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Abstract 
 

Role-based access control (RBAC) is a powerful 

means for laying out higher-level organizational 

policies such as separation of duty, and for simplifying 

the security management process. One of the important 

aspects of RBAC is authorization constraints that 

express such organizational policies. While RBAC has 

generated a great interest in the security community, 

organizations still seek a flexible and effective 

approach to impose role-based authorization 

constraints in their security-critical applications. In 

this paper, we present a Web Services-based 

authorization framework that can be employed to 

enforce organization-wide authorization constraints. 

We describe a generic authorization engine, which 

supports organization-wide authorization constraints 

and acts as a central policy decision point within the 

authorization framework. This authorization engine is 

implemented by means of the USE system, a validation 

tool for UML models and OCL constraints.  

 

1. Introduction 
 

Employing access control mechanisms in medium to 

large scale organizations always has been crucial. One 

of the challenging jobs for security-critical 

organizations, such as financial institutes, hospitals, 

and military is to control access to system resources at 

the highest level without violating the underlying 

access control policies. The research in recent years has 

brought role-based access control (RBAC) [3, 4] as an 

efficient and flexible model for controlling access to 

computer resources and enforcing the organizational 

policies. According to our terminology, an 

organizational policy consists of a set of organizational 

rules. A typical organizational rule in a hospital might 

be “a nurse can only see the records of all patients who 

have been on her ward within the previous 90 days”. 

Similarly, in banking applications, a rule might be “a 

clerk must not prepare and approve a check”. 

As pointed out by Ferraiolo et al. [5, 21], one of the 

main advantages of RBAC is that such higher-level 

organizational rules can be implemented in a natural 

way. Specifically, role-based authorization constraints 

are a powerful means for laying out higher-level 

organizational rules [7]. Hence, we define an RBAC 

policy as hierarchical RBAC in the sense of the RBAC 

standard [14] plus a set of organizational rules where 

each rule corresponds to a role-based authorization 

constraint, such as separation of duty (SOD) constraints 

[7, 8, 9], and context constraints [10, 11]. 

Given the fact that an organization will be running a 

number of different applications (assuming legacy 

applications as well), employing an approach to 

enforce different organization-wide RBAC policies is 
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still an open problem. Designing and implementing 

such an RBAC system raise many critical questions, of 

which some of them are: (1) how can we separate 

authorization logic (access control mechanisms) from 

the application logic (application code) to make 

organization-wide RBAC policies easier to 

administer?, (2) how can a platform and application 

independent authorization engine be developed that 

implements organization-wide RBAC policies?, and (3) 

what technological approach can we adopt that 

facilitates a flexible integration of organization-wide 

authorization components and various applications?  

In this paper, we present an authorization 

framework as a first step towards the solution to the 

aforementioned problems. This framework 

encompasses the specification, implementation, and the 

enforcement of organization-wide RBAC policies.  

Firstly, we show an implementation of a platform 

and application independent authorization engine that 

implements organization-wide RBAC policies. This 

way the RBAC policies can be centrally administered. 

The authorization engine is based on the USE system 

[16], a validation tool for UML models and OCL 

(Object Constraint Language) constraints. In general, 

the UML [1] and OCL [2] can be used in combination 

for designing and developing software systems. We use 

UML/OCL specifically for the specification of RBAC 

policies in our authorization framework. The OCL 

approach is formal and precise, and can express various 

kinds of authorization constraints, such as static and 

History-based SOD constraints, and context 

constraints. The authorization engine, in general, is 

powerful enough to specify and implement all 

authorization constraints that are expressible in OCL. 

Moreover, the USE tool itself can be employed to 

validate RBAC policies formulated in UML and OCL.  

Secondly, we present an advanced Web Services-

based RBAC authorization framework, which can be 

employed to enforce organization-wide RBAC policies 

across various applications. Owing to the fact that Web 

Services aim at integrating various applications of an 

organization the enforcement of organization-wide 

RBAC policies at the Web Service (middleware) level 

is an important task to simplify access management. In 

particular, organizations integrate more and more 

applications by means of Web Services and make 

available Web-Service interfaces to expose specific 

(often security-critical) functionality of such 

applications. For example, the functionality of a credit 

rating application might be exposed to clerks in 

branches of a financial institute [28]. Due to the fact 

that specifically legacy applications often do not have 

adequate access control mechanisms, our proposed 

authorization approach helps in improving security 

within organizations by enforcing organizational rules.  

