Moheed Abu Rajab, Jay Zarfoss, Fabian
Monrose, and Andreas Terzis, “A Multifaceted
Approach to Understanding the Botnet
Phenomenon,” In the Proceedings of ACM IMC,
06

[12] D. Dagon, G. Gu, C. Zou, J. Grizzard, S. Dwivedi,

W. Lee, and R. Lipton,”A Taxonomy of Botnets,”
Available at www.math.tulane.edu/~tcsem/

 [13] F. Freiling, T. Holz, and G. Wicherski, “Botnet

Tracking: Exploring a Root-Cause Methodology
to Prevent Distributed Denial-of-Service Attacks,”
In the Proceedings of the 10th European
Symposium on Research in Computer Security,
2005

[14] Baecher et al, "The Nepenthes Platform: An

Efficient Approach to Collect Malware," In
Proceedings of RAID '06.

[15] Nepenthes-Finest Collection, Available at

nepenthes.mwcollect.org/

[16] MySQL, Available at www.mysql.com

[17] Truman – The Reusable Unknown Malware

Analysis Net, Available at www.lurhq.com/truman/

[18] Vmware GSX Server, Available at

www.vmware.com

[19] Perileyez, Available at

www.digitalninjitsu.com/downloads.html

[20] The Honeynet Project, Know Your Enemy: Sebek-

-A kernel based data capture tool, November 2003,
Available at www.honeynet.org

[21] Wireshark, Available at www.wireshark.org

[22] Maxmind, Avalible at www.maxmind.com

[23] Norton 10 Antivirus, Available at
 www.symantec.com

[24] ClamAV, Available at www.clamav.net

Proceedings of the 11th Colloquium for Information Systems Security Education
Boston University

Boston, MA June 4-7, 2007

ISBN 1-933510-96-7/$15.00 ©2007 CISSE 81

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

