
Int. J. Information and Computer Security, Vol. 5, No. 4, 2013 251

Extensible policy framework for heterogeneous
network environments

Lawrence Teo
UNC Charlotte,
9201 University City Blvd.,
Charlotte, NC 28223, USA
E-mail: lcteo@uncc.edu

Gail-Joon Ahn*
Lab. of Security Engineering for Future Computing (SEFCOM),
Arizona State University,
699 South Mill Ave.,
Tempe, AZ 85281, USA
E-mail: gahn@asu.edu
*Corresponding author

Abstract: Security policy management is critical to meet organisational needs
and reduce potential risks because almost every organisation depends on
computer networks and the internet for their daily operations. It is therefore
important to specify and enforce security policies effectively. However, as
organisations grow, so do their networks – this increases the difficulty of
deploying a security policy, especially across heterogeneous systems. In
this paper, we introduce a policy framework called Chameleos-x which
is designed to enforce security policies consistently across security-aware
systems with network services-primarily operating systems, firewalls, and
intrusion detection systems. Throughout this paper, we focus on the design
and architecture of Chameleos-x and demonstrate how our policy framework
helps organisations implement security policies in changing, diversity-rich
environments. We also describe our ongoing work in the experimentation of
Chameleos-x, where we have obtained promising results.

Keywords: access control; grid systems; assured sharing; security.

Reference to this paper should be made as follows: Teo, L. and
Ahn, G-J. (2013) ‘Extensible policy framework for heterogeneous network
environments’, Int. J. Information and Computer Security, Vol. 5, No. 4,
pp.251–274.

Biographical notes: Lawrence Teo received his PhD at the College of
Computing and Informatics, University of North Carolina at Charlotte,
Charlotte.

Gail-Joon Ahn is a Full Professor in the School of Computing, Informatics,
and Decision Systems Engineering at Arizona State University. His current
research interests include information and systems security, vulnerability and
risk management, access control, and security architecture for distributed

Copyright © 2013 Inderscience Enterprises Ltd.

252 L. Teo and G-J. Ahn

systems. His research has been supported by the US National Science
Foundation, US National Security Agency, US Department of Defense,
Bank of America, Hewlett Packard, Microsoft, and Robert Wood Johnson
Foundation. He is also a recipient of the US Department of Energy CAREER
Award and the Educator of the Year Award from the Federal Information
Systems Security Educators Association.

1 Introduction

Businesses and organisations depend heavily on computer networks and information
systems for their daily operations. Due to this ever-increasing reliance on computer
systems, it is critical for organisations to implement a carefully-designed security policy
for their networks and information systems.

However, this is not without its challenges. When organisations grow, so do their
computer networks and information systems. This growth tends to introduce diversity
and heterogeneity into the network, especially as new operating systems, network
devices, and security technologies are adopted (Sachs et al., 2009). As the number and
types of systems increase, the security of the organisational networks is affected in two
major ways:

1 the difficulty of designing and enforcing a security policy that works consistently
across different systems is significantly multiplied

2 the ability to maintain the consistency of the policy in the face of changing
organisational requirements becomes diminished.

In this paper, we argue that a practical, system-driven approach should be used
to address the problem of enforcing security policies consistently in a changing,
diversity-rich environment. We propose a solution in the form of a system-driven policy
framework called Chameleos-x, which consists of both a policy specification language
and a policy enforcement architecture. The Chameleos-x framework is specially
designed to facilitate the management of consistent security policies in heterogeneous
environments.

Chameleos-x began its life as a language to specify access control policies across
different operating systems (Teo and Ahn, 2004, 2005). Through our experience
and the many lessons learned while designing and developing Chameleos-x, we
are currently extending Chameleos-x to work beyond operating systems. Our new
vision for Chameleos-x is for it to enforce security policies consistently on different
security-aware systems (also known as INFOSEC devices by some researchers). We
define a security-aware system as any electronic system that is responsible for enforcing
any part of the organisational security policy. Examples of security-aware systems
include operating systems, firewalls, and intrusion detection systems (IDSs) – those are
the systems that we will focus on in this paper.

Chameleos-x differs from previous approaches in two important ways. First,
Chameleos-x attempts to deploy comprehensive security policies for many types of
systems as we have already discussed. Second, it uses a three-pronged strategy to
enforce policies for those systems

Extensible policy framework for heterogeneous network environments 253

1 Chameleos-x assists in the configuration phase of the policy deployment process

2 Chameleos-x allows the evaluation of policies so that the organisation can be
confident that the policies work as expected

3 Chameleos-x has a response mode, which refers to the ability of the
Chameleos-x architecture to proactively enforce the policy based on changing
conditions and events using a risk-aware mechanism.

In this paper, we focus on the configuration phase of the policy deployment process;
the evaluation and response phases remain as future work, but we shall address them
briefly.

Chameleos-x benefits organisations by introducing numerous cost and time savings.
Users would be able to use a language with a common syntax to design the security
policy for heterogeneous systems. They would not have to relearn a different syntax
in order to deploy the same policy from one system to the next. System designers and
network engineers benefit by being able to design more secure and reliable systems and
networks as the result of a systematic policy deployment process.

This paper is organised as follows. Section 2 describes other approaches that are
related to our work. Section 3 presents the objectives of the Chameleos-x policy
framework. We then discuss the design, architecture, and realisation of Chameleos-x in
Section 4, followed by a discussion of our experiments and results in Section 5. Next,
we describe our ongoing and future work in Section 6. Section 7 concludes the paper.

2 Related work

Chameleos-x is a family of languages and policy specification and enforcement
architectures. Therefore, there are quite a number of projects that are related to our work.
To simplify our discussion, we present them in three categories: policy specification
languages, network management systems, and security management systems.

Ponder (Damianou et al., 2001) is a policy specification language for distributed
systems. It is also a flexible language that targets a number of different systems. The
difference between Ponder and our work is that Ponder is strictly a policy specification
language, while Chameleos-x is involved in both policy specification and enforcement.
In terms of responding to events, the Ponder framework has a ‘self-management’
feature, which consists of statically defined obligation policies that decide what action
should be taken when certain events happen. In contrast, the Chameleos-x architecture
includes a dynamic and risk-aware response mechanism at the enforcement phase. Also,
Chameleos-x has pluggable policy sets to support multiple system entities in large
and heterogeneous environments and also provides a facility to help evaluate specified
policies. In addition, it helps us identify missing or conflicting policies as well as guide
us to design effective policy sets.

Woo and Lam (1993) designed a flexible language that used default logic to model
authorisation rules. The Authorisation Specification Language (ASL) (Jajodia et al.,
1997a, 1997b) is a flexible and expressive language that can be used for multiple access
control policies. Related projects also include work on modular authorisation (Wedde
and Lischka, 2001), logical access control frameworks (Bertino et al., 2003), and
enterprise-level privacy policies (Karjoth and Schunter, 2002).