Our authorization framework is based on the 

concept of an interceptor, a middleware component. 

The interceptor is used to integrate the organization-

wide authorization engine and various application(s) 

into the middleware by means of Web Services. In 

general, the interceptor plays a central role to enforce 

organization-wide RBAC policies. One of the benefits 

of this approach is that the application does not need to 

contain any authorization logic and any change of the 

RBAC policy does not require any modifications of the 

application. 

We implemented a prototypical interceptor for Java 

applications that are integrated over the Internet by 

SOAP-based Web Services. In addition, we 

demonstrate how the authorization framework copes 

with the specification, implementation and enforcement 

of authorization constraints through various examples. 

This way, our approach combines well-understood 

concepts of a widely used modeling language with the 

Web Service technology to implement advanced 

RBAC mechanisms for organizations.   

The rest of the paper is organized as follows: in 

Section 2 we provide a brief overview of related 

concepts and technologies. Section 3 provides an 

overview of the authorization framework and a detailed 

description of the framework components follows. In 

Section 4, we illustrate the overall functionality of the 

implemented framework. In Section 5, we use case 

studies to demonstrate that our authorization engine 

can deal with authorization constraints from different 

domains, and how such constraints are enforced within 

our authorization framework. An overview of related 

work is given in Section 6. We outline our conclusions 

and future work in Section 7. 

 

2. Related concepts and technologies 
 

2.1. RBAC and authorization constraints  
 

RBAC [3, 4] has gained much attention as an 

alternative to traditional discretionary and mandatory 

access control. It is an access control model in which 

the security administration can be simplified by the use 

of roles to organize the access privileges [5]. We now 

give an overview of the main RBAC components: 

• the sets U, R, P, S (users, roles, permissions, 

sessions) 

• UA ⊆  U× R (user assignment relation) 

• PA ⊆  P× R (permission assignment relation) 

• RH ⊆  R× R (role hierarchy relation). 
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A user can be a member of many roles and a role 

can have many users. Similarly, a role can have many 

permissions and the same permissions can be assigned 

to many roles. A user may activate a subset of roles he 

or she is assigned to in a session. The permissions 

available to the users are the union of permissions from 

all roles activated in that session. Role hierarchies can 

be formed by the RH relation. Senior roles inherit 

permissions from junior roles through RH (e.g., a chief 

physician inherits all permissions from the physician). 

Authorization constraints are an important aspect of 

RBAC and are sometimes considered to be the 

principle motivation behind RBAC. The goal of 

authorization constraints is not only to reduce the risk 

of fraud or a security breach but to increase the 

opportunity of detecting errors within an organizational 

security structure. Authorization constraints may need 

to be imposed on the RBAC functions and relations in 

order to prevent the information misuse and fraudulent 

activities. In the literature, several kinds of 

authorization constraints have been identified such as 

various types of static and dynamic SOD constraints [7, 

8, 9]; constraints on delegation [10]; cardinality 

constraints [3]; context constraints [10, 11]. 

Specifically, SOD is a fundamental principle in 

security systems and is typically considered as a 

requirement that, operations are divided among two or 

more persons so that no single individual can 

compromise the security. SOD constraints are used to 

enforce conflict of interest policies. One means of 

preventing conflict of interest is through static SOD, 

that is, to enforce constraints on the assignment of 

users to roles. On the other hand, the dynamic SOD 

constraints limit the permissions that are available to a 

user by placing constraints on the roles that can be 

activated within or across a user's sessions. 

 

2.2.   UML and OCL 
 

UML is a general-purpose modeling language in 

which we can specify, visualize, and document the 

components of software systems [1]. UML has become 

a standard modeling language in the field of software 

engineering, and allows one to describe static, 

functional, and dynamic models of software systems. 

Here, we concentrate on the static UML models. A 

static model provides a structural view of information 

in a system. Classes are defined in terms of their 

attributes and relationships. The relationships include 

specifically associations between classes. In Figure 1, 

the static UML model for RBAC consisting of the 

RBAC classes and associations is depicted (UML class 

diagram). The classes and associations correspond to  

 
 
Fig. 1. Class model for RBAC-entity classes. 

 

the RBAC sets and relations defined in Section 2.1. 

OCL [2] is a declarative language that describes 

constraints on object-oriented models. A constraint is a 

restriction on one or more values of an object-oriented 

model. Each OCL expression is written in the context 

of a specific class. In an OCL expression, the reserved 

word self is used to refer to a contextual instance. 

