
Enabling Verification and Conformance Testing for Access
Control Model

Hongxin Hu and GailJoon Ahn
The University of North Carolina at Charlotte

{hxhu,gahn}@uncc.edu

ABSTRACT

Verification and testing are the important step for software
assurance. However, such crucial and yet challenging tasks
have not been widely adopted in building access control sys-
tems. In this paper we propose a methodology to sup-
port automatic analysis and conformance testing for ac-
cess control systems, integrating those features to Assur-
ance Management Framework (AMF). Our methodology at-
tempts to verify formal specifications of a role-based access
control model and corresponding policies with selected se-
curity properties. Also, we systematically articulate testing
cases from formal specifications and validate conformance
to the system design and implementation using those cases.
In addition, we demonstrate feasibility and effectiveness of
our methodology using SAT and Alloy toolset.

Categories and Subject Descriptors

D.2.1 [Requirements/Specifications]: Language, Method-
ologies, Tools; D.2.4 [Software/Program Verification]:
Model Checking, Validation; K.6.5 [Management of Com-
puting and Information Systems]: Security and Protec-
tion

General Terms

Design, Security, Languages, Verification

Keywords

Access Control, Model-based Verification, Model-based Test-
ing, SAT Solver, Alloy

1. INTRODUCTION
Security has become a necessary part of nearly most mod-

ern software and information systems. Software developers
utilize models extensively, particularly in the early software
development lifecycle to improve software quality. Unfor-
tunately, security concerns are rarely considered as part of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’08, June 11–13, 2008, Estes Park, Colorado, USA.
Copyright 2008 ACM 9781605581293/08/06 ...$5.00.

this process due to the lack of appropriate mechanisms and
tools to help software developers analyze and capture secu-
rity concerns in software design and development phases.

We have previously proposed the Assurance Management
Framework (AMF) [3], which ensures formal security models
to be fully realized in real systems through security model
representation, security policy specification and validation,
generation of security enforcement codes, and evaluation of
generated codes under simulation. This framework can min-
imize the gap between security models and development of
secure systems. Furthermore, the validation and simula-
tion steps in the framework can provide certain assurance
for the secure system design and implementation. In AMF,
the formal security model and policy are basis for secure
software development. The correctness of the design and
implementation of the security model and policy are based
on the premise that the formal security model and policy
are valid. As a result, the formal specifications of security
model and policy must undergo rigorous verification. This
essential issue should be addressed in the framework. In ad-
dition, during the stage of system design and implementa-
tion, we validate the security model and relevant polices by
producing a set of security configurations as system states
and by checking these states against the security policies.
Additionally, the generated security enforcement codes from
system design are evaluated by the scenario-based simula-
tion. However, the processes of generating system states
for the validation and simulation in the framework need to
be systematically verified and supported. In this paper, we
attempt to address these important issues.

In order to identify the errors and flaws in the formal spec-
ifications of security model and policy, formal verification
techniques should be employed to provide a higher assur-
ance examining the correctness of adopted security model
and policy. Furthermore, creating system states and test
cases manually is tedious, time-consuming, and often not
sufficient enough for proving the presence of errors in sys-
tem design and development phases. Thus, automatic and
effective testing techniques should be applied for ensuring
the conformance to system design with respect to the for-
mal specification.

Formal verification and conformance testing are two well-
established techniques for validating software systems. In
formal verification, a formal specification of a system is
proved correct with a set of higher-level properties that the
system should satisfy. In conformance testing [19], an ac-
tual implementation of the system is compared with those
of its formal specification by means of interactions between

195

the implementation and test cases, which are derived from
the formal specification.

In this paper, we present a methodology composing auto-
matic verification and conformance testing for secure system
development. The objective of the verification is to ensure
that the formal specifications of security model and policy is
verified against a given set of security properties before be-
ing applied to system design and implementation. And the
conformance testing is used to validate compliance of system
design and implementation with the formal specification of
security model and policy. In this step, test cases are derived
automatically from the formal specification, which needs to
be verified before. It is quite clear that the verification and
conformance testing techniques play complementary roles
for ensuring secure software development based on our AMF
framework. In the context of access control model, we divide
the verification into two thrusts such as functional property
verification and constraint verification. Also, we introduce
the concept of an authorization state space to assist tasks
for identifying unique characteristics of constraints in access
control model specification during a course of the constraint
analysis process. Corresponding processes for the formal
verification and automatic test generation are articulated as
well. In addition, we demonstrate how our methodology can
be applied for RBAC using SAT and Alloy toolset.

The main contributions of this paper are two-fold. First,
we introduce an enhanced assurance management frame-
work that facilitates rigorous analysis and testing for se-
curity model and policy via formal verification and auto-
matic test generation, in addition to existing features of
AMF including comprehensive realization of security model
and policy in real systems through security model represen-
tation, security policy specification and generation of secu-
rity enforcement code. Second, we propose a methodology
composing model-based verification and model-based test-
ing strategies for access control to ensure secure software
development.

