
CONSTRAINED ROLE-BASED DELEGATION

LONGHUA ZHANG

NuTech Solutions, Inc
Charlotte, NC 28262, USA
Long hua.zhang@nutechsolutiolls.com

GAIL-JOON AHN
Dept. of Software alld Informatioll Systems
University of North Carolina at Charlotte
Charlotte, NC 28223, USA
gaIl1l@Ullcc.edu

Abstract: Delegation is a proIIlIsmg alternative to traditional role administration
paradigms in role-based systems. It empowers users to exercise discretion in
how they use resources as it is in discretionary access control (DAC). Unlike
the anarchy of DAC, in role-based access control (RBAC) higher-level
organizational policies can be specified on roles to regulate user's action.
Delegations and revocations are thus governed by these authorization policies.
In this paper, we propose a policy approach for specifying and enforcing
delegation authorizations. We present a mechanism for constructing
authorization policies using a set of rules. Our rule-based language is flexible
and powerful to specify and enforce authorization constraints. In addition,
rules can also be used to define the exceptions for future actions and resolve
possible conflicts.

Key words: Role-based delegation, authorization constraints, access control.

1. INTRODUCTION

Access control model must include an administration policy that
regulates the specification of authorizations. In current role-based systems
[1, 2], security officers handle this function. This approach is appropriate in
centralized systems as well as distributed systems where users, roles, and
their assignments are relatively static and stable. However, current dynamic
and collaborative work environment often requires users to change their role
memberships frequently. It could raise tremendous overhead because of the
continuous involvement from security officers. One promising approach is to
empower individual user to delegate authorizations. Through delegation,
users are trusted to exercise their privileges in how they use resources as it is
in discretionary access control (DAC) [4]. We have presented a delegation
framework focusing on user-to-user delegation in role-based systems [5].

D. Gritzalis et al. (eds.), Security and Privacy in the Age of Uncertainty
© Springer Science+Business Media New York 2003

290 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

The framework consists of a delegation model called RDM2000 and a rule
based policy specification language. RDM2000 is our first attempt to
address administration of roles through delegation. And the rule-based
language is used to specify delegation policies. Administration of roles
through delegation is quite feasible and practical. We have demonstrated
how RDM2000 can support those features in several role-based systems
[19]. However, the original rule-based policy language lacks capabilities to
specify and enforce constraints, which are highly desirable features in
RBAC. As constraints are a powerful mechanism for laying out
organizational policy, constraints enforcement is an important component to
administer role-based delegations [1].

In this paper, we enhance the rule-based language to support constraints
specification and enforcement. We present a policy approach to implement
role-based delegation authorization. We also demonstrate that our
authorization policy is flexible and powerful for role-based delegation. We
believe that our work provides a flexible mechanism for administration of
roles in role-based systems.

The rest of this paper is organized as follows. Section 2 describes
delegation requirements and reviews related works. Section 3 describes the
RDM2000 model and role-based constraints. Section 4 presents a policy
approach for the specification and enforcement of delegation authorizations.
We discuss other issues and future directions in section 5. Section 6
concludes this paper.

2. BACKGROUND AND RELATED WORK

Delegation is an important factor for secure distributed computing
environment. It has been studied by a number of researchers [5, 8, 9, 10]. In
general, it is referred to as one active entity in a system delegates its
authority to another entity to carry out some functions. In role-based
systems, the delegated authorities are roles. The requirements related to role
based delegation have been identified in the literature [5, 9, 11].

There are many groups working on constraints specification [1, 12, 13].
Sandhu et al. [1] described several types of constraints in RBAC96. Ahn et
al. [12] specified role-based separation of duty constraints using RCL2000
language and identified various classes of role-based authorization
constraints. Bertino et al. [13] explored authorization constraints in
workflow management systems. Bandmann et al. [18] illustrated how to
impose controls on handling the delegation tree. However, the enforcement
of these constraints has not received much attention. Lupu et al. [6] studied
specification of policies in the context of role management. They consider
roles as a set of policies and use policies to specify permissions of each role.