The type of the context instance of an OCL expression 

is written with the context keyword, followed by the 

name of the type. The label inv: declares the 

constraint to be an invariant. Invariants are conditions 

that must be true during the lifetime of a system for all 

instances of a given type. The following line shows an 

example of an OCL invariant describing a role with at 

most one user: 

 context Role inv:self.user->size()<2. 

self refers to an instance of Role. Then 

self.user is a set of User objects that is selected 

by navigating from objects of class Role to User 

objects through an association. The “.” stands for a 

navigation. A property of a set is accessed by an arrow 

“->” followed by the name of the property. A property 

of the set of users is expressed using the size 

operation in this example. 

Furthermore, OCL has several built-in operations 

that iterate over the members of a collection (set, bag, 

sequence) such as forAll and iterate [2].  
 

3.   Authorization framework 
 

We have designed and implemented an advanced 

Web Services-based authorization framework for the 

enforcement of organization-wide RBAC policies. In 

our authorization framework, the authorization engine 

and the application(s) are exported as Web Services. 

The authorization engine implements organization-

wide RBAC policies and makes access decisions.  

The authorization framework is based on the 

concept of an interceptor (Access Decision Handler), a 

middleware component. Specifically, the interceptor 
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enforces the access decisions on behalf of the 

applications. This way, the applications do not need to 

implement their own authorization mechanisms. 

Instead, they can employ the authorization engine to 

conduct the job accordingly. As a consequence, RBAC 

policies such as SOD need not be implemented in the 

application itself, i.e., applications can rely on our 

framework for this purpose. Furthermore, if RBAC 

policies are changed, the applications need not be 

adjusted. This leads to a separation of the authorization 

logic (integrated into the middleware) from the 

application logic. Since the organizations may be 

running legacy applications, the Web Services 

approach is suitable to implement interceptors even for 

legacy applications, while still using the centralized 

authorization engine.  

In Figure 2, an overview of the authorization 

framework is given. The communication between the 

framework components is based on SOAP messages. 

The Authorization Engine is a policy decision point 

(PDP), whereas the Access Decision Handler is a 

policy enforcement point (PEP) [15]. The PDP 

evaluates client requests against relevant RBAC 

policies to return an authorization decision. The PEP 

enforces the PDP’s decisions. Details are discussed 

subsequently. 

 

 

Fig. 2. Authorization Framework. 

 

3.1. Details of the authorization framework 
 

Figure 3 shows a sequential view of the 

authorization and communication between the 

interacting components. When an Application Client 

calls a security-critical operation such as “debit 

account” on the Application Web Service, the Access 

Decision Handler intercepts the request and forwards it 

to the Authorization Engine in order to check whether 

or not the client has the permission to perform the 

current operation. The Authorization Engine, on 

receiving the request from the Access Decision 

Handler, decides if the client has a permission to carry 

out the current operation, and sends the response back 

to the Access Decision Handler. In turn, the Access 

Decision Handler enforces the access decision of the 

Authorization Engine by allowing or rejecting the 

client’s request to perform the current operation on the 

Application Web Service. This way, the interceptor can 

be seen as a mediator [17] between the Web-Service-

based applications and the Authorization Engine. 

Fig. 3. Authorization flow and communication 
path. 

The Access Decision Handler (interceptor) has been 

realized in the following way: For the Application 

Client, it acts as a Web Service (exposing the interfaces 

of the Application Web Service and of the 

Authorization Engine to the Application Client). At the 

same time, the interceptor acts as a Web Service client 

for both the Application Web Service and the 

Authorization Engine.  

A further aspect to be discussed is session 

management. We use the session management provided 

by the Web container (Apache’s Axis) for this purpose: 

When a user logs in via the Application Client, an http 

session ID is then communicated to the PDP, which 

uses this information for creating its own internal 

representation of RBAC sessions (cf. Section 4).  

One remark should be made on the mapping 

between the Application Web Service interface and the 

RBAC permissions, which are used by the 

Authorization Engine for the access decision. We 

define the remote interfaces for the Application Web 

Service in a way that all methods have exactly one 

parameter, namely, the object (in the sense of access 

control) to which the operation/method is applied. For 

example, if a debit operation is to be executed on an 

account object, we have a Java method debit with the 
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parameter account. This way, we can create 

corresponding RBAC permissions such as (debit, 

account) and thus have a mapping from the Application 

Web Service interface to RBAC permissions. The 

interceptor then extracts the operation (method call) 

and object (parameter). We assume that the Application 

Web Service interface is defined by domain experts 

knowing the organization’s internal rules and processes 

in detail. The same applies to the definition of the 

RBAC permissions.  