The rest of this paper is organized as follows. We address
the enhanced AMF framework in Section 2. Section 3 dis-
cusses our integration approach for model-based verification
and model-based testing for access control. In Section 4,
we demonstrate our approach for RBAC verification and
conformance testing using SAT and Alloy. Several related
works are discussed in Section 5. Section 6 concludes the
paper and elaborates the future directions.

2. ENHANCED ASSURANCE MANAGEMENT

FRAMEWORK (AMF)
In this section, we present our enhanced assurance man-

agement framework, which is depicted in Figure 1. The
framework is designed for facilitating the secure software
development. In the modeling stage, formal specifications
of security model and policy are verified. Then, application-
oriented security model representation and application-oriented
security policy specification are derived from formal spec-
ification of security model and policy, which can also be
utilized to produce test cases automatically. Furthermore,
the generated test cases are used to check conformance to
the formal specification. In the implementation stage, se-
curity enforcement codes are generated systematically from
the application-oriented specifications. The correctness and
conformance of the generated codes with respect to the for-

Figure 1: Assurance management framework.

mal specification also are evaluated by using the generated
test suites in the simulation. We divide all tasks in the AMF
framework into two categories as follows:

1. Automatic realization of security model and policy

• Application-oriented security model representation.
The representation of a security model should en-
able software engineers to integrate security as-
pects into the applications without knowing de-
tails of the security model. In this regard, a well-
designed and general-purpose visual representa-
tion should be considered as a means to represent
the security model in an intuitive fashion.

• Application-oriented security policy specification.
Security policies are an important means for lay-
ing out high level security rules for organizations
to avoid unauthorized accesses. A considerable
amount of work has been carried out in the area
of specifying security policies. A high-level pol-
icy specification approach should be considered in
the practical system development process so that
security policies can be easily integrated into the
system design by system developers.

• Automatic generation of security enforcement codes.
It is also a crucial aspect to make the transi-
tion from system design to secure system develop-
ment. The goal of code generation in AMF is to
automatically generate executable modules from
the application-oriented specification of security
model and policy by well-known software engi-
neering mechanisms, such as the Model Driven
Development (MDD). The generated security mod-
ules would be eventually integrated into the real
systems to achieve an acceptable degree of assur-
ance in secure system development.

2. Automatic analysis and testing of security model and
policy

• Automatic analysis of formal security model and
policy. One of the promising advantages in math-
ematical and logic based techniques for security

196

model and policy is that formal reasoning of the
security properties can be achieved. Since the
formal security model and policy serve as a ba-
sis for secure system development in AMF, obvi-
ously the formal specifications of model and pol-
icy should be proved correct against expected se-
curity properties. Formal verification offers a rich
toolbox containing a variety of techniques such
as model checking [6], SAT solving [15] and the-
orem proving [16], for supporting automatic sys-
tem analysis.

• Automatic test case generation from formal speci-
fication. While formal verification can prove prop-
erty violation or satisfaction, it is usually not suf-
ficient in practice. The proof only shows that a
given formal specification fulfills a property. How-
ever, the actual implementation is also influenced
by other facts, such as platform, transformation
approach, compiler, and so on. Consequently,
software testing is necessary. The most signifi-
cant recent development in testing is the applica-
tion of verification technologies to drive the test-
ing process to the generation of test cases from
the formal specification. Thus, it is an attractive
way to seek automated derivation of test cases
from the formal security model and policy. As a
result, the generated test cases can be fed into val-
idator and simulator to check whether the system
design and development comply with the formal
specification.

3. INTEGRATION APPROACH
This section introduces our methodology composing for-

mal analysis and conformance testing for building access
control systems. As demonstrated in Figure 2, the formal
access control model and policy are the core of the entire
processes for serving the following tasks: (1) formal verifi-
cation, (2) system design, and (3) test generation. Corre-
spondingly, three high-level access control models–such as
verification-based model, application-oriented model, and
test-based model–are constructed based on the formal model.
Our previous work [3] has addressed how a formal access
control model and associated policies can be fully trans-
lated to application-oriented model representation and pol-
icy specification, which then generate enforcement codes.
Here, we focus on two major enhancements: formal veri-
fication and conformance testing. In our approach, both
model-based verification and model-based testing are sup-
ported by the same formal verification technology for the
purposes of automatic verification and test case generation.
A notable advantage of using model-based approach is to
reduce the complexity of analysis, thus minimizing the state
explosion problem.

In order to articulate our methodology clearly, we first
define access control model specification as follows:

Definition 1 (Access Control Model Specification).
An access control model specification S is defined as S = (M,
F, C), where:

– M is an access control model representation, which de-
fines sets of basic access control entities and relations.

– F is a set of access control function specifications, which

Figure 2: Integration approach.

specifies the features required by an access control system.
– C is a set of access control constraint specifications,

which defines higher-level organizational policies.

Note that the access control model specification S can
be decomposed to different sub-specifications for support-
ing our model-based verification and model-based testing
approaches.

3.1 Modelbased Verification for Access
Control

We take into account the following verification problem
for the access control model: given an access control model
specification S and an access control model property P, does
S satisfy P? We consider two kinds of property: access con-
trol functional property Pf and access control authorization
property Pa.

Definition 2 (Access Control Functional Property).
An access control functional property Pf describes an ex-
pected operating result when performing an access control
function in an access control system.