Constrained Role-based Delegation 291

In their approach, authorization policies and roles are highly coupled,
because roles cannot exist without policies. In our approach, permissions
assigned to roles are specified by permission assignment (PA) and
authorization policies specify whether a delegation (or revocation) is
allowed. So policies and roles are loosely coupled. Another difference is to
define a policy as a set of declarative rules instead of a single object. Since
rules are easy to understand, create, and modify, it provides flexibility to
meet different authorization requirements.

3. RDM2000 - THE DELEGATION MODEL

RDM2000 was originally
introduced for user-to-user delegation
in role-based systems. It formalizes the
relationship between two user
assignments (UAO/UAD) that form a
delegation relation (DLGT), as shown
in figure 1. Basic elements and system
functions from the RDM2000 model DLGT

are summarized in definition 1. Fh~ure 1. RDM2000
Definition 1. The following is a

summary o{components defined in RDM2000 model:
• VA = VAO uVAD cV xR
• VAO C V x R is an original user to role assignment relation.
• VAD k V x R is a delegated user to role assignment relatiol!.
• DLGT = ODLGT u DDLGT C VA x VA.
• ODLGT C VAO x VAD is an original user delegation relation.
• DDLGT C VAD X VAD is a delegated user delegation relation.
• DLGT = ODLGT u DDLGT.
• Prior: VA ~ VA is a function that maps a user assignment to another

subsequent user assignment that forms a delegation .,elation.
• DP C VA x VA represents a delegation path.
• DT C VA x VA represents a delegation tree.
• Path: VA ~ DP is afunction that maps a VA to a delegation path.
In RDM2000, a set of authorization policies is defined. These

authorization policies are represented in our policy language as basic
authorization rules [5].

Constraints are an important component of RBAC since it can be used
for laying out higher-level organizational policies in role-based systems
[1,12]. Our objective is to specify and enforce constraints in role-based
delegation authorizations. First, we overview some identified constraints in
role-based systems [1, 12, 13, 14]: 1) Static separation of duty

292 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

(SSOD)llncompatible roles assignment. This constraint states that no
common user should be assigned to conflicting roles. A frequently llsed
example is a user cannot be a purchase manager while at the same time
being an account payable manager for the same organization. We denote a
set of incompatible role assignments as IRA. 2) Incompatible users. This
constraint states that two conflicting users cannot be assigned to the same
role. For example, it might be a company's policy that members from same
subdivision should not be assigned to the same steering committee. We
denote a set of incompatible users as IU 3) Incompatible permissions. This
constraint states that conflicting permissions cannot be assigned to the same
role. We denote a set of incompatible permissions as W. 4) Cardinality
constraints. This constraint states that a role can have a maximum number of
members or a user may belong to a maximum number of roles. For example,
there may be only one person in the role of CEO in an organization. As
stated in [1], the role cardinality is difficult to implement since the system
may not know exactly how many users are still "alive" - some may leave
without notifying security officers. We denote the cardinality of x as
cardi(x), where x is a role term or a user term.

It is futile to enumerate all role-based constraints, as there are too many
possibilities and variants [12]. In the subsequent sections, we show that the
enhanced rule-based language is expressive enough to specify a wide range
of constraints.

4. AUTHORIZATION POLICIES IN DELEGATION

4.1 Functions, Rules, and Policies
The fundamental element of the policy language is a set of functions. We

categorize these functions into three groups: 1) a set of specification
functions, expressing information of the RBAC and RDM2000 components;
2) a set of authorization functions, describing an authorization information
or decision. We further divide them into a set of basic authorization
functions (BAP), a set of derived authorization functions (DAP), and a set of
negative authorization functions (NAP); and 3) a set of utility functions,
providing supportive functionalities, e.g. comparison and aggregation. These
functions and their semantics are listed in appendix.