 

3.2. Trust considerations   
 

Strictly speaking, the communication channel from 

the Application Client to the Application Web Service 

must be secured. This can be done by means of XML 

Digital Signature [27]. In particular, we need a secure 

channel between the PDP (Authorization Engine) and 

the PEP(s). At least, the Access Decision Handler 

(PEP) and the PDP must trust each other. Furthermore, 

the Application Web Services must trust the PEP and 

by transitivity the PDP. The Application Client, 

however, is not trustworthy because it is under control 

of the user (and possibly under control of an attacker). 

If the PEP and PDP need feedback from the 

Application Web Service, then a trust relationship in 

that direction must also exist. This, for instance, is the 

case if the access history (needed for implementing 

History-based SOD [9]) must be updated after an 

operation has been successfully carried out by the 

Application Web Service.  

4. Authorization engine functionality 

The authorization engine is the core component of 

the authorization framework, which implements 

organization-wide RBAC policies. Such policies are 

eventually enforced by means of the authorization 

framework. We have implemented an advanced 

authorization engine, which is based on the Java API 

provided by the USE system, a validation tool for UML 

models and OCL constraints [16]. 

We use the UML/OCL specifications provided by 

USE to formulate RBAC policies. Specifically, the 

RBAC element sets and relations are modeled in 

textual UML, and the authorization constraints are 

specified in OCL. Owing to the fact that OCL can be 

used to express the authorization constraints formally 

and precisely, a validation tool such as USE can be 

applied to analyze RBAC policies. Hence, one 

advantage of our approach is that USE can be 

employed both for validation and enforcement of 

RBAC policies. 

The USE system is based upon a so-called 

animation-based validation approach, i.e., the OCL 

constraints are checked against system states, which 

are represented as UML object diagrams [1]. Beyond 

syntax checks, USE supports the modeler in detecting 

missing or conflicting constraints. This validation of 

RBAC policies, however, is not topic of this paper. The 

interested reader may be referred to another paper [22]. 

In Figure 4, we show a simple RBAC policy, which 

is represented as a USE specification. It consists of the 

RBAC-related classes and association definitions 

formulated in textual UML, and a set of domain-

specific authorization constraints formulated in OCL. 

We define three constraints. The first is a prerequisite 

role constraint between the two roles “Banking 

Employee” and “Cashier”, i.e., a user must be assigned 

to the “Banking Employee” role if she is assigned to 

the “Cashier” role. The second one is an SSOD-CU 

constraint (Static SOD-Conflict Users) meaning that 

conflicting users cannot be assigned to conflicting 

roles. A typical example of conflicting users is family 

members who could collude to commit fraud. The third 

constraint is the Simple Dynamic SOD (SDSOD) 

constraint [9], which states that a user must not activate 

the “Customer” and the “Cashier” role simultaneously. 

Technically, CU and CR denote sets of conflicting 

users and roles, respectively. 

The RBAC policy shown in Figure 4 is only for 

didactic purposes, which by no means is a complete 

policy that the authorization engine implements. In 

general, the authorization engine is independent of any 

specific UML/OCL-based RBAC model, and, as 

pointed out before, the authorization engine 

implements all authorization constraints expressible in 

OCL. The RBAC policy is saved in a file in the USE 

format, which is processed when the authorization 

engine is started. This way, a security officer specifies 

the RBAC policy in UML/OCL and the USE system 

takes over the job of implementing the policy.  

The specification in Figure 4 has the drawback that 

the concrete entities (such as users and roles) are hard-

coded into the specification. In addition, the policy 

designer might not be an expert in OCL. To address 

these problems, a macro/template mechanism can be 

provided in order to make available recurring types of 

authorization constraints for a policy designer. These 

macros are then instantiated with the concrete entities 

on which the authorization constraints are to be 

applied. This resembles the macro mechanism 

introduced into the C programming language. Let us 

take the prerequisite role constraint as an example. 

Then, we can define the macro 
PrereqRole(_r1_,_r2_) as follows: 
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Fig. 4. USE specification of an RBAC policy. 

 
context User inv PrerequisiteRole: 
 self.role_->includes(_r2_) 
 implies self.role_->includes(_r1_). 

We can then instantiate this macro with the actual 

parameters of the authorization constraint in question. 