Definition 3 (Access Control Authorization Prop-
erty). An access control authorization property Pa describes
an authorization state that is achieved by an access control
system.

Therefore, the verification of an access control model is
separated into two steps: access control function verification
and access control constraint verification.

3.1.1 Function Verification

Definition 4 (Access Control Function Verification).
For an access control model specification Sf = (M, f) and
an access control functional property Pf , proving whether
(M, f) satisfies Pf , denoted by (M, f) � Pf , is called access
control function verification.

That is, if we can determine that (M, f) satisfies Pf , it
means the access control functional property Pf is held on
the access control model specification Sf . Hence, we can
make sure the functional components in a formal model
specification Sf are correct with respect to expected prop-
erties.

Figure 3 illustrates a reasoning process for formal verifi-

197

cation. The access control model specification Sf and the
functional property Pf are encoded, and then fed into a for-
mal verifier. The verifier in turn checks whether the func-
tional property is violated or not. If a functional property
violation is encountered, it means the access control model
specification does not conform to the functional property,
leading the refinement of model specification.

Figure 3: Function verification.

3.1.2 Constraint Verification

A critical task for specifying constraints is to determine
whether a set of constraint expressions really reflects the
desired authorization requirements properly. Normally, con-
straints prohibit 1 an action or state occurring in the system.
Two issues should be considered carefully while analyzing a
given set of constraints against the expected authorization
requirements. First, constraints may be too weak, named
under-constraint to grant undesired system states. A safety
problem (i.e. the leakage of a right to an unauthorized user)
can be resulted from the weak constraints. Second, con-
straints may be too strong, named over-constraint to deny
desired system states. Strong constraints can cause avail-
ability problems. For example, an entitled user cannot own
the right to access a resource.

A concept of authorization state space is introduced to
identify under- and over-constraints in an access control
model specification. An authorization state space represents
an entire space that an access control system probably cov-
ers. In other words, all possible system states of an access
control system consist of an authorization state space. Re-
garding access control requirements, an authorization state
space can be divided into two subspaces: (1) the desired au-
thorization state subspace Sd, which contains authorization
states that should be allowed to occur in an access control
system according to the authorization requirements. (2) the
undesired authorization state subspace Su, which contains
authorization states that should be prohibited to appear in
an access control system against the authorization require-
ments. On one hand, we are able to specify the desired
authorization state subspace with the expected authoriza-
tion properties Pa+ and the undesired authorization state
subspace with the unexpected authorization properties Pa− ,
respectively. On the other hand, from the perspective of ac-
cess control specification, an authorization state space can
be divided into permitted authorization state subspace Sp

and prohibited/constrained authorization state subspace Sc.
The most ideal view of an authorization state space is that
the desired authorization state subspace is contained by the
permitted authorization state subspace, and the undesired
authorization state subspace is included in the prohibited
authorization state subspace. It means the specified con-
straints meet the authorization requirements accordingly.

1Constraints can also be used to enforce obligation. We will
not cover this aspect in this paper. However, we believe the
approach introduced in this paper is applicable to analyze
obligation constraints as well.

Unfortunately, the ideal view is far from the reality. Two
situations may exist in practice.

Figure 4: Identifying under-constraint.

Figure 4 depicts one case, which demonstrates that the
permitted authorization state subspace Sp covers partial un-
desired authorization state subspace Su due to the reason of
under-constraint.

When the prohibited authorization state subspace Sc is
a subset of the undesired authorization state subspace Su,
and there is an overlap between the permitted authoriza-
tion state subspace Sp and the undesired authorization state
subspace Su, under-constraint occurs in the constraint spec-
ifications.

Figure 5: Identifying over-constraint.

Another case is shown in Figure 5. Over-constraint is
presented in this case, where the permitted authorization
state subspace Sp is covered by the desired authorization
state subspace Sd, and the prohibited authorization state
subspace Sc contains partial desired authorization state sub-
space Sd.

Using formal verification, both over- and under-constraints
for an access control model specification are analyzed auto-
matically with a set of given access control properties. A
general definition for access control constraint verification is
given as follows:

Definition 5 (Access Control Constraint Verifica-
tion). For an access control model specification Sc = (M, F, c)
and an access control authorization property Pa, proving
whether (M, F, c) satisfies Pa, denoted by (M, F, c) � Pa,
is called access control constraint verification.

198

In order to identify under-constraint, the unexpected au-
thorization property Pa− is used to replace Pa, and an ex-
pression that addresses the analysis for under-constraint can
be defined as follows: (M, F, c) � Pa− ⇒ C ↓, where C↓ de-
notes under-constraint.

As demonstrated on the bottom part of the Figure 4, if
an unexpected authorization property Pa− , which represents
the authorization subspace Sp ∩ Su, is satisfied by the ac-
cess control model specification Sc, under-constraint is de-
tected. Figure 6 depicts the process of constraint verification
for checking under-constraint based on the above definition.
If the verifier proves an unexpected authorization property
Pa− is held on the access control model specification Sc,
we can conclude that the given constraint specifications are
too weak, and should be strengthened to exclude undesired
authorization properties.