We borrow the notion of two non-deterministic functions from RCL2000
[12]: one_element and all_other (originally as OE and AO). These functions
are introduced to replace explicit quantifiers, thus keep the language simple
and intuitive. The one_element(X) function allows us to get one element Xi

from set X. Multiple occurrences of one_element (X) in a single rule
statement select the same element Xi' With aICother(X, xJ we can get a
subset of X by taking out one element Xi.

Constrained Role-based Delegation 293

The policy language is a rule-based language with a clausal logic [5]. A
rule is the form:

H (-8.
Where H stands for rule head and 8 stands for rille body.

A successful inference of B triggers H to be true. This provides the
mechanism for constraints specification and enforcement. A constraint is
similar to an assertion. If the condition defined in the constraints is true, then
it triggers some actions (restrictions). Thus, the condition information of a
constraint can be encoded in a rule body; and the restrictions can be encoded
in the rule head.

Since it is natural to represent restrictions as negative authorizations, we
include the negative authorization concept in the rule-based policy language.
A negative authorization defines what a user is forbidden to do. Given an
authorization can_do that defines what can do, there can always be a
negative authorization cannoCdo that defines what cannot do. Although
negative authorization has been introduced in discretionary access control
for a long time, it has not been studied in role-based context. In [14], Bertino
et al. explored negative authorization in relational data management systems
(RDMS). They proposed strong and weak enforcement for positive and
negative authorizations. Their approach provides a flexible mechanism to
express a number of DAC policies. Because of the existence of role
hierarchies, negative authorizations in RBAC are more complex than in
DAC. For example, a negative authorization on a role needs to consider an
impact on its senior roles. In this paper, we consider negative authorization
can be inherited in role hierarchies: if a user cannot be assigned to a role r,
he cannot be assigned to any roles that are senior to r. We do not distinguish
a strong or a weak enforcement of authorization for the brevity. An override
rule determines whether positive or negative authorization needs to be
enforced. In this paper we limit the application of negative authorizations to
constraints enforcement and exception handling. In our future work, we
would general use of negative role-based authorizations in depth.

There are three sets of rules in RDM2000: basic authorization rules,
authorization derivation rules, and override rules. Bodies of basic
authorization rules are empty. In other words, they are always true. Basic
authorization rules are predefined security policies or facts specified within
RBAC components. An authorization derivation rule expresses authorization
on an individual user. The rule body describes an inference logic that
consists of basic authorization, specification and utility functions. The result
can be either true (authorized) or false (denied). However, the result might
be overridden by other rules in certain situations. An override rule specifies
exceptions and conflict resolution policy. Having discussed different
functions and rules, we define the following authorization policy:

294 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

Definition 2. (Authorization Policy) An authorization policy consists of
a finite number (possibly zero) of rules.

An authorization policy is a logic program that defines authorization for
individual users to exercise privileges in role-based systems. Each
authorization policy has one or more authorization derivation rules
representing the goal. The conclusion of a goal is the result of the logic
program execution.

4.2 Constraints Specification
In order to represent constraints, we define rules that are extremely suited

for constraints specification as well as enforcement. We articulate several
constraints and specify them using our rule-based language.

A static separation of duty (SSOD): incompatible roles assignment
constraint states that no common user can be assigned to conflicting
roles in the incompatible role set ira = (r}, r2 j. This constraint can be
represented as:
cannocassign(u, r) f-senior(r, onejlement(ira)) &

member_of(u, olle _element(all_other(ira, one_element(ira)))).
where canllocassign, equals, one_element, member _of, all_other are junctions
defilled ill our rule-based language; /I E U, r E R, and ira E IRA.
The rule says if r equals one element of a set of the incompatible role
assignments ira, and a user u is already member of another role other
than r in the incompatible role set, then u cannot be assigned role r.

An incompatible users constraint states that two conflicting users in the
incompatible user set iu=(u}, U2 j cannot be assigned to the same role.
This constraint can be represented as:
call11ot_assign(u, r)f-

equals(u', one_element(aICother(iu, u))) & member_of(u', r).