For instance, the macro call                                            
PrereqRole(Banking_Employee, Cashier) 

will then be expanded by a macro pre-processor to the 

prerequisite role constraint displayed in Figure 4.   

 

4.1. Administrative RBAC functionality 
 

The authorization engine supports most of the 

functionality demanded by the ANSI RBAC standard 

[14], i.e., it also contains functionality of a policy 

administration point (PAP) [15]. In particular, we have 

implemented administrative, review, and system 

functions. Administrative functions (e.g., AddUser, 

AssignUser) are required for the creation and 

maintenance of the RBAC element sets and relations. 

Review functions (e.g., UserPermissions) can be 

employed to inspect the results of the actions created 

by administrative functions. System functions such as 

CreateSession, AddActiveRole, and CheckAccess are 

required by the authorization engine for session 

management and making access control decisions.  

The administrative RBAC functions and some of the 

system functions such as CreateSession are 

implemented by the USE component which is 

responsible for creating system states (animator). This 

way, system/security states are built, which are 

employed by USE (authorization engine) for making 

access control decisions. 

In addition, we use OCL expressions to specify the 

RBAC review and the remaining system functions. 

Consequently, not only are the authorization constraints 

specified in OCL, but also parts of the administrative 

functionality. For example, the review function 

UserPermissions, which returns all the permissions 

belonging to a user, is specified as follows in OCL: 

UserPermissions(u:User):Set(Permission)= 

  u.role_->iterate(r:Role; 

   result:Set(Permission)={}| 

    result->union(r.permission)). 

This OCL specification is then simply called by the 

eval method made available by the USE system’s 

Java API. This allows a developer to specify main parts 

of the authorization engine in UML/OCL and then 

obtain an implementation semi-automatically [22]. 

 

4.2.   Advanced RBAC concepts 
 

One of the important aspects of the authorization 

engine is to incorporate advanced RBAC concepts that 

are comprised of various kinds of authorization 

constraints. We now demonstrate that the authorization 

engine can deal with a diverse range of authorization 

constraints. In particular, far more constraints are 

supported than the simple SOD constraints of the 

RBAC standard [4], which is deliberately restricted to 

common RBAC concepts. The authorization 

constraints can be specified in OCL in a similar way as 

shown in Figure 4.  

 

4.2.1. Authorization constraints. The authorization 

engine supports various SOD constraints. One example 

has already been mentioned, namely, SSOD-CU (cf. 

Figure 4). Other constraints are simple static SOD [4] 

or conflicting permissions [7]. The conflicting 

permissions constraint, for example, states that the 

same user may not receive the “approve order” and 

“approve audit” permission. We also realized the 

SDSOD constraint given in Figure 4, and session-based 

dynamic SOD by which no user can activate two 

conflicting roles within a single session. 

The authorization engine also supports cardinality 

constraints and prerequisite constraints. The cardinality 

constraints are instructions of the form “a department 

has exactly one chairperson”. More generally, Sohr et 

model RBAC 
 
--classes 
 
class Role 
attributes 
name:String 
end 
 
class User 
attributes 
name:String 
end 
 
class Permission 
attributes 
op:Operation 
o:Object 
end 
 
class Object 
attributes 
name:String 
end 
 
class Operation 
attributes 
name:String 
end 
 
class Session 
attributes 
name:String 
end 
 
-- associations 
association UA 
between 
User[*] role user 
Role[*] role role_ 
end 
 
  

association PA between 
Permission[*] role permission 
Role[*] role role_ 
end 
 
association establishes between 
User[1] role user 
Session[*] role session 
end 
 
association activates between 
Session[*] role session 
Role[*] role role_ 
end 
 
 
Constraints 
 
-- Prerequisite roles  
context User inv PrerequisiteRole: 
self.role_->includes(Cashier) 
implies self.role_-> 
includes(Banking_Employee) 
 
-- Static SOD – Conflicting Users 
context Role inv SSOD-CU: 
let 
  CU:Set(User)=Set{Frank,Joe}, 
  CR:Set(Role)=Set{Cashier, 

                    Cashier_Supervisor} 
in 
CU->iterate(u:User; 
 result:Set(Role)=oclEmpty(Set(Role))| 
 result->union(u.role_))->  
      intersection(CR)->size()< CR->size() 
 
-- Simple Dynamic SOD 
context User inv SDSOD: 
let 
  CR:Set(Role)=Set{Customer,Cashier} 
in 
  CR->intersection(self.session->iterate( 

 s:Session;  

 result:Set(Role)=oclEmpty(Set(Role))| 

 result->union(s.role_)))->size() 

                            < CR->size() 
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al. [22] show that the authorization engine can handle 

all the types of authorization constraints that can be 

formulated in RCL 2000, a well-known specification 

language for RBAC authorization constraints [7].  