Figure 6: Constraint verification: under-constraint.

The expected authorization property Pa+ that addresses
the authorization subspace Sc ∩ Sd is utilized to substitute
Pa for identifying over-constraint as summarized in the fol-
lowing expression: (M, F, c) 2 Pa+ ⇒ C ↑, where C↑ denotes
over-constraint.

The bottom part of the Figure 5 depicts the over-constraint
situation. Based on the above expression, we introduce a
process for identifying over-constraint as shown in Figure 7.
If the verifier checks the expected authorization property
Pa+ is not satisfied by the access control model specification
Sc, this points out the defined constraints are too strong.
Thus, the constraint definitions should be refined by reduc-
ing the restriction of constraints.

Figure 7: Constraint verification: over-constraint.

3.2 Modelbased Testing for Access Control
Model-based testing is a software testing technology in

which the models defined in software construction are used
to drive the testing process. Numerous formal verification
techniques have been used for model-based testing [20]. The
idea of automated test generation from the formal verifica-
tion is that counterexamples may be generated to illustrate
a property violation by the formal verification, and coun-
terexamples are interpreted as test cases. Our approach
intends to use a formal specification of access control model
and policy for automated derivation of test cases.

Two kinds of test case are generated for testing a con-
straint. One is called negative test case, denoted as T−,
which is considered as an undesired access control autho-
rization state that should be denied by the constraint in the
access control system. Another test case is named positive
test case, denoted as T+. This test case represents a desired

access control authorization state and should be allowed to
appear in the access control system.

The following expression specifies the generation of nega-
tive test case based on the satisfiability verification: (M, F) 2

c ⇒ T−. Negative test case T− can be derived from a formal
specification, in which an access control model specification
Sm = (M, F) does not satisfy the constraint specification c.
A process is demonstrated in Figure 8. Since the constraint
specification c is taken out from the access control model
specification Sm, the authorization property expressed by
constraint specification is not exactly held on the access
control model specification. The verifier may generate coun-
terexamples, which can be used to construct negative test
cases.

Figure 8: Generating negative test cases for con-
straints.

Positive test case T+ is generated from a formal specifi-
cation, as we draw the constraint specification c from the
access control model specification Sm = (M, F), and take
the negated constraint specification ¬c as the authorization
property to verify the access control model specification Sm.
Counterexamples are derived and utilized to build positive
test cases. The following expression summarizes this char-
acteristic: (M, F) 2 ¬c ⇒ T+. Corresponding process is
shown in Figure 9.

Figure 9: Generating positive test cases for con-
straints.

4. CASE STUDY: VERIFICATION AND

CONFORMANCE TESTING FOR RBAC
In this section, we utilize SAT solving as an underly-

ing formal verification technique to demonstrate automatic
analysis and test generation for the formal specification of
a RBAC model and associated constraints based on the ap-
proaches and definitions introduced in Section 3. We adopt
the NIST/ANSI standard for RBAC [2] and a formal con-
straint specification language, Role-based Constraints Lan-

199

guage 2000 (RCL2000) [4]. Alloy is used as an intermediate
language into which the RBAC model is constructed and the
RCL2000-based constraints are translated. Then, using Al-
loy tool called Alloy Analyzer, which uses a SAT solver that
supports enumeration, the RBAC model and corresponding
constraints are analyzed, and test cases are generated from
the RBAC model specification.

4.1 Alloy Overview
Alloy [9] is a structural modeling language based on first-

order logic, and designed for the specification of object mod-
els through graphical and textual structure. An Alloy model
is a structured specification composed with the following
components: Signature, Fact, Function, Predicate and
Assertion. The Alloy Analyzer [10] is an automated con-
straint solver for analyzing (verifying and validating) mod-
els written in Alloy. Alloy Analyzer provides two kinds of
automatic analysis–simulation in which the consistency of
a fact or predicate is demonstrated by generating a snap-
shot of the model; and checking in which a consequence
of the specification is tested by attempting to generate a
counterexample for an assertion. The former is useful for
demonstrating the feasibility of a specification, where con-
flicting constraints could be detected, while the latter is for
validating the correctness of a certain property in the sys-
tem, where the assertion could be proved based on the facts
defined in the model and within a finite scope of instances.

4.2 RBAC Model Representation
The NIST/ANSI standard for RBAC gives a RBAC ref-

erence model, which defines sets of basic RBAC elements
and relations, including a set of roles, a set of users, a
set of permissions, relationships between users, roles, and
permissions. We define a primary representation of the
NIST/ANSI RBAC model in Alloy as follows:

module RBAC

sig User {}
sig Role {}
sig Operation {}
sig Object {}
sig Permission {Operation, Object}
sig Session {}
sig URA {
ura: User->Role}

sig PRA {
pra: Permission->Role}

sig US {
us: User!->Session}

sig SR {
sr: Session->Role}

sig PB {
pb: Operation->Object}

The above defines the core element sets and relations in a
RBAC model. A role hierarchy relation supporting hierar-
chical RBAC is defined as follows:

sig RRA {
hierarchy: Role->Role}

In order to specify static separation of duty (SSoD) re-
lations and dynamic separation of duty (DSoD) relations
in the context of conflicting roles, which are addressed in
the NIST/ANSI RBAC model, we give the following Alloy

definitions 2:

sig SCR {
conflict role: set Role,

cardinality: Int}
sig DCR {
conflict role: set Role,

cardinality: Int}

4.3 RBAC Constraint Specification
Policy designers can employ RCL2000 to specify complex

authorization policies to meet high-level security require-
ments along with the NIST/ANSI RBAC standard. In order
to reason about RCL2000 policy specifications using Alloy
tool, we need to translate RCL2000 policy expressions to Al-
loy statements. RCL2000 supports six RBAC system func-
tions user, roles, sessions, permissions, operations and
object. These function expressions are represented in Alloy.
For example, roles(u), which returns all the roles assigned
to the user u, is converted to u.(URA.ura). In RCL2000,
roles∗ and permissions∗ are defined as a variant of roles
and permissions to support role hierarchy. For example,
roles∗(u) returns a set of roles for which a given user is
authorized. Such functions are able to converted to Alloy
using “*”, which denotes a reflexive transitive closure op-
erator, and “∼”, which denotes transpose operator. Each
term in RCL2000 is converted to corresponding Alloy op-
erator. The detailed translation algorithm is described in
Figure 10.

Next, we illustrate two typical RBAC constraints speci-
fied in RCL2000, and give an equivalent Alloy expressions
generated by our translation algorithm.

Constraint 1: (SSoD-CR): The number of conflicting roles,
which are from the same conflicting role set, authorized to a
user cannot exceeds the cardinality number of the conflicting
role set.

RCL2000 Expression:

| roles∗(OE(U)) ∩ GS(OE(SCR)) |≤ GC(OE(SCR))

Translated Alloy Expression:
all u:User | all scr:SCR |

#((u.(URA.ura).∼*(RRA.hierarchy)) &

scr.conflict role) <= scr.cardinality

Table 1 explains the mapping from the RCL2000 expres-
sion to the Alloy expression for this constraint. All com-
ponents in the RCL2000-based constraint expression can be
mapped to corresponding Alloy components precisely.

Constraint 2: (User-based DSoD):The number of conflict-
ing roles, which are from the same conflicting role set, acti-
vated directly (or indirectly via inheritance) by a user cannot
exceeds the cardinality number of the conflicting role set.

RCL2000 Expression:

| roles∗(sessions(OE(U))) ∩ GS(OE(DCR)) |≤ GC(OE(DCR))

Translated Alloy Expression:
all u:User | all dcr:DCR |

#(u.(US.us).(SR.sr).∼*(RRA.hierarchy) &

dcr.conflict role) <= dcr.cardinality

2The separation of duty relations in the NIST/ANSI RBAC
model can be extended to support conflicting permissions
and conflicting users, using several definitions such as {SCP,
DCP} and {SCU, DCU}, respectively.

200

Table 1: Mapping RCL2000 expression to Alloy expression for SSoD-CR constraint
RCL2000 Alloy Meaning

OE(SCR) all scr: SCR | scr
a collection which is a pairs of a conflicting role set and a cardinality
for the conflicting role set

OE(U) all u:User | u a single user

roles*(OE(U)) u.(URA.ura).∼*(RRA.hierarchy) return all roles that are authorized to a single user considering role hierarchy

GS(OE(SCR) scr.conflict role return a conflicting role set

GC(OE(SCR) scr.SetCardinality return the cardinality of a conflicting role set

∩ & return the intersection of two sets

| set | #set return the cardinality number of a set

Figure 10: Translation algorithm.

4.4 RBAC Function Verification
The functional specification in the NIST/ANSI standard

for RBAC defines various functions that role-based systems
should provide. These functionalities are described in the
standard using a set-based specification language, Z. Prior
to applying these functional definitions for role-based system
development, the correctness of these definitions should be
checked rigorously. Formal verification is necessary for this
objective.

In this subsection, we employ DeleteRole function as an
example to demonstrate how the formal verification can as-
sist in finding mistakes in the functional specifications. In hi-
erarchical RBAC, the following functional properties should
be achieved by the DeleteRole function.

1. The existing role is removed from the Role date set.

2. Any use-to-role assignment relation established by the
role is removed.

3. Any permission-to-role assignment relation established
by the role is removed.

4. Any role hierarchy relationship established by the role
is removed.

The following is the functional definition for DeleteRole

supporting hierarchical RBAC in the NIST/ANSI RBAC
standard.