254 L. Teo and G-J. Ahn

The motivation of our work should not be confused with that
of eXtensible Access Control Markup Language (XACML) (OASIS,
http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml.). XACML is an
XML-based language. Its goal is to allow access control policies to be specified by
any application that requires authorisation for users. In our work, we strive to design
a flexible language within a particular domain. Currently, Chameleos-x focuses on
network services in operating systems, firewalls, and IDSs.

In the network management area, the most popular system is the simple network
management protocol (Case et al., 1990). Although it is widely used, SNMP has many
drawbacks, especially its very simplistic design that makes it unsuitable for specifying
and enforcing comprehensive security policies on a network. A different network
management protocol, the common management information protocol (CMIP) (ITU-T
ISO/IEC, 1991) has a wider scope compared to SNMP but its resource-intensive
nature has limited its adoption on the internet. Another network management system is
Telcordia’s Transaction Language 1 (TL1) (iDeskCentric, Inc., http://ireasoning.com/),
which is used in telecommunications equipment. In contrast, Chameleos-x targets
TCP/IP networks. The NEon architecture (Schuba et al., 2005) uses a very different
paradigm for network management, where it offers an integrated approach to manage
network services. It is designed mainly from the network perspective with a focus on
generating rules for firewalls. Chameleos-x adopts a different approach where it aims
to cover a variety of systems, both in terms of heterogeneity (multiple platforms) and
type of system (firewalls, IDSs, and other security-aware systems).

We now discuss security management systems. In the operating systems area,
Rippert (2003) has proposed a framework called THINK to protect flexible operating
system architectures. However, THINK is tightly integrated to operating system kernels.
In contrast, we are developing a framework with a declarative language to support
security policies for operating systems, firewalls, and IDSs. In addition, we aim to
support these applications above the kernel layer, in order to make it accessible to
practitioners who do not wish to use kernel-level access control facilities.

Firmato (Bartal et al., 2003) is a firewall management toolkit that aims to manage
firewalls based on an entity-relationship model that represents security policy and
topology. While its approach is very novel, it caters mainly to firewalls. Also, the ability
to respond to changes, which is a Chameleos-x requirement, is not part of Firmato’s
objectives.

Telcordia’s ‘Smart Firewalls’ project (Bhatt et al., 2003; Burns et al., 2001) focuses
on the specification and enforcement of high-level policies on a dynamic coalition of
networks. Their concentration is on ensuring that various coalition networks conform to
a coalition policy that has been agreed upon, and that configuration changes during the
life of the networks do not result in any violations of that policy.

3 Objectives and design decisions

The Chameleos-x policy framework has three main objectives:

1 To facilitate security policy management for heterogeneous environments. We are
primarily concerned with the configuration and evaluation of systems for
conformance to security policies in heterogeneous environments. We also wish to

Extensible policy framework for heterogeneous network environments 255

explore methods to build a mechanism that can flexibly and actively respond to
malicious events during real-time operation.

2 To facilitate the specification of sound and effective security policies for multiple
kinds of systems and software. It is difficult to write security policies for complex
information systems and networks. In Chameleos-x, we propose to design and
develop a simple but powerful declarative language to enable the specification of
sound security policies for systems in a large-scale environment.

3 To develop a reliable architecture to enforce security policies in heterogeneous
environments. We intend to build a policy enforcement architecture that would
allow the execution of the security policies written using the
Chameleos-x framework. This implies that the architecture has to be designed well
to support multiple systems and platforms in heterogeneous network environments.

As a family of languages and architectures, Chameleos-x supports different kinds of
systems – currently it works with operating systems, firewalls, and IDSs (Figure 1). The
number of supported systems will be increased in the future.

Figure 1 The Chameleos-x framework

Chameleos-x Family

Chameleos-os Chameleos-
firewall

Chameleos-ids

Ext 1

Ext 2

Ext 3

Linux

OpenBSD

Windows XP

Extn

Ext 1

Ext 2

Ext 3

Linux iptables

OpenBSD pf

FreeBSD
IPFILTER

Extn

Ext 1

Ext 2

Ext 3

Snort

Prelude

Bro

Extn

General Framework

Specialized Components

Specific Extensions

The advantages of implementing a single language for many security-aware systems are
manifold. Having a single language would provide a common syntax for administrators
to implement various policies. There is no need to relearn the syntax for different
systems, thus presenting a convenient way for the administrator to specify multiple
system policies. This is especially true when the evaluation of two different systems is
taking place. Also, if there are similar systems, we do not need to convert the policies
from one system to the other.

256 L. Teo and G-J. Ahn

3.1 Approach

We now discuss the approach that was used to design the Chameleos-x policy
framework. We present the two key decisions that we made in the design of the
language, and how they affected the development of our framework.

Firstly, we have to decide whether to develop an extension of an existing similar
policy framework or develop a new framework altogether. Unlike other frameworks,
a key differentiator in the Chameleos-x is that it integrates with a risk-based network
management architecture (Teo et al., 2003), thus it uses a different paradigm compared
to other frameworks. This difference alone warrants the necessity to design a new
framework. Another benefit of creating the framework afresh is that it helps us design all
the components in our policy framework while achieving completeness and consistency
of our approach.

Secondly, we need to consider whether to use a top-down approach or a bottom-up
approach. In other words, we need to decide whether to develop our language by
testing it regularly with general concepts, or on actual systems. General concepts in
this context refer to implementation-independent paradigms, such as access control
lists and role-based access control (Giordano et al., 2010). The top-down approach is
suitable for flexibility. For Chameleos-x, however, we believe that developing for actual
systems (the bottom-up approach) would be more beneficial, since Chameleos-x has to
be implemented on real systems in the end.

Some have suggested that the bottom-up approach results in an inflexible framework
that is too specific to the underlying systems; however, we argue the reverse to be true.
Since Chameleos-x has a language component to it, it is useful to draw parallels with
existing programming languages to demonstrate why the bottom-up approach is more
suitable in the case of Chameleos-x. We must stress that Chameleos-x is designed to be
used in the real world and is not merely a theoretical exercise. In that vein, the language
component in Chameleos-x is comparable to programming languages like C and C++.
Like Chameleos-x, those programming languages were designed using the bottom-up
evolutionary approach. Though their design may not be very elegant, they are proven
to be flexible, where they have been used to implement many kinds of solutions. Thus,
they enjoyed widespread use in industry for decades.

These decisions led us to adopt an evolutionary design model for Chameleos-x. We
will initially develop for a small number of systems, and increase the number as we
progress. Using this evolutionary model, we believe we will be able to support the
specific features of each system more effectively.

3.2 Users

The Chameleos-x policy framework is primarily concerned with the configuration and
evaluation of security policies on information systems. Therefore, the most likely users
would be system administrators, since they have the most access to the information
systems of an organisation. Other users include IT managers, security officers, auditors,
and technical staff who are involved with security policies. To simplify our discussion,
we use the catch-all term evaluator to describe the user of the Chameleos-x framework.

Extensible policy framework for heterogeneous network environments 257

3.3 Criteria

Based on the objectives and approach outlined in the previous sections, we now explain
the criteria for Chameleos-x:

1 Flexibility. First and foremost, Chameleos-x should be able to support the security
policies of multiple types of systems. While we wish to support all types of
systems that have security policies, at this point in time, we are mainly interested
in operating systems, firewalls, and IDSs.