The implementation of authorization constraints by 

means of the USE system is done by calling the check 

method provided by the Java API of USE. Similarly to 

the implementation of the review functions (cf. Section 

4.1.), the constraint is passed as a parameter to the 

check method. If the authorization constraint is 

satisfied in the current system state, the check method 

returns true, otherwise false. Hence, we obtain a simple 

implementation of authorization constraints and use the 

functionality of a general-purpose OCL validation tool 

for the evaluation of RBAC policies. This applies to all 

authorization constraints discussed in this paper, too. 

 

4.2.2. History-Based SOD. The authorization engine 

also supports different forms of History-Based SOD. 

One example is Object-Based Dynamic SOD 

(ObjDSOD) as proposed by Simon and Zurko [9]. 

ObjDSOD states that a user may act upon an object 

with at most one critical operation. For example, a user 

may only perform one of the operations prepare, 

approve, and sign on a check.  

In order to formulate history-based constraints, we 

introduce a further attribute called accesshistory 

for each object. It represents the access history of the 

object in question. The ObjDSOD constraint for the 

check object  can be specified in OCL as follows: 

context User inv ObjDSOD: 

let 

 crit_ops:Set(Operation)= 

 Set{prepare,approve,sign}, 

 check:Object.allInstances 

      ->any(name=’check’) 

in 

 check.accesshistory->forAll(t1,t2|  

 (t1.u=self and t2.u=self  

 and crit_ops->includes(t1.op)  

 and crit_ops->includes(t2.op))  

  implies t1.op=t2.op) 

The access history is a sequence of pairs (user, 

critical operation), i.e., each access with a critical 

operation on a check object is logged. Moreover, note 

that we use OCL’s tuple types to represent the access 

pairs. Through the use of OCL sequences even 

ordered-dependent history-based SOD constraints [9] 

can be formulated. The aforementioned OCL constraint 

states that if a user has executed two critical operations 

on a check, both operations must be the same. 

History-based constraints ought to be enforced at 

runtime when an operation is executed on an object. 

Then we would have to change the history information 

after the operation has been successfully executed. 

However, this would mean that we need a feedback 

from the Application Web Service. Specifically, if the 

Application Web Service is not reachable, that security-

relevant information will not be communicated back to 

the PDP. For this reason, we decided to enforce those 

constraints whenever an access request is to be 

checked, i.e., on calling CheckAccess. We also decided 

to store the access control history for each object in the 

security state (USE system state). This means that we 

must also update the access control history in the USE 

system whenever CheckAccess is successfully called.   

 

4.2.3. Context Constraints. Context constraints [10, 

11, 13] are another variation of authorization 

constraints, which allow organizations to restrict access 

to data or business processes according to the contexts 

such as location and time. The authorization engine 

supports context-based permission activation [23]. 

Context information (like location and time) allows one 

to express a variety of authorization constraints that can 

further tighten the permission activation. We now give 

a context constraint w.r.t. location as an example: 

context User inv LocationContext: 
self.session->forAll(s|s.role_->forAll(r|
 r.permission->forAll(p|     
  ActivePermission(s,r,p)implies   
  p.o.location=self.location))). 

We introduced a ternary association 

ActivePermission
1
 stating that the session s has 

activated permission p with role r. Second, we assume 

that both the user and the object have an additional 

attribute “location” that describes the current location 

of the user and the object, respectively. If now a role is 

activated in a session, then the location of the 

permission (or more exactly, of the permission’s 

object) must be the same as the location of the user. 

The aforementioned context constraint is then checked 

by the PDP when the RBAC system functions 

AddActiveRole or CreateSession are called. 

 

5. Case studies 
 

As mentioned above, the authorization engine 

implements various RBAC policies, i.e., the 

authorization engine is independent of the domain. This 

will be demonstrated by two case studies, namely, from 

the banking and military domain. We also employed 

our authorization engine in a healthcare environment, 

but do not give more details here due to space 

                                                           
1 Ternary associations can be expressed in OCL with association 

classes. However, as we have done earlier [22], we again introduce 

an additional ternary predicate to simplify the discussion.  
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restrictions. Note that in all these cases the RBAC 

policy in question is defined in a USE file. This is 

similar to the RBAC policy in Figure 4, containing the 

domain-specific authorization constraints. The USE 

system then processes this file and enforces the RBAC 

policy as sketched in Section 4.2.1. 