DeleteRole(role:NAME) �

role ∈ ROLES
UA’ = UA \ {u:Users • u 7→ role}
assigned users’ = assigned user \ {role 7→ assigned user(role)}

PA’=PA \ {op:OPS,obj:OBJS • (op,obj) 7→ role}
assigned permissions’=assigned permissions \ {role 7→ as-

signed permissions(role)}
ROLES’=ROLE \ {role} �

An Alloy function is constructed based on the above def-
inition as follows:

fun DeleteRole(r:Role){
r in Role =>

all p:Permission |

all u:User| (u->r) in URA.ura =>

URA.ura = (URA.ura - (u->r))) &&

(all p:Permission | (p->r) in PRA.pra =>

PRA.pra = (PRA.pra - (p->r))) &&

(Role = Role - r) }

We can also define an Alloy assertion to describe the
RBAC functional properties Pf discussed earlier. Corre-
sponding functional properties for DeleteRole operation with
the notion of hierarchical RBAC are defined as follows:

assert Check DeleteRole {
all r:Role| all r’:Role | all u:User |

all p:Permission |

DeleteRole(r) &&

//The role is removed form the role set

r !in Role &&

//Corresponding UA relations are removed

(u->r) !in URA.ura &&

//Corresponding PA relations are removed

(p->r) !in PRA.pra &&

201

//Corresponding inheritance relations are removed

(r->r’) !in RRA.hierarchy &&

(r’->r) !in RRA.hierarchy }
check Check DeleteRole

By running Alloy Analyzer, we can validate this asser-
tion against the RBAC model specification, which contains
the DeleteRole function specification. The Alloy Analyzer
will detect counterexamples, which identify violations of the
assertion with respect to the function specification. After
careful inspection, we found that the functional definition
of DeleteRole for hierarchical RBAC in the NIST/ANSI
RBAC standard misses a step for removing inheritance re-
lations established by the role that is being deleted.

In [12], another formal definition of DeleteRole function
for hierarchical RBAC is given. Using the same approach,
we identified that the steps for removing UA relations and
PA relations are missed in their specification.

4.5 RBAC Constraint Verification
In this subsection, we demonstrate how to identify under-

and over-constraints with Alloy using the aforementioned
approach in Section 3.

4.5.1 Identifying Underconstraint

Regarding separation of duty principles, the following au-
thorization property considering the role hierarchy is unex-
pected:

• Two conflicting roles are authorized to the same user.

We specify this unexpected authorization property Pa− in
Alloy as follows:

pred Check SSoD[disj r1,r2:Role, u:User, scr:SCR]

{
//r1 and r2 are mutually exclusive

r1 in scr.conflict role &&

r2 in scr.conflict role &&

scr.cardinality = 1 &&

//r1 and r2 are authorized to the same user, u

r1 in u.(URA.ura).∼*(RRA.hierarchy) &&

r2 in u.(URA.ura).∼*(RRA.hierarchy) }
run Check SSoD

Suppose the policy designer only defines a simple SSoD
constraint, which ignores the role hierarchy relation. We
can translate the RCL2000 expression for the simple SSoD
constraint to the Alloy expression, and put it into an Alloy
fact as an Alloy constraint as follows:

fact SSoD {
all u:User | all scr:SCR |

#(u.(URA.ura) & scr.conflict role)

<= scr.cardinality }

When running the predicate Check SSoD defined above,
instances–in which conflicting roles are indirectly assigned
to a user–are found by Alloy Analyzer. It means the un-
expected authorization property is held by the constraint
specification. In addition, we can conclude the constraint is
too week with respect to the authorization property.

4.5.2 Identifying Overconstraint

Taking into account the following authorization properties
for dynamic separation of duty principle:

• A user cannot activate two conflicting roles in the same
session, but can activate them in the different session.

We specify this expected authorization property Pa+ in
Alloy as follows:

assert Check DSoD {
all u:User | all disj r1,r2:Role |

all disj s1,s2:Session | all dcr: DCR |

//r1 and r2 are dynamic conflicting roles

r1 in dcr.conflict role &&

r2 in dcr.conflict role &&

dcr.cardinality = 1 &&

//u creates s1, s2

(u->s1) in US.us &&

(u->s2) in US.us &&

//r1 and r2 cannot be activated in the

//same session, but can be activated

//in the different session

(r1->s1) in ∼SR.sr &&

(r2->s1) !in ∼SR.sr &&

(r2->s2) in ∼SR.sr }
check Check DSoD

Assume the policy designer defines an User-based DSoD
constraint 3 as we demonstrated before. We define an Alloy
fact, which contains this constraint specification.

fact DSoD {
all u:User | all dcr:DCR |

#(u.(US.us).(SR.sr) & dcr.conflict role)

<= dcr.cardinality }

Running “check Check DSoD” in Alloy Analyzer, coun-
terexamples are found. It indicates the expected autho-
rization property expressed in assertion Check DSoD is de-
nied by the constraint specification. That is, the constraint
is too strong, and should be weakened to contain the ex-
pected authorization properties. If we replace the User-
based DSoD constraint with the Session-based DSoD con-
straint, the expected authorization property defined in as-
sertion Check DSoD is held.

4.6 Test Case Generation
As mentioned earlier, negative test cases T− are derived

from a formal access control model specification, in which
the constraint specification is drawn out and serves as an
authorization property for the formal verification, while pos-
itive test cases T+ are generated from a formal specification,
if we take the constraint specification out of the access con-
trol model specification, and consider the negated constraint
specification as an authorization property.

We take the simple SSoD constraint as an example to
demonstrate the process of automated test generation. The
following assertion is defined to drive the negative test cases
for the constraint specification (c).

assert SSoD {
all u:User | all scr:SCR |

#(u.(URA.ura) & scr.conflict role)

<= scr.cardinality }
check SSoD

Checking this assertion against the RBAC model specifi-

3In order to reduce the complicity, we omit the role hierarchy
in this constraint.