An incompatible permissions constraint states that two conflicting
permissions in the incompatible user set ip=(pJ, P2, ... j cannot be
assigned to the same role. This constraint can be represented as:
cannocassignp(r, p)f-equals(p', one_element(alCother(ip, p))) &

in(p', permissionsJole(r)).

A role cardinality constraint states that a role can have a maximum
number N of user members. This constraint can be represented as:
cannocassign(Lt, r)f- greater_thane cardi(r), maxcardi(r)-1).

Constrained Role-based Delegation 295

A user cardinality constraint states that a user can be member of a
maximum number N of roles. This constraint can be represented as:
cWlIlot_(lSsigll(II, r) ~ greater_than(cardi(II), maxcardi(1I)-1).

We have demonstrated how different constraints can be specified using
rules. Next we show how exceptions can be specified and how to resolve
possible conflicts in rules.

4.3 Exception Handling and Conflict Resolution

Exceptions allow users to state overridden policies for previous specified
and enforced authorizations in some cases. For example, a security officer
may need to suspend Bob's role membership of account manager role
AcctMgr without revoking him from the role. This can be achieved by
issuing following rule:

call1lotJlctivate(Bob, AcctMgr, _)~.
where _ stands for anonymous variable. An anonymous variable can be
allY thing. In this case, it can be any session

This rule enforces Bob cannot activate his role AcctMgr in any session.
Another exception example could be the duration-triggered revocation.

Revocation using duration-restriction constraints was proposed by Barka and
Sandhu [9]. In such a revocation, a duration constraint is attached to each
delegation such that the delegation expires when the assigned time expires.
Duration-restriction revocation is a simple self-triggered process that ensures
the revocation of role membership. Suppose there is a delegation relation
(Linda, AcctMgr, Alice, AcctPart) E DLGT with an associated duration
constraint t. The duration-triggered revocation can be represented as:

del' _caIlJevokeGD(Linda, AcctMgr, Alice, AcctPart, rvk_opt)
f-- expires(Alice, AcctPart, t).

Therefore, role-based systems can revoke Alice from the AcctPart role,
which is a part-time worker in an accounting department based on the
duration t.

It is worth emphasizing that negative authorizations are the main
mechanism to specify constraints and exceptions. Enabling negative
authorization may inevitably cause inconsistency: whenever a user holds
both a positive and a negative assertion for the same authorization, conflicts
arise. A conflict resolution policy is then needed to determine whether the
negative or positive assertion should be enforced. There are many different
approaches that could be taken [16]: 1) No conflicts allowed. The presence
of a conflict is considered as an error; 2) Negative authorization takes
precedence. The negative always overrides the positive; 3) Positive
authorization takes precedence. The positive always overrides the negative.
4) A mixed approach. Neither authorization is considered as prevailing over
the other.

296 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

In our approach, we specify the override rules to resolve possible
conflicts. The decision on whether a negative or a positive authorization
takes precedence is determined by an override rule.

override(calljlctivate(Bob, AcctMgr, _), false)f-
call_activate(Bob, AcctMgr, _)&

cannoCactivate(Bob, AcctMgr, _).
This rule explicitly states that Bob cannot activate AcctMgr if conflict exists.
Override rules themselves may have conflicts. Although another override
rule can be defined to resolve the conflict, this may cause a loop in override
rule definition. A default organizational policy can be specified to solve it.
For example,

override(X, false)f- override(X, true)&override(X, false).
It means that if there exist conflicting override rules, the negative takes
precedence.

4.4 Delegation Authorization Policies
As defined in section 4.1, authorization policies are a set of rules

regulating whether or not a user is allowed to exercise privileges. To support
constraints and exceptions, the delegation authorization includes a single
rule. For example, a user-to-user delegation is authorized by the user-user
delegation authorization derivation rule in [5]:

der_calljlelegate(u, 1', u', r', dig_opt) f-call_delegate(r", cr, 11)&
active(u, r, s)&delegatable(lI, 1')&
selli0l1r, r")&satisfy(u', cr)&
junior(r', r")&in(depth(u, r), n). (1)