2 Extensibility. Of equal importance is the extensibility of Chameleos-x
(Lesniewski-Laas et al., 2007). Chameleos-x must be able to support the specific
features of each system. A benefit of this is that it can allow a system to use only
the features that it requires and nothing more. Consider the operating systems
domain. Two different OSs may support different kinds of security policies. For
instance, an OS like Security-Enhanced Linux (SELinux) (NSA,
http://www.nsa.gov/selinux/) has comprehensive security policies that support
discretionary access control (DAC), role-based access control (RBAC), and type
enforcement. Another OS like OpenBSD follows the DAC paradigm only.
Therefore, if the Chameleos-x is being used on OpenBSD, it would need to
support just the DAC paradigm; however, on SELinux, Chameleos-x can be
extensible enough to support RBAC and type enforcement.

3 Practical and system-driven. Chameleos-x must be a practical policy framework
for real systems as opposed to a theoretical one.

4 Language with well-defined syntax. The language component of Chameleos-x
must have a well-defined syntax to promote clarity and reduce the ability to
introduce ambiguity.

5 Comprehensiveness. Large and heterogeneous environments may have different
kinds of platforms and systems. Therefore, Chameleos-x must provide facilities to
enable the support for any target system. This includes the ability of the language
component of Chameleos-x to define groups and sets, and other features that we
will describe later in Section 4.2.

6 Use of a textual language. By textual language, we mean that the language
component in Chameleos-x should not be confined to a graphical user interface
(GUI). The language itself should be expressible in ASCII text so that
Chameleos-x policies are readable by humans without having to use special tools.

7 System and platform independence. We strive to develop a policy framework that
can work across multiple systems, with the major requirement that the system
must be one that supports the specification and enforcement of security policies.

Given that the criteria include flexibility and extensibility, one might suggest that
XML would be a good candidate to develop the language component of the
Chameleos-x policy framework. After all, XML is designed to be highly extensible
while maintaining structure. However, at present, we do not wish to adopt XML as the
language for Chameleos-x for two reasons. The first reason is because we would like
security policies written in Chameleos-x to be simple and readable. Security policies for

258 L. Teo and G-J. Ahn

diverse environments can be very complex; thus, using XML may reduce the readability
of such security policies. The second reason is that we are trying to minimise changes to
existing policy practices when introducing Chameleos-x. Currently, almost all operating
systems, IDSs, and firewalls do not use XML for their policy frameworks.

At the same time, we are not completely dismissing the adoption of XML for
Chameleos-x in the future. Eventually, there may be a need to exchange security policies
across domains and systems. The ideal candidate to implement this exchange mechanism
would be XML, since it is especially useful in representing information for exchange
across systems. Perhaps when Chameleos-x reaches a mature stage in its development,
and XML is used natively in systems, we may investigate possible ways to incorporate
XML into the framework. One possible way would be to have an XML version of
the Chameleos-x language component; another alternative would be to write a new
translation component for the Chameleos-x architecture that would allow the conversion
of Chameleos-x policies to and from XML.

4 Policy framework: Chameleos-x

The Chameleos-x policy framework can be implemented using two major components:
a policy specification language and a policy enforcement architecture. In this section,
we describe the terminology used to describe the components in Chameleos-x, and
discuss the Chameleos-x language and architecture. As we are presently developing the
Chameleos-x framework, some of the details in this section may change in the future,
when we revise the design based on our experimental results. However, the core ideas
and concepts used in the design of the Chameleos-x framework are valid and will be
retained.

4.1 Terminology

The terms and definitions used in the context of Chameleos-x are as follows:

1 Operation modes. Chameleos-x is designed to work with three high-level
operation modes: configuration, evaluation, and response. The configuration mode
is used to propagate configuration settings to a variety of systems. The evaluation
mode is used to test the configuration against a set of events (say, legitimate
traffic and attack traffic), to see if the configuration settings and the security
policy are working effectively as they should be. The response mode is used
during real-time operation, and is meant to enforce the security policy by taking
actions based on certain conditions and events.

2 Session. A session represents a typical period of time when Chameleos-x is run.
For example, the session can define which Chameleos-x variants are used and
what operation mode to invoke in that session.

3 Context. A Chameleos-x context refers to an entity that is affected by the
configuration, evaluation, and response operation modes. A context can refer to an
entity on just one single system, or span across multiple systems. For example, a
single context can be defined to represent the HTTP service on an operating
system, the IDS rules affecting HTTP on an IDS, and firewall rules that allow or

Extensible policy framework for heterogeneous network environments 259

deny the HTTP service. Since we are focusing on networks at this stage, most
contexts will be related to network services.

4 Context library. To facilitate the definition of contexts, Chameleos-x supports
context libraries. A context library, as its name implies, is a collection of contexts
related to a particular domain. Currently, we are primarily interested in building a
context library in the network domain.

4.2 Language and architecture

The Chameleos-x policy framework includes a language component that is used for
policy specification. It is intended to cover many notions that are used to specify
policies, including basic access control concepts. We have developed the basic grammar
of the Chameleos-x language in extended BNF (EBNF). Due to space limitations, we
do not include the EBNF grammar specification in this paper.

In order for the Chameleos-x framework to work effectively in an organisation, it
would naturally need an architecture to support it. Since the size of the information
systems that Chameleos-x will work with could potentially be very large, we made a
decision to have just a small number of components in the Chameleos-x architecture.

The three major components of the Chameleos-x architecture are the management
console, translator, and enforcement mon. The management console, like its name
implies, is a central management interface operated by the evaluator. It is used to ‘push’
Chameleos-x policies to various hosts that are running the Chameleos-x enforcement
monitor. The management console also specifies which operation mode should be used
in each session.

The Chameleos-x enforcement monitor is a daemon that runs continually in the
background on systems that are part of the Chameleos-x framework (that is, the
servers, firewalls, and IDSs). Its responsibility is to receive the Chameleos-x policy
from the management console, and apply it on its host system. To do so, the
Chameleos-x policy would have to be translated. This translation process is done
by the Chameleos-x translator, which is used to convert the Chameleos-x policy
into one or more system-specific policies. The translator resides together with the
Chameleos-x enforcement monitor (it could either be part of the monitor, or a
separate entity that is invoked by the monitor). Each Chameleos-x variant would
have its own translator. For instance, if we are working with the Snort IDS,
the Chameleos-ids translator will convert the Chameleos-ids policy into a Snort
configuration file.

The layout of the components in the Chameleos-x architecture is shown in Figure 2.
As we can see, the management console is used to push the Chameleos-x policies to
the Chameleos-x enforcement monitors residing on each system, where it is translated
and applied. This process can be described as a workflow as follows (the numbers in
Figure 2 relates to this description):

1 The evaluator composes one or more Chameleos-x policies and uses the
management console to send them to the Chameleos-x enforcement monitor on a
host.

2 The enforcement monitor receives the policies.

260 L. Teo and G-J. Ahn

3 The Chameleos-x enforcement monitor invokes the translator to translate the
policies it just received into system-specific policies.