 

5.1.   SOD in a banking environment 
 

The first case study reflects the fact that Web 

Services are used in financial institutes to integrate 

applications [29]. In particular, SOD often occurs in 

those applications. We specifically implemented the 

SOD constraints shown in Figure 4 such as the SSOD-

CU constraint which prevents two colluding users to be 

assigned to the conflicting roles “Cashier” and “Cashier 

Supervisor”. Due to the fact that SSOD-CU is static, 

the constraint must be enforced at administration time. 

Whenever the administrative RBAC functions such as 

AssignUser are called, the authorization engine checks 

the already defined static authorization constraints. The 

other parts of our authorization framework (cf. Figure 

2) are not involved in enforcing static authorization 

constraints. 

Dynamic SOD constraints have been implemented, 

too, such as the SDSOD constraint between the roles 

“Cashier” and the “Customer”. Figure 5 shows a dialog 

window made available by the Banking application 

client prototype for activating roles. Here, a user has 

already activated the “Customer” role. Activating the 

“Cashier” role is forbidden due to the SDSOD 

constraint as shown in Figure 5. 

Considering our framework introduced in Section 3, 

the following steps are carried out. The user tries to 

activate the “Cashier” role in the Application Client, 

i.e., the RBAC system function AddActiveRole is called 

(cf. Figure 2). This request is passed from the 

Application Client via the Access Decision Handler to 

the authorization engine. The engine then makes the 

access decision based upon the current security/system 

state (in our example, the “Customer” role has already 

been activated) and the already defined authorization 

constraints (SDSOD in our case). The engine then 

returns the decision “activation forbidden” back to the 

Access Decision Handler, which communicates the 

result to the banking application client (cf. Figure 5).  

Note that in this particular case the banking 

application itself never sees the activation process. The 

role activation is actually done inside the authorization 

engine. Having activated appropriate roles, the user can 

carry out operations on the banking application Web 

Service such as debit account, and other dynamic 

constraints can come into effect such as contexts. 

 

Fig. 5. Enforcing SOD in a banking application 
client.       

Within the frameworks of this case study, we carried 

out early performance measurements. In particular, we 

measured the time for executing access requests from 

the Application Client to the Application Web Service. 

For this purpose, we configured an RBAC system with 

50 users and 10 roles. The interceptor runs on a 

Pentium IV, 2 GHz, and the Authorization Engine on a 

Pentium M, 1.6 GHz. Executing 1000 random access 

requests such as debit/credit account, we obtained an 

average latency time of about 86 ms per access 

(compared to 14 ms per access without using our 

framework). This way, an access request is about six 

times slower than an ordinary Web Service request 

without employing our authorization framework. 

Our authorization framework, however, can be 

configured in a way that only security-critical access 

requests are guided through our framework (cf. Section 

3.1). Other requests need not be intercepted, i.e., 

functionality which is not security-critical is exported 

directly by the Application Web Service and not by the 

interceptor. Remember that we assume that the 

Application Web Service interface is designed by a 

domain expert who knows which functionality is 

security-critical and which not. 

 

5.2. Lattice-based access control policies 
 

Our authorization framework can also be employed 

for implementing lattice-based access control (LBAC) 

policies [24]. LBAC has specifically been used in 

military, but it sometimes has also been implemented in 

large enterprises [25]. Although LBAC is an old access 

control model, we use it here to demonstrate the 

flexibility of the authorization engine component of our 

authorization framework.  

As shown by Sandhu [26], RBAC can be configured 

to simulate LBAC policies by forming two dual role-

hierarchies (one for the read roles, and the other one 
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for the write roles) and by defining authorization 

constraints on the RBAC relations. In particular, a 

security label x is then represented by two roles xR and 

xW with xR the appropriate read role and xW the 

appropriate write role. For the sake of brevity, we leave 

out here the details of this construction.  

We now discuss an LBAC policy with n security 

labels l1, …, ln. In order to employ the USE system for 

implementing LBAC, we first express LBAC in OCL. 