To enforce constraints and exceptions, more rules are needed for
authorizing the delegation. For example, if we consider SSOD, incompatible
users, incompatible roles, and cardinality constraints, we need to add the
following rules:

der_callnocdelegate(u, r, u', 1", dig_opt) f-cannocassign(u', r'). (2)
cannocassign(Il', r')f-senior(r', one_element(ira)) &

member _oJ(u', one_element(
alCother(ira, olle_element(ira)))). (3)

cannocassign(u', r')f- equals(u ", onejlement(
aICother(iu, u'))) & member_ofiu", r'). (4)

callnocassignr(r', r")f- sellior(r", olle_element(
aICother(irr, r'))). (5)

cannocassign(u', r')f- greater _thane cardi(r'), maxcardi(1")-1). (6)
canl1ocassign(u', r')f- greater _thane cardi(1! '), maxcardi(u')-1). (7)

override(der_canjlelegate(u,r,u ',r' dig_opt), false))f-
derJanjlelegate(lI,r,u',r' dig_opt) &
del' JallIlot_delegate(U, r, U ',r' dig_opt). (8)

Constrained Role-based Delegation 297

where II, /I', alld u" are elements of users; r, r', and r" are elements of roles; cr
and s are elements of prerequisite condition and sessions respectively; dig_opt
is a Boolean term, if it is true, then delegatable (u', r') is true; ira is any conflict
role assignment set that contains r'; ill is any incompatible IIser set that contains
It '; irr is any incompatible role set that contains r'; lIlaxcardi(r') alld),
maxcardi(u ') are maximum allowed cardinalities for r' Gild It' respectively.

Rule 2 specifies that if there is any constraint that forbids the user
assignment (u', r') then the delegation should be denied. Rule 3, 4, 5, 6, and
7 specify constraints. Rule 8 deals with the resolution of conflicts. These
rules authorize a user-to-user delegation. Next, we consider handling
exceptions in the delegation authorization policy. The basic authorization
rule allows users to delegate roles only if users satisfy the prerequisite
condition. Otherwise, the authorization decision should be reconsidered,
Since there may be multiple basic authorization rules that could be applied to
infer the delegation authorization, we may specify the following exception
handling rule:

der_canJevokeGD(u, r, /I', 1", rvk_opt) f-caIlJevokeGD(r') &

note satisfy(u', crY) & note derJan_delegate(u, r, It', r', dig_opt)). (9)
This rule says whenever user u' cannot satisfy the prerequisite condition cr
after an authorized delegation, the system needs to re-infer
der _canJZeZegate(u, r, u', r', dZg_opt). If the inference fails, then u' is
revoked from r' ..

The delegating user can also specify a duration-triggered revocation:
der_canJevokeGD(u, r, u', r', rvk_opt) f-

canJevokeGD (r') & expires(u', r', t). (10)
The exception handling rules do not affect the initial decision of a

delegation authorization. Rather, they define the actions that would be taken
if the conditions embedded in the rule bodies are triggered after the
delegation.

We summarize the delegation authorization policy as follows: a goal,
which is specified by an authorization derivation rule; rules that enforce
role-based constraints; override rules to resolve possible conflicts; and
exception handling rules to specify sub-goals that process post-delegation
authorizations.

Similarly, we can construct revocation authorization policies for grant
dependent (GD) and grant-independent (GI) revocations. The revocation
authorization policies only consist of goals. Although we mainly illustrated
specification of delegation and revocation authorization policies using rules
in this section, the concept of building a policy is equally applicable to any
other authorization scenarios in role-based systems.

298 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

5. DISCUSSIONS AND FUTURE WORK
We are attracted by some virtues of the rule-based language: they are

highly expressive; they can easily be extended to facilitate additional
requirements; and they can handle conflicts during creating and updating of
rule sets. However, there are several challenges in rule-based policy
implementation. One difficulty is the validation of semantics. Although the
rule declaration is intuitively simple that non-experts can feel comfortable in
specifying the rule sets, a formal definition and proof of soundness and
completeness are still necessary. Another difficulty is the complexity of
implementing inferences in the authorization policy. As an ongoing effort,
we have been developing security architectures for delegation in distributed
role-based systems. Policy service is one of the major components in this
architecture. It consists of a rule compiler and a policy engine: the compiler
runs as a preprocessor to convert declarative rules to logic program, the
output is fed to the policy engine, which may infer the authorization decision
and process exceptions for post-delegation actions.