4 The translator performs the translation process. For instance, a
Chameleos-firewall policy could be translated into a Linux iptables ruleset,
while a Chameleos-ids policy could be translated into a Snort configuration file.
The translation could result in one or more system policies, depending on the
requirements of the specific systems.

5 After the translation is done, the enforcement monitor invokes the execution
program (say, Snort in the case of Chameleos-ids).

6 The execution program loads and applies the translated policies on the host.

Figure 2 The Chameleos-x architecture

Chameleos-x
Enforcement

Monitor

Chameleos-x
Translator

Host (Security-Aware System)

1

2

3

4

5

6

Management
Console

Chameleos-x
policies

System
policy 1

System
policy 2

System
policyn

Execution
Program

Since the Chameleos-x framework is intended to work with heterogeneous networks,
it is critical to consider installation and scalability issues in the deployment of
the Chameleos-x architecture. The main idea is to have many instances of the
Chameleos-x enforcement monitor running on multiple hosts in a large network.
The evaluator can then write a single policy on a central management console and
‘broadcast’ updates to the monitors. With this in mind, we need to concentrate on the
installation issues involving the Chameleos-x enforcement monitor, since the monitor
will be installed throughout the network. First of all, the monitor has to be installed
manually by hand on the hosts in the network – this is something that cannot be avoided.
However, once installed, it is not realistic to assume that the administrator should update
all the monitors by hand as new versions of the monitor become available.

It is therefore highly desirable for the monitor to be as simple and lightweight as
possible. The monitor also needs to be self-contained; it should be able to run reliably
with minimal oversight by the administrator. The monitor should also preferably be able
to poll a specific update server periodically and update itself securely with a new version
if it is available. All configuration and updates should be conducted in a centralised

Extensible policy framework for heterogeneous network environments 261

manner as much as possible. As we are targeting heterogeneous networks, the monitor
should also be developed in a portable manner.

4.3 Realisation of Chameleos-x

In this section, we discuss our ongoing work that we are carrying out towards a full
implementation of Chameleos-x. As mentioned in the introduction, we concentrate on
the configuration phase of the policy deployment process only at this point. Since
Chameleos-x is still undergoing development and experimentation, we will just present
excerpts of policies that we are currently working on, which would help us refine
our goals and future directions. Our goal is to carry out experiments using these
implementations to develop newer and more robust versions of Chameleos-x. Also, we
have used open source systems only at this stage due to their wider availability.

The first implementation decision we have to make is the language that we should
use to implement the Chameleos-x components like the Chameleos-x enforcement
monitor and the Chameleos-x translator. Due to the multi-platform nature of
Chameleos-x, Java would sound like the natural choice as the development language
for the components, especially the monitor. However, we chose to implement the
components in portable C instead, since the monitor would need to access low-level
services on the hosts, which is something that Java does not offer conveniently.
The translator was implemented using Perl, while the extension routine libraries were
developed using Perl and Bourne shell scripts, where appropriate. These components
ran on the three UNIX systems: Linux, FreeBSD, and OpenBSD. In addition, our
management console used NetBSD as its operating system. The decision to use different
platforms was deliberately made in order to test Chameleos-x’s ability to function in
heterogeneous environments, which is our goal. Although we have implemented these
components on UNIX-based systems so far, we may port them to Windows-based
systems in the future, either using native tools like WScript or development tools like
ActiveState Perl.

We shall now discuss the example policies for Chameleos-os (Figure 3),
Chameleos-firewall [Figure 5(a)], and Chameleos-ids [Figure 6(a)] in turn. As
mentioned in Section 4, where we discussed the language and architecture of
Chameleos-x, the Chameleos-x policy framework uses contexts to describe various
entities that are affected by the configuration and evaluation processes. Contexts are
stored in context libraries to facilitate the creation of new Chameleos-x policies. While
we could develop our own context library, for the purposes of experimentation in this
section, we chose to select a context library that is ubiquitous on UNIX systems – the
/etc/services file. We are aware that this file has certain deficiencies such as the issue
of working with protocols and architectures that dynamically select ports in real time
(e.g., RPC mapping, passive FTP, and the IBM AS/400 system). However, we believe
that the file itself is comprehensive enough to be used to demonstrate the feasibility of
our approach. In a real world implementation, we may augment our current approach
with a dynamic network discovery mechanism to populate the context library.

262 L. Teo and G-J. Ahn

Figure 3 A simple Chameleos-os policy – simple.cos

chl_os {
config {
activate_context("http");
activate_context("ftp");
}

eval {
activate_context("http");
activate_context("ftp");
}

response {
threshold("http", 100, 10) {
deactivate_context("http");
}

threshold("ftp", 40, 10) {
deactivate_context("ftp");
}
}

}

4.3.1 Chameleos-os

Each Chameleos-x policy can be divided into three sections, which relates to the three
operation modes that we discussed in Section 4: configuration (config), evaluation
(eval), and response (response). The correct section of the policy will be invoked
depending on which of these three operation modes is being used in a typical session.
Consider the Chameleos-os policy in Figure 3. In this policy, the evaluator is interested
in activating the http and ftp contexts during the configuration and evaluation operation
modes.

The response operation mode requires slightly further explanation. Eventually,
we intend to integrate Chameleos-x with mechanisms on dynamic network access
management (Teo et al., 2003). In Teo et al. (2003), a risk-based network access
management architecture was designed that uses two primary parameters – threat level
and threshold – to allow or deny certain behaviour (such as incoming traffic into a
network). The threat level represents the amount of risk associated with a certain event,
where a high threat level represents high risk. If the threat level increases beyond a
certain threshold, a certain response action is taken, such as stopping the event. The
threat level and threshold mechanism is intentionally ‘generic’ in nature, so that it can
be used to accommodate systems outside the network domain. This generic property
enables the risk-based architecture to be flexible and effective, while not being confined
to a specific system. This is proven by the fact that the architecture has been deployed in
the context of a generic network traffic analyser (Teo et al., 2003) and a honeypot-based
security framework (Teo et al., 2004) in the past.

In the Chameleos-os policy in Figure 3, we use this threat level and threshold
mechanism in the response block. The threshold() function is used to declare the

Extensible policy framework for heterogeneous network environments 263

action that should be done if the threat level of a context exceeds the threshold. In the
example, the evaluator is defining the threshold of the http context with two parameters:
100 and 10. This simply means that the http context should be deactivated when it
receives 100 connections in 10 seconds (note that deactivation is just one possible
response; we shall address this in the next paragraph). Likewise, the ftp context should
be deactivated when it receives 40 connections in 10 seconds. At this stage, we are
still exploring possible responses in terms of their feasibility, interactions with other
components, and granularity. The full details will be published in a future paper.

It should be emphasised that the response need not be confined to just activation and
deactivation. We use activation and deactivation here strictly to aid our current prototype
only (and we are fully aware that deactivation may seem like a denial-of-service attack).
As future work, we intend to explore other responses such as redirection to a honeypot
(to examine suspicious events) or redirection to another host in a server farm (for load
balancing, say to offset a distributed denial-of-service attack).