To give an impression, how the OCL version of LBAC 

looks like, we here give one of the authorization 

constraints used by Sandhu; the other constraints of 

Sandhu’s construction can be expressed similarly. The 

constraint states that each session has exactly two roles 

xR and xW and means that the user has logged in at the 

security level x. For this purpose, we define two role 

sets RR = {L1R, …, LnR} and WR = {L1W, …, 

LnW} for the read and the write roles, respectively. We 

also add an attribute called label for each role. Then, 

we obtain the following OCL constraint: 

context Session inv SessionConstraint: 
let 
 RR : Set(Role) = Set{L1R, …, LnR}, 
 WR : Set(Role) = Set{L1W, …, LnW} 
in 
 self.role_->size()=2 and   
 self.role_->forAll(rr, wr| 
 RR->includes(rr) and WR->includes(wr) 
 and rr.label=wr.label) 

Note that this specific authorization constraint is 

enforced at run-time and not at administration time 

because sessions are involved. The constraint is 

checked whenever a new user session is created by the 

Application Client (cf. Section 3), which tries to access 

classified data. In this case, the CreateSession RBAC 

system function is called by the Application Client. 

This request is then passed to the authorization engine 

via the Access Decision Handler. If the constraint is 

violated, this result is returned to the Application 

Client. Otherwise, the security state is changed within 

the authorization engine accordingly, i.e., a new object 

of the UML class Session is generated. In addition, 

the fact that the role has been activated successfully 

must also be stored in the authorization engine.   

 

6. Related work 
 

There is a plethora of works in the context of 

security modeling with UML such as [18, 19, 29]. As 

indicated above, the USE system is a general-purpose 

validation tool and can hence be employed for other 

UML/OCL encodings of RBAC policies than that 

given in Section 4. In particular, Lodderstedt et al. 

present the modeling language SecureUML for 

integrating the specification of access control into 

application models and automatic generation of access 

control infrastructures for applications [18]. They also 

deal with authorization constraints, but do not 

concentrate on SOD constraints. Another difference is 

that our aim was to make available an organization-

wide authorization engine for Web Service 

applications that can enforce various RBAC policies. 

Then, applications can use our engine if needed. We 

did not primarily intend to provide a methodology to 

integrate access control and application models. 

XACML is an OASIS standard that supports the 

specification of authorization policies and related 

queries in a standardized, machine-readable way [15]. 

The RBAC profile of XACML extends the standard for 

expressing authorization policies that use RBAC with a 

scope limited to core and hierarchical RBAC [20]. 

However, the profile lacks the full support of SOD 

constraints and other variations of authorization 

constraints. Clearly, one can argue that RBAC policies 

can be specified directly in XACML. However, 

manually specifying such policies directly in XACML 

could be comparatively complicated, time consuming 

and hence error-prone. Due to the fact that OCL has a 

formal semantics [16] we can validate RBAC policies 

w.r.t. conflicting and missing constraints by tools such 

as USE [22]. To our knowledge, no tool exists that can 

validate XACML policies in that sense. 

Furthermore, there exist other authorization engine 

prototypes, which can be compared with our engine. 

One of those engines is Adage, developed by Zurko et 

al. [30]. Adage has been developed with similar goals 

in mind. Specifically, Adage can enforce different 

kinds of role-based SOD constraints on the middleware 

layer (for example, Adage was integrated into 

CORBA). Moreover, Adage makes available a policy 

specification language called AL. However, some 

constraint types are not supported by Adage such as 

context constraints. Furthermore, a validation tool for 

access control policies is not available. Bhatti et al. 

present an authorization framework for Web Services 

which can enforce temporal constraints in the sense of 

the GTRBAC model introduced by Joshi et al. [31]. In 

addition, simple SOD constraints are supported.  

 

7. Conclusion and future work 
 

In this paper, we presented a Web Services-based 

authorization framework to enforce organization-wide 

RBAC policies across various (Web Service) 

applications. Due to the fact that Web Services aim at 

integrating various applications of organizations and 

hence possibly expose security-critical functionality, it 
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is desirable to enforce organizational rules on the Web 

Service level. In particular, we showed how our 

authorization framework integrates an authorization 

engine with the organization-wide applications by 

means of an interceptor. This way, the authorization 

logic is decoupled from the application logic. The 

authorization engine can be easily extended to support 

new types of authorization constraints that are 

expressible in OCL. This way, the authorization engine 

can implement various kinds of authorization 

constraints, independent of the domain in question.  

As part of future work, we can extend our 

authorization engine to incorporate constraints on 

delegation and revocation. Last but not least, it would 

be interesting to integrate the authorization engine into 

a Workflow Management System. 
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