202

cation, in which SSoD constraint has been taken out, coun-
terexamples are generated. These counterexamples are used
to construct negative test cases as undesired system states to
test the conformance of the SSoD constraint in both access
control system design and implementation.

In order to derive positive test cases for the simple SSoD
constraint, the negated constraint specification (¬c) is used
as an authorization property. We define an assertion for this
objective as follows:

assert Neg SSoD {
all u:User | all scr:SCR |

#(u.(URA.ura) & scr.conflict role)

> scr.cardinality }
check Neg SSoD

Note that the above assertion states the number of roles–
which are from a conflicting role set–assigned to a user must
exceed the cardinality number of the conflicting role set.
Supposing the cardinality number is one, it means a user
must own two or more conflicting roles. Through running
this assertion, counterexamples are also generated. Then,
positive test cases serving as desired system states are con-
structed from these counterexamples.

In order to generate more meaningful test cases for real ap-
plication domains, Alloy signatures need to reflect all RBAC
configuration components of the targeted application do-
main for producing specialized instances of the defined Al-
loy module. Then, running the constraint assertion with the
scope enables Alloy to generate test cases. Suppose we have
a banking system with a user Bob and two conflicting roles,
customerServiceRep and loanOfficer. We first need to de-
fine the appropriate assignment of user, role and conflicting
role set as follows. This Alloy definition is then provided to
Alloy Analyzer so that it can run SSoD assertion defined ear-
lier with the scope of one user and two roles. Finally, Alloy
Analyzer can generate a negative test case for our confor-
mance testing, such that the user Bob is assigned to two
conflicting roles, customerServiceRep and loanOfficer.

one sig Bob extends User{}
one sig customerServiceRep,loanOfficer extends Role{}
fact SCR rules {
customerServiceRep in SCR.conflict role &&

loanOfficer in SCR.conflict role }

4.7 Tool Support
In this section, we give a brief introduction to our toolset,

which constitutes a toolchain with the Alloy Analyzer to
facilitate the application of our methodology for automatic
analysis, realization and conformance testing of RBAC model
and constraints.

We developed RAE based on ArgoUML [1]. RAE tool is
composed of three major functional components: specifica-
tion component, validation component, and code generation
component. Specification component in RAE is responsible
for specifying RBAC model and constraints. In this compo-
nent, UML class diagrams are utilized to represent RBAC
model; UML object diagrams are used to represent snap-
shots of RBAC model at particular points; and an editing
environment for constraints is provided to easily specify au-
thorization constraints using RCL2000 and OCL. Validation
component in RAE is in charge of violation checking so as to
validate RBAC model and constraints through constructing

Figure 11: Toolchain supporting our approach.

a set of system states and check such states against autho-
rization constraints. Code generation component in RAE is
used to generate java codes automatically for RBAC model
and constraints. The generated enforcement codes by RAE
are utilized by developers to integrate into a real applica-
tion system requiring RBAC features. In order to verify the
conformance and correctness of the generated RBAC en-
forcement codes, we used a testbed, RASS, as a simulation
environment. In RASS, RBAC function and constraint im-
plementations are verified by running extensive test cases.
We designed a web-based user interface and a storage layer
to incorporate the generated RBAC enforcement modules.
The web-based user interface provides the function of inter-
action between the users and system functions, which are
provided by generated codes, and the storage layer stores
the RBAC configuration.

A toolchain depicted in Figure 11 consists of three tools:
Alloy Analyzer, RAE and RASS. We have enhanced the con-
straint editor in RAE to support the transformation from
RCL2000 to Alloy. Thus, the policy designers are able to
specify RBAC constraints with RCL2000, and then convert
RCL2000-based constraints to Alloy expressions in RAE.
The generated Alloy specifications for constraints can be
forwarded to Alloy Analyzer. The formal specifications of a
RBAC model are also constructed to Alloy, then analyzed
by Alloy Analyzer as well. In addition, Alloy Analyzer al-
lows to generate all nonisomorphic instances from an Alloy
specification. These instances are then used as test cases,
which are fed into RAE to construct system states. Impor-
tantly, such cases are checked against constraints to validate
the RBAC model and constraint specifications in the stage
of system design as well as utilized by RASS to evaluate the
generated RBAC codes under simulation.

5. RELATED WORK
One important aspect of policy analysis is to formally

check general properties of access control policies, such as in-
consistency and incompleteness [5, 7, 8]. Schaad and Moffett
[17] specified the access control policies under the RBAC96
model, the policy governing access to the access control pol-
icy under the ARBAC97 model, and a set of separation of
duty constraints in Alloy. They attempted to check the
constraint violations that may arise by administrative op-
erations. Our approach also uses Alloy to analyze the for-
mal specifications of a RBAC model and constraints, which
are then used for access control system development. In
addition, the verified specifications are used to automati-
cally derive the test cases for conformance testing. Jaeger
et al. [11] presented the concept of an access control space

203

and showed how it could be utilized to manage access con-
trol policies. In our work, a similar concept of an autho-
rization state space is defined to help analyze constraints.
Under- and over-constraints for the constraint specifications
are identified based on the authorization state space analy-
sis, which can conduct the formal constraint verification.