Exactly how a context is activated or deactivated is dependent on the implementation
and the underlying platform. To illustrate, suppose the underlying platform is a UNIX
variant like Linux running an Apache web server and some stock FTP server. In
this case, activation for the http context would consist of starting the Apache web
server using the command apachectl start. In a similar vein, deactivation would be
done using the command apachectl stop. These commands would be issued by the
Chameleos-x enforcement monitor that is running on the host. A similar approach
would be used for FTP servers. Since FTP servers are frequently started from the inetd
superserver, activation and deactivation can be done by modifying inetd’s configuration
file and sending it a SIGHUP signal to request it to reload its configuration. On
Windows-based systems, activating and deactivating contexts could be done by starting
and stopping the correct service respectively.

There is one major challenge when considering the practical method to activate and
deactivate contexts on servers: There are many operating systems and there are many
types of servers. Supposing we need to deal with a webserver, an administrator may
prefer to run Apache if it is a Linux webserver, or thttpd if it is a FreeBSD webserver.
Although both Linux and FreeBSD are UNIX-like systems, the actual techniques to start
and stop Apache and thttpd on Linux and FreeBSD are different. From the viewpoint
of Chameleos-x, all we really want to do is just to start and stop a webserver.

To reduce the complexity and to facilitate the management of this situation, we use
a role-based representation structure that identifies the capabilities of the underlying
system, so that the administrator can assign ‘roles’1 to servers with the desired
behaviour. The role is related to Chameleos-os extensions, so that the correct activation
and deactivation routines can be invoked for a particular role.

This concept is illustrated in Figure 4. In the diagram, the top-down tree represents
the Chameleos-os extensions (in this case, there are two extensions: FreeBSD and
Linux). Each extension has the two contexts http and ftp associated with it. In turn,
the context may be linked to one or more server activation/deactivation routines. The
http context for FreeBSD, for instance, has routines for activating and deactivating
Apache and thttpd. The Linux http context, on the other hand, only has routines for
Apache. The bottom-up tree shows how roles can be used to select the desired servers to
activate. In Figure 4, the web role is linked to the thttpd and ftpd routine libraries in the
FreeBSD extension, and the Apache and vsftpd libraries in the Linux extension (while
we only show a single role called web in the diagram, multiple roles are possible).

264 L. Teo and G-J. Ahn

Thus, if the administrator assigns the web role to the webserver, and the webserver
is running FreeBSD, the thttpd and ftpd servers on FreeBSD will be started when the
Chameleos-os http and ftp contexts are activated. Likewise, if the webserver is running
Linux, the Apache and vsftpd servers will be run when the http and ftp contexts are
activated.

Figure 4 Chameleos-os extensions

Extensions

Chameleos

FreeBSD Linux

http ftp

apache thttpd ftpd

http ftp

vsftpdapache

 activate_context
 deactivate_context

 activate_context

 deactivate_context

 activate_context

 deactivate_context

 activate_context

 deactivate_context

 activate_context

 deactivate_context

Root

FreeBSD

http ftp

Linux

http ftp

-os

web

In our implementation of the Chameleos-x enforcement monitor, we organised the
extensions as a hierarchy of directories according to the top-down tree in Figure 4.
This hierarchical representation provides Chameleos-os with maximum flexibility and
extensibility: the administrator is able to select various server and operating systems
intuitively, and assign the desired combinations to a role. That way, the administrator
can specify and enforce policies by simply specifying the appropriate role identifier in
the session file from the management console.

4.3.2 Chameleos-firewall

The Chameleos-firewall policy in Figure 5(a) is similar to the Chameleos-os policy,
where it also has three sections: configuration, evaluation, and response. Firewalls tend
to follow either a default-deny or default-allow policy, depending on the nature of the
organisation. For instance, an organisation that favours a more restricted and closed
environment, such as the military, tend to opt for a default-deny policy. More open
environments like academic institutions may opt for a default-allow policy. To support
these policies, we have implemented a global policy() function which accepts one
of two constants: CHL FW DEFAULT DENY (for default-deny) or CHL FW DEFAULT ALLOW (for
default-allow). We also use a define group() function which allows groups to be
defined. In this example, we have defined a group called blacklist that consists of the
IP address 10.0.0.3. Note that we can actually include more than one IP address in a

Extensible policy framework for heterogeneous network environments 265

group; we are just using a single IP address in this case to simplify our discussion. In
the configuration section, we deny access to the ftp context from the blacklist group by
using the deny context() function. We allow access to the http context from everyone
else by using the allow context() function with the constant CHL FW ALL.

In terms of implementation, we used a directory tree to store the extension routines
shown in Figure 5(b). In the diagram, Chameleos-firewall has two extensions: pf and
iptables. Each routine in the extension (init, global policy, etc.) was implemented as
either a Perl script or Bourne shell script. The idea is to have these scripts generate
a configuration file for their respective extensions. For instance, in the case of pf, the
translator would translate the Chameleos-firewall policy in Figure 5(a) by converting
it into a configuration file that pf can load (using the pf.conf syntax). On the other
hand, if iptables was used, the translator would generate a shell script with the relevant
iptables commands according to the original Chameleos-firewall policy.

The actual translation process is outlined in Figure 5(c). The initialisation process
is in charge of initialising system-specific variables, as these may differ from system
to system (for example, Linux usually uses ‘eth0’ as the generic name for the first
network interface, while the BSD systems tend to use driver-based names, such as ‘xl0’
or ‘dc0’). The next stage in the translation process is generation, which refers to the
generation of a system policy, which is either a configuration file (as is the case for
pf) or another type of file (like the shell script for iptables). If we are translating the
Chameleos-firewall policy in Figure 5(a), the scripts global policy, define group,
deny context, and allow context would be called with the correct parameters. These
scripts append the correct system-specific configuration details or commands to the
system policy. The next step is validation. At this point, validation is selective, since
some extensions do not allow for straightforward validation. For instance, it is easy to
validate a pf configuration file, since pf provides the necessary tool to do so (pfctl -n
<filename>). However, it is not easy to validate a shell script with iptables commands.
It is not impossible but for the current prototype, we are omitting this step for now and
will explore it in the future. The last step of translation is execution. The exec script is
called, which actually loads the system policy so that the Chameleos-firewall policy
is enforced.

4.3.3 Chameleos-ids

Now that we have discussed the Chameleos-x policies for operating systems and
firewalls, the discussion of the Chameleos-x policy for IDSs in Figure 6(a) would be
relatively straightforward. We initially considered using Snort (http://www.snort.org/)
and Prelude (Vandoorselaere, 2012) as Chameleos-ids extensions – however, Prelude
actually uses Snort as its sensor, so we decided just to focus on Snort only so that we
do not perform redundant work. This results in a simple extension tree as shown in
Figure 6(b).

In our sample policy [Figure 6(a)], we directed the Chameleos-x enforcement
monitor to use the ruleset in the file web-attacks.rules during configuration by calling
the function ids apply ruleset(). The IDS is informed that we are interested in attacks
related to the http context.