6. CONCLUSIONS
In this paper, we presented a policy approach for constrained delegation

authorization. We have shown that our authorization policy is flexible and
powerful to regulate role-based delegation. Not only can it enforce role
based constraints, but also be used to define the exceptions for future
actions. We reiterate that our work makes it easier to administer roles
through delegation in role-based systems. By specifying authorization
policy, the delegation is adapted to meet users' needs, while organizational
policies can still be specified to impose restrictions. We believe that
specifying and implementing complex delegation authorization policies are
critical and challenging tasks in large, distributed role-based systems.

REFERENCE
[1] R. Sandhu, E. Coyne, H. Feinstein and C. Youman. Role-based access control

model. IEEE Computer, 29(2), Feb. 1996.
[2] D. Ferriaolo, J. Cugini, and R. Kuhn. Role-based access control (RBAC):

Features and Motivations. Proceeding s of 11th Annual Computer Security
Application Conference, pages 241-248, New Orleans, LA, Dec 11-15 1995

[3] R. Sandhu, Y. Bhamidipati, and Q. Munawer. The ARBAC97 Model for
Role-based Administration of Roles. ACM Transactions on Information and
System Security. Yol.2, No.!, Feb. 1999, pages 105-135

[4] S. Osborn, R. Sandhu and Q. Munawer. Configuring Role-Based Access
Control to Enforce Mandatory and Discretionary Access Control Policies.
ACM Transactions on Information and Systems Security, Yoi.3, No.2,
(2000).

Constrained Role-based Delegation 299

[5] L. Zhang, G. Ahn, and B. Chu. A Rule-Based Framework for Role-Based
Delegation. Proceedings of ACM Symposium on Access Control Models and
Technologies, pages 153-162. Chantilly, V A, May 3-4, 2001

[6] E. Lupu, D. Marriott, M. Sloman and N. Yialelis. A Policy Based Role
Framework for Access Control. Proceedings of the First ACM Workshop on
Role Based Access Control, Gaithersburg, Maryland, USA, Nov. 1995, ACM,
ISBN: 0-89791-759-6.

[7] E. Lupu and M. Sloman. Towards a Role Based Framework for Distributed
Systems Management. Journal of Network and Systems Management, 5(1):5-
30, Plenum Press Publishing, 1997.

[8] N. Li and B. N. Grosof. A practically implementation and tractable delegation
logic. Proceedings ofIEEE Symposium on Security and Privacy. May 2000.

[9] E. Barka and R. Sandhu. Framework for Role-Based Delegation Model.
Proceedings of 23rd National Information Systems Security Conference, pages
101-114, Baltimore, Oct. 16-19,2000

[10] M. Gasser, E. McDermott. An Architecture for Practical Delegation a
Distributed System. Proceedings of IEEE Computer Society Symposium on
Research in Security and Privacy. Oakland, CA, May 7-9,1990

[11] A. Hagstrom, S. Jajodia, F. P. Presicce, D. Wijesekera, Revocations - a
classification. Proceedings of 14th IEEE Computer Security Foundations
Workshop, Nova Scotia, Canada, June 2001, pages 44-58.

[12] G. Ahn and R. Sandhu. Role-based Authorization Constraints Specification.
ACM Transactions on Information and System Security, pages 207-226, Vol.
3, No.4, ACM, November 2000

[13] E. Bertino, E. Ferrari, V. Atluri. The specification and enforcement of
authorization constraints in workflow management systems, ACM
Transactions on Information and System Security (TIS SEC) , Vol.2 No.1,
p.65-104, Feb. 1999

[14] E. Bertino, S. Jajodia, P. Samarati, "A Flexible Authorization Mechanism for
Relational Data Management Systems", ACM Trans. Information Systems,
Vol. 17, No.2, April 1999, pages 101-140.