Very few works study how to test access control mecha-
nisms. Recently, mutation analysis was applied to security
policy testing. Xie et al. [13] proposed a fault model for
XACML policies. The mutation operators were introduce to
implement the fault model. Masood et al. [14] used formal
techniques to conceive a fault model and adapt mutation to
RBAC models. Traon et al. [18] also used mutation analysis
and defined security policy mutation operators in order to
improve the security tests. Comparing with these works, our
approach adopts formal verification technologies to facilitate
automated generation of test cases from the formal specifi-
cation of security model and policy. In addition, our work
demonstrates how these test cases can be used to check the
compliance of security system design and implementation
with the formal specification.

6. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an approach integrat-

ing formal verification and conformance testing for access
control model in AMF. We presented our model-based ver-
ification and model-based testing approaches, in which the
formal specification of access control model and policy is ver-
ified with respect to selected security properties before being
applied to secure system design and implementation. Also,
we adopted the formal specification of NIST/ANSI standard
RBAC model and demonstrated how test cases could be de-
rived from formal specification, that are used to validate
the secure system design and implementation conformance
to formal specification by means of SAT and Alloy toolset.
As part of future works, the verification and testing for a
composition of policies will be studied in depth. Regard-
ing more complicated secure system, we plan to investigate
the relation between model size and the time required for
verification and test case generation.

7. ACKNOWLEDGMENTS
This work was partially supported by the grants from

National Science Foundation (NSF-IIS-0242393 and NSF-
DUE-0416042), Department of Energy Early Career Princi-
pal Investigator Award (DE-FG02-03ER25565).

8. REFERENCES

[1] The ArgoUML Project. http://argouml.tigris.org.

[2] American National Standards Institute Inc. Role
Based Access Control, ANSI-INCITS 359–2004, 2004.

[3] G.-J. Ahn and H. Hu. Towards realizing a formal
RBAC model in real systems. In SACMAT ’07:
Proceedings of the 12th ACM symposium on Access
control models and technologies, pages 215–224, New
York, NY, USA, 2007. ACM.

[4] G.-J. Ahn and R. S. Sandhu. Role-based authorization
constraints specification. ACM Trans. Inf. Syst. Secur.
(TISSEC), 3(4):207–226, November 2000.

[5] A. K. Bandara, E. C. Lupu, and A. Russo. Using
event calculus to formalise policy specification and

analysis. In POLICY ’03: Proceedings of the 4th IEEE
International Workshop on Policies for Distributed
Systems and Networks, page 26, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[7] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 196–205, New York, NY,
USA, 2005. ACM.

[8] J. Y. Halpern and V. Weissman. Using first-order
logic to reason about policies. In 16th IEEE Computer
Security Foundations Workshop (CSFW’03), pages
187–201. IEEE Computer Society, 2003.

[9] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290, 2002.

[10] D. Jackson, I. Schechter, and H. Shlyahter. Alcoa: the
alloy constraint analyzer. In ICSE ’00: Proceedings of
the 22nd international conference on Software
engineering, pages 730–733, New York, NY, USA,
2000. ACM.

[11] T. Jaeger, X. Zhang, and A. Edwards. Policy
management using access control spaces. ACM Trans.
Inf. Syst. Secur., 6(3):327–364, 2003.

[12] N. Li, J.-W. Byun, and E. Bertino. A critique of the
ANSI standard on role based access control. Technical
Report TR 2005-29, Purdue University, 2005.

[13] E. Martin and T. Xie. A fault model and mutation
testing of access control policies. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 667–676, New York, NY,
USA, 2007. ACM.

[14] A. Masood, A. Ghafoor, and A. Mathur. Scalable and
effective test generation for access control systems
that employ RBAC policies that employ RBAC
policies. SERC-TR-285, Purdue University, 2005.

[15] D. G. Mitchell. A SAT Solver Primer. EATCS
Bulletin (The Logic in Computer Science Column),
Volume 85, February 2005, pages 112-133.

[16] A. Robinson and A.Voronkov. Handbook of Automated
Reasoning. MIT Press, 2001.

[17] A. Schaad and J. D. Moffett. A lightweight approach
to specification and analysis of role-based access
control extensions. In SACMAT ’02: Proceedings of
the seventh ACM symposium on Access control models
and technologies, pages 13–22, New York, NY, USA,
2002. ACM.

[18] Y. L. Traon, T. Mouelhi, and B. Baudry. Testing
security policies: Going beyond functional testing. In
ISSRE ’07. The 18th IEEE International Symposium
on Software Reliability.

[19] J. Tretmans. A formal approach to conformance
testing. In Proceedings of the IFIP TC6/WG6.1 Sixth
International Workshop on Protocol Test systems VI,
pages 257–276, Amsterdam, The Netherlands, The
Netherlands, 1994. North-Holland Publishing Co.

[20] M. Utting and B. Legeard. Practical Model-Based
Testing: A Tools Approach. Morgan-Kaufmann, 2007.

204