266 L. Teo and G-J. Ahn

Figure 5 (a) A simple Chameleos-firewall policy – simple.cfw
(b) Chameleos-firewall extensions (c) Translation flowchart for all
Chameleos-x variants, using Chameleos-firewall as an example

chl_fw {
global_policy(CHL_FW_DEFAULT_ALLOW);

define_group(blacklist, "10.0.0.3");

config {
deny_context("ftp", "tcp", blacklist);
allow_context("http", "tcp", CHL_FW_ALL);
}

}

(a)

Extensions

iptablespf

init
 global_policy
 define_group
 allow_context
 deny_context
 validate
 exec

init
 global_policy
 define_group
 allow_context
 deny_context
 validate
 exec

Chameleos-firewall

(b)

Initialization

Generation

Validation

Execution

global_policy

define_group

deny_context

allow_context

(c)

The translation process is similar to the one used for Chameleos-firewall [Figure 5(c)].
In this case, the system policy is the Snort configuration file. In the initialisation phase,
system-specific variables are assigned the correct values (such as the home subnet,
which is 172.16.0.0/16). In the generation phase, the correct ruleset is added to the

Extensible policy framework for heterogeneous network environments 267

configuration file by calling the script ids apply ruleset with the correct parameters.
The next command in the Chameleos-ids policy is detect context(). In Snort, this
translates to a Berkeley packet filter (BPF) filter rule, which we output to a file called
bpf-filter.txt (since we are interested in the http context, the contents of the text
file is simply ‘port http’ according to BPF syntax). Validation is then easily done by
calling Snort to test the configuration file with the -T command-line option. Finally,
execution is done by restarting Snort with the new configuration file, thus enforcing the
Chameleos-ids policy in Figure 6(a).

Figure 6 (a) A simple Chameleos-ids policy – simple.cids (b) Chameleos-ids extensions

chl_ids {
config {
ids_apply_ruleset("web-attacks.rules");
detect_context("http");
}

}

(a)

Extensions

Snort

init
 ids_apply_
 detect_context
 validate
 exec

ruleset

Chameleos-ids

(b)

5 Experiments and results

Our experiments were designed with two objectives:

1 to test the translation process of each Chameleos-x variant

2 to test the enforcement/execution process of each Chameleos-x variant.

To perform these experiments, we first designed and implemented a test network
consisting of six machines, each of which plays a single role: a firewall, an IDS, a
server, a ‘legit’ machine that generates good traffic, an ‘attacker’ machine that generates
bad traffic, and the management console. Chameleos-x enforcement monitors were
installed on the firewall, IDS, and server. The management console’s responsibility is to
push Chameleos-x policies to the monitors. The monitor is in charge of translating the
Chameleos-x policy from the management console into the correct system policy for its
host.

As we considered the possible approaches we could use to fulfill the two
experimental objectives, we came to the conclusion that we needed to use two
‘configuration suites’ for testing each variant. A configuration suite would consist of a
specific firewall, IDS, and server operating system and associated servers (such as the
HTTP and FTP servers). Additionally, in order to make the experiment more accurate,
we would have to make sure each suite is heterogeneous and different from the other.

268 L. Teo and G-J. Ahn

With that in mind, we designed the configuration suites shown in Figures 7(a) and 7(c).
Configuration suite 1 consists of a firewall running OpenBSD with the pf firewalling
subsystem, an IDS running Snort, and a Linux server that is geared to run Apache and
vsftpd as its web and FTP servers respectively. Configuration suite 2 comprises a Linux
firewall with iptables, the Snort IDS, and a FreeBSD server configured to run thttpd
and ftpd. We also used a management console (running NetBSD) with the IP address
172.16.0.2 to push Chameleos-x policies to the machines in each suite (the management
console is not shown in the figures to conserve space).

Figure 7 (a) Configuration suite 1 (b) Session file for configuration
suite 1 – session-suite1.chl (c) Configuration suite 2
(d) Session file for configuration suite 2 – session-suite2.chl

Attacker

Legit

Firewall IDS Server

OpenBSD pf Snort Linux
Apache
vsftpd

172.16.0.3172.16.0.1192.168.0.11

10.0.0.2

10.0.0.3

(a)

Attacker

Legit

Firewall IDS Server

Linux iptables Snort FreeBSD
thttpd
ftpd

172.16.0.4172.16.0.1192.168.0.11

10.0.0.2

10.0.0.3

(c)

declare_session("session-suite1") {
chl_fw("pf", "web",
"192.168.0.11", "simple.cfw");
chl_ids("snort", "web",
"172.16.0.1", "simple.cids");
chl_os("linux", "web",

"172.16.0.3", "simple.cos");
}

(b)

declare_session("session-suite2") {
chl_fw("iptables", "web",
"192.168.0.11", "simple.cfw");
chl_ids("snort", "web",
"172.16.0.1", "simple.cids");
chl_os("freebsd", "web",
"172.16.0.4", "simple.cos");

(d)

We then ran our experiment in two sessions: one with configuration suite 1, and
one with configuration suite 2. In each session, the management console sent the
Chameleos-x variant policies defined in Figures 3, 5(a), and 6(a) to the respective
machines on the network. We then examined the machines to see if the translation
process and the enforcement/execution process worked as expected. If the behaviour of
the machines in each configuration suite is the same, this means that our experimental
objectives have been fulfilled.

To run the sessions, we developed a session file for each suite
[Figures 7(b) and 7(d)]. The session file states where the Chameleos-x policy
should be sent: for example, in Figure 7(b), the chl fw statement specifies that the
Chameleos-firewall policy in the file simple.cfw should be sent to 192.168.0.11 and
the pf extension should be invoked with the web role (actually only Chameleos-os uses
roles right now, but this is specified to support other Chameleos-x variants in the
future). We then invoked the following command at the management console:

$ chl-apply config session-suite1.chl

Extensible policy framework for heterogeneous network environments 269

The chl-apply program sends the policies specified in the session file to the
Chameleos-x enforcement monitors. It also has the option to specify which operation
mode should be used, which in this case is config. This will cause the monitors to only
translate the excerpt within the config clause in each Chameleos-x policy.

The actual communication process involves the transmission of the policies from
the management console to the monitors using a straightforward TCP socket connection
at this stage. This limitation can be overcome through a more secure architecture that
incorporates proven technologies like PKI and SSL. It remains as our future work.

The results from the experiments are shown using either actual screen snapshots
or the translated output from the firewall, IDS, and server machines. These
results are obtained after the Chameleos-x enforcement monitor has applied the
Chameleos-x policies on each system.

We begin with the results for configuration suite 1. We first initialised all systems
to their ‘default’ states – for example, the server was not running any HTTP and FTP
servers, the firewall did not have any customised firewall rules, and the IDS did not have
any rules installed. After invoking the Chameleos-x enforcement monitor, the Apache
and vsftpd programs were activated on their respective ports (80 and 21) on the server
[Figure 8(a)], which is the expected result.