[15] S. Jajodia, P. Samarati, M. L. Sapino, V. S. Subrahmanian, "Flexible support
for multiple access control policies," ACM Trans. on Database Systems, June
2001, pages 214-260

[16] S. Jajodia, P. Samarati, V. S. Subrahmanian, E. Bertino, A unified framework
for enforcing multiple access control policies, ACM SIGMOD Record,
Vol.26 No.2, pages 474-485, June 1997

[17] A. Herzberg, Y. Mass, J. Michaeli, D. Naor, and R. Ravid. Access control
meets public key infrastructure, or: assigning roles to strangers. Proceedings
of IEEE Symposium on Security and Privacy, Oakland, May 2000

[18] O. Bandmann, B. S. Firozabadi, and M. Dam. Constrained Delegation.
Proceedings of IEEE Symposium on Security and Privacy. May 12 - 15,
2002. Berkeley, California

[19] Longhua Zhang, Gail-Joon Ahn, Bei-Tseng Chu: A role-based delegation
framework for healthcare information systems, Proceedings of ACM
Symposium on Access Control Models and Technologies, pages 153-162,
June 2002.

300 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

APPENDIX

Some functions and their semantics are listed in table 1. 2. and 3. We use UT, RT. PT. ST.
UAT, PAT. OLGTT. OPT, CRT. lRAT. IUT. IRRT. ST. OT, and NT to indicate set of users,
roles, permissions, sessions, user assignments, permission assignments, delegations,
delegation paths, prerequisite conditions, incompatible role assignments, incompatible users,
incompatible roles, booleans. durations, and natural numbers, respectively.

Table 1. Utility functions

Predicate Arity Argument Return Meaning

All_other 2

equals 2
In 2

Not

one_element I

satisfy 2

Predicate

cardi

delegatable

expires

maxcardi

parent

predecessor

revoked_cascade

Predicate

override

cannot_assign

cannocassignr

cannocacti vate

set of XT, XT set ofXT aICother(X, x) = X-Ix}.

XT,XT BT If equals(x, y) is true, then x = y.

XT, set ofXT BT If in(x, y) is true, then x E y.

BT BT not(true) = false and not(false)=true.

set ofXT XT oneelement(X) returns one element in set X.

UT,CR BT If satisfy(u, cr) is true, then user u satisfies cr.

Table 2. Specification functions

Arity

1
I

3

2

2

Arity

2

2

2

3

Argu. Return Meaning

RT NT cardi(r) returns current number of users in role r.

UAT BT If delegatable(ua) is true, then ua can further delegate.

UT, BT expires(u, r. t) returns true if duration t assigned to (u, r)
RT,DT expires.

RT NT maxcardi(r) returns the maximum cardinality allowed
for role r.

UAT, BT parent(ua, ua') f- equaIs(ua, prior(ua'».
UAT

UAT, BT predecessor(ua, ua') f- predecessor(ua, ua"), parent(ua",
UAT ua').

predecessor(ua, ua') f- parent(ua, ua').

UAT BT If revokedcas(ua) is true, then ua will be revoked

cascadingly.

Table 3. Authorization functions

Argu.

Rule
head,
BT

UT,RT

RT,RT

UT,RT,
ST

UT.RT,
UT,RT,
BT

Type

BAP

NAP

Meaning

override(H, b) means let H=b. It states conflict
resolution policy for Hf-B.

cannocassign(u, r) means user u cannot be assigned
role r.

NAP cannot_assignr(r, r') means role r' cannot be
assigned to role r. .

NAP cannot_activate(u. r, s) means u cannot activate r in
sessions. If session s is an anonymous variable,
cannocactivate(u, r, _) means u cannot activate r in
any session.

NAP der3annocdelegate(u, r, u', r', b) means user u
with role r cannot delegate role r' to user u· .