Figure 8 Configuration suite 1, (a) screen snapshot for Chameleos-os (b) output firewall
rules for Chameleos-firewall

root# ps ax | grep -e httpd -e vsftpd
8014 ? Ss 0:00 /usr/sbin/httpd
8017 ? S 0:00 /usr/sbin/httpd
8018 ? S 0:00 /usr/sbin/httpd
8019 ? S 0:00 /usr/sbin/httpd
8020 ? S 0:00 /usr/sbin/httpd
8021 ? S 0:00 /usr/sbin/httpd
8016 pts/0 S 0:00 /usr/sbin/vsftpd /etc/vsftpd.conf

(a)
ext_if = "em1"
int_if = "em0"
pass in all
pass out all
table <blacklist> { 10.0.0.3 }
block in on $ext_if proto tcp from { <blacklist> } to port ftp
pass in on $ext_if proto tcp from any to port http

(b)

The Chameleos-firewall results in the form of firewall rules are shown in Figure 8(b).
The default-allow policy specified in the original Chameleos-firewall policy has been
translated into two pf rules: ‘pass in all’ and ‘pass out all’. The blacklist group was
defined using pf ’s table feature, and the deny context and allow context functions
have been translated into pf ’s ‘block’ and ‘pass’ rules respectively.

The Chameleos-ids results in the form of a Snort configuration file are shown
in Figure 9(a). After running the Chameleos-x enforcement monitor, the system

270 L. Teo and G-J. Ahn

policy was translated from the Chameleos-ids policy in Figure 6(a). Note that
the web-attacks.rules file has been loaded, which was what was requested via
ids apply ruleset in the original Chameleos-ids policy. Also, Snort has been instructed
to listen to the HTTP port only via detect context, which translates to a BPF filter
rule stored in the file output-ids/bpf-filter.txt [Figure 9(b)].

Figure 9 Configuration suites 1 and 2, (a) output IDS rules for Chameleos-ids (b) screen
snapshot showing Snort’s command-line arguments and the output of the
output-ids/bpf-filter.txt file

var HOME_NET [172.16.0.0/16]
var HTTP_SERVERS $HOME_NET
var HTTP_PORTS 80
var EXTERNAL_NET any
var RULE_PATH /usr/local/share/examples/snort

preprocessor flow: stats_interval 0 hash 2
preprocessor frag2
preprocessor stream4: disable_evasion_alerts
preprocessor stream4_reassemble
preprocessor rpc_decode: 111 32771
preprocessor bo
preprocessor telnet_decode

include $RULE_PATH/classification.config
include $RULE_PATH/reference.config
include $RULE_PATH/web-attacks.rules

(a)

root# ps ax | grep snort
30618 ?? Is 0:00.06 snort -D -c output.policy -F output-ids/bpf-filter.txt
root# cat output-ids/bpf-filter.txt
port http

(b)

The systems in configuration suite 2 are run using the same steps as configuration
suite 1. In each case, we show the snapshots of the systems after the monitor was run
(Figure 10). The Chameleos-os results in Figure 10(a) show that the thttpd and ftpd
daemons are run when the http and ftp contexts are activated, since the web role directs
FreeBSD to run those particular servers (Figure 4). The Chameleos-firewall results in
Figure 10(b) show that the original Chameleos-firewall policy [Figure 5(a)] has been
translated into a shell scripts with iptables commands as expected. The default-allow
requirement was implemented with three iptables commands on the three chains
FORWARD, INPUT, and ACCEPT. Also, since iptables does not support the grouping of
IP addresses, we have translated the Chameleos-firewall define group function as
an iptables command describing what to do with the members of the group. In this
example, we show the iptables command for only one group member – 10.0.0.3.

Extensible policy framework for heterogeneous network environments 271

For more group members, there would be one iptables command for each individual
member.

Figure 10 Configuration suite 2, (a) screen snapshot for Chameleos-os (b) output firewall
rules for Chameleos-firewall

root# ps ax | grep -e thttpd -e ftpd
38156 ?? Ss 0:00.01 /usr/local/sbin/thttpd
38159 ?? Ss 0:00.00 /usr/libexec/ftpd -D

(a)

ext_if="eth2"
int_if="eth1"
iptables -P FORWARD ACCEPT
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -A FORWARD -s 10.0.0.3 -i $ext_if -o $int_if -p tcp --dport ftp -j REJECT
iptables -A FORWARD -s 0/0 -i $ext_if -o $int_if -p tcp --dport http -j ACCEPT

(b)

The translated policies showed consistent behaviour in both configuration suites 1 and 2,
even though the same original Chameleos-x policies were used without changes in each
suite. In addition, the translated policies implemented certain features using the specific
facilities offered by each target system (for example, groups were defined differently in
pf and iptables, but the end behaviour was consistent).

These favourable results show that a practical and system-driven policy framework
can be used to perform effective evaluation of a network in a flexible and extensible
manner. It also firmly indicates that our policy framework could successfully integrate
a simple but powerful declarative language with an enforcement architecture. The
results also demonstrate that Chameleos-x, with its system- and platform-independent
nature, is indeed capable of facilitating security policy management for heterogeneous
environments, as represented by the consistent behaviour exhibited by the multiple kinds
of systems in configuration suites 1 and 2. These objectives were achieved by designing
the framework in accordance to the criteria discussed in Section 3.3.

6 Ongoing and future work

Our experiments have confirmed the feasibility of Chameleos-x. Our next step
is to extend and develop Chameleos-x to make it support more target systems.
For instance, we intend to examine Windows-based operating systems and complex
operating systems with comprehensive access control policies like SELinux (NSA,
http://www.nsa.gov/selinux/), as well as a few commercial firewalls and intrusion
detection systems.

272 L. Teo and G-J. Ahn

We are also working on new components for the Chameleos-x policy framework.
Most of these new components would be part of the Chameleos-x translator. These
components include a syntax checker, analyser, and reverse translator. The syntax
checker would serve as the foundation for all syntax checking requirements in the
other components. The analyser would be used to analyse a Chameleos-x policy for
conflicts and ambiguities. The analyser would have to take constraints (Jaeger, 1999)
and conflict resolution techniques (Jaeger et al., 2004) into account, especially for
complex systems like SELinux (Jaeger et al., 2003). The reverse translator’s role is to
translate a system-specific policy into a Chameleos-x policy.

Other areas that we are working on include improvements to the language itself,
such as safety analysis, safety checks, and support for dependencies among extensions
(we could borrow concepts like inheritance from the object-oriented domain). In the
usability area, we intend to introduce stock Chameleos-x templates, which would help
administrators define Chameleos-x policies. This would be most useful when using
different variants in the Chameleos-x family.

We are also examining possible methods where we can integrate the
Chameleos-x framework with some other projects. One of these projects, which involves
dynamic network access management (Teo et al., 2003), have already been mentioned
earlier in Section 4.3.1. The response capability of the Chameleos-x framework that is
based on threat levels and thresholds would be especially useful for that project.

7 Conclusions

We have presented the design of Chameleos-x, a practical and system-driven policy
framework that can be used to facilitate the management of security policies in
heterogeneous environments effectively. The core strength of Chameleos-x is its
ability to specify and enforce security policies consistently across a diverse range of
security-aware systems, such as operating systems, firewalls, and intrusion detection
systems. Chameleos-x is also designed to assist system and network developers in the
configuration and evaluation of these systems for conformance to security policies.

In the paper, we discussed the objectives and design decisions of Chameleos-x,
and showed how the framework can be built. The implementation of the
Chameleos-x framework that is described in this paper consists of two major
components:

1 a simple but powerful language that can be used to specify sound policies in
heterogeneous environments

2 a multi-platform architecture that can be used to enforce these policies.

We also described our ongoing work in the development and experimentation of
Chameleos-x. Our experiments involved the feasibility assessment of Chameleos-x on
two heterogeneous ‘configuration suites’, where each suite comprises a specific
operating system, firewall, and IDS. Chameleos-x successfully demonstrated that it is
able to translate a single Chameleos-x policy into the system policies for each suite, and
still retain consistent behaviour in each case. This confirms that the Chameleos-x policy
framework is sufficiently flexible and extensible to deploy security policies effectively
across multiple security-aware systems. We strongly believe Chameleos-x would be very

Extensible policy framework for heterogeneous network environments 273

beneficial to organisations, especially those with large and heterogeneous information
networks. Based on the promising results obtained through these experiments, we
are currently developing Chameleos-x actively for more systems and more complex
environments.

Acknowledgements

This work was partially supported by the grants from National Science Foundation and
Department of Energy.

References
Bartal, Y., Mayer, A., Nissim, K. and Wool, A. (2003) ‘Firmato: a novel firewall management

toolkit’, ACM Transactions on Computer Systems, Vol. 22, No. 4, pp.381–420.
Bertino, E., Catania, B., Ferrari, E. and Perlasca, P. (2003) ‘A logical framework for reasoning

about access control models’, ACM Trans. Inf. Syst. Secur., Vol. 6, No. 1, pp.71–127.
Bhatt, S., Rajagopalan, S. and Rao, P. (2003) ‘Federated security management for dynamic

coalitions’, Proceedings of the DARPA Information Survivability Conference & Exposition II
(DISCEX II), pp.47–48.

Burns, J., Cheng, A., Gurung, P., Rajagopalan, S., Rao, P., Rosenbluth, D., Surendran, A.V. and
Martin Jr., D.M. (2001) ‘Automatic management of network security policy’, Proceedings
of the DARPA Information Survivability Conference & Exposition II (DISCEX II), pp.12–26.

Case, J., Fedor, M., Schoffstall, M. and Davin, J. (1990) Simple Network Management Protocol
(SNMP), RFC 1157.

Damianou, N., Dulay, N., Lupu, E. and Sloman, M. (2001) ‘The Ponder policy specification
language’, Policies for Distributed Systems and Networks: International Workshop, Lecture
Notes in Computer Science, pp.18–38.

Giordano, M., Polese, G., Scanniello, G. and Tortora, G. (2010) ‘A system for visual role-based
policy modeling’, J. Vis. Lang. Comput., February, Vol. 21, No. 1, pp.41–64.

iDeskCentric, Inc., Transaction Language 1 (TL1) [online] http://ireasoning.com/.
ITU-T ISO/IEC (1991) Information Technology-OSI, Common Management Information Protocol

(CMIP) – Part 1: Specification ISO/IEC 9596-1, ITU-T Recommendation X.711.
Jaeger, T. (1999) ‘On the increasing importance of constraints’, Proceedings of the 4th ACM

Workshop on Role-Based Access Control, pp.33–42.
Jaeger, T., Sailer, R. and Zhang, X. (2004) ‘Resolving constraint conflicts’, Proceedings of the

9th ACM Symposium on Access Control Models and Technologies.
Jaeger, T., Zhang, X. and Edwards, A. (2003) ‘Policy management using access control spaces’,

ACM Trans. Inf. Syst. Secur., Vol. 6, No. 3, pp.327–364.
Jajodia, S., Samarati, P. and Subrahmanian, V. (1997a) ‘A logical language for expressing

authorizations’, in Proceedings of the IEEE Symposium on Security and Privacy, May,
pp.31–42, Oakland, CA.

Jajodia, S., Samarati, P., Subrahmanian, V. and Bertino, E. (1997b) ‘A unified framework for
enforcing multiple access control policies’, Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp.474–485.

Karjoth, G. and Schunter, M. (2002) ‘A privacy policy model for enterprises’, Proceedings of
the 15th IEEE Computer Security Foundations Workshop, IEEE Computer Society Press.

Lesniewski-Laas, C., Ford, B., Strauss, J., Morris, R. and Kaashoek, M. (2007) ‘Alpaca:
extensible authorization for distributed services’, Proceedings of the 14th ACM Conference
on Computer and Communications Security, pp.432–444, ACM.

274 L. Teo and G-J. Ahn

NSA, Security-Enhanced Linux [online] http://www.nsa.gov/selinux/.
OASIS, OASIS eXtensible Access Control Markup Language TC [online]

http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml.
Rippert, C. (2003) ‘Protection in flexible operating system architectures’, ACM SIGOPS

Operating Systems Review, Vol. 37, No. 4, pp.8–18.
Sachs, J., Prytz, M. and Gebert, J. (2009) ‘Multi-access management in heterogeneous networks’,

Wireless Pervasive Communication, Vol. 48, No. 1, pp.7–32.
Schuba, C., Goldschmidt, J., Speer, M. and Hefeeda, M. (2005) ‘Scaling network services using

programmable network devices’, Computer, Vol. 38, No. 4, pp.52–60.
SNORT, Snort Intrusion Detection System [online] http://www.snort.org/.
Teo, L. and Ahn, G-J. (2004) ‘Towards the specification of access control policies on multiple

operating systems’, Proceedings of the 5th IEEE Workshop on Information Assurance,
pp.210–217.

Teo, L. and Ahn, G-J. (2005) ‘Supporting access control policies across multiple operating
systems. in Proceedings of the 43rd ACM Southeast Conference, pp.288–293.

Teo, L., Ahn, G-J. and Zheng, Y. (2003) ‘Dynamic and risk-aware network access management’,
Proceedings of the 8th ACM Symposium on Access Control Models and Technologies,
pp.217–230.

Teo, L., Sun, Y-A. and Ahn, G-J. (2004) ‘Defeating Internet attacks using risk awareness and
active honeypots’, Proceedings of the Second IEEE International Workshop on Information
Assurance, pp.155–167.

Vandoorselaere, Y. (2012) Prelude Hybrid IDS [online] http://www.prelude-ids.org/.
Wedde, H. and Lischka, M. (2001) ‘Modular authorization’, Proceedings of the 6th ACM

Symposium on Access Control Models and Technologies, pp.97–105.
Woo, T.Y.C. and Lam, S.S. (1993) ‘Authorizations in distributed systems: aA new approach’,

Journal of Computer Science, Vol. 6, No. 2, pp.107–136.

Notes

1 Note that we are not using ‘role’ as defined in access control; instead, we are using the
definition of role in the network management context as defined in Teo et al. (2003).

