
Towards Effective Security Policy Management for Heterogeneous Network
Environments

Lawrence Teo and Gail-Joon Ahn†

University of North Carolina at Charlotte
{lcteo.gahn}@uncc.edu

Abstract

In this paper, we overview a system-driven policy frame-
work called Chameleos-x and discuss how a practical,
system-driven approach could be used to address the prob-
lem of enforcing security policies consistently in a chang-
ing, diversity-rich environment. The Chameleos-x frame-
work is specially designed to facilitate the management of
consistent security policies in heterogeneous environments.
We also describe our experimentation of Chameleos-x to
demonstrate the feasibility of the proposed approach.

1. Introduction

It is extremely important to define and enforce an ef-
fective security policy for businesses and organizations that
heavily rely on computer networks and information systems
for their daily operations. Due to this ever-increasing re-
liance on computer systems, it is also critical for organiza-
tions to implement a carefully-designed security policy for
their computerized environments. This brings up an impor-
tant question: how do we ensure that the security policy
actually works, and that it is effective at stopping attacks?
One way is to evaluate the systems for conformance to the
security policy. However, evaluation has its own challenges
as well. As the size of an organization grows, so do its com-
puter networks and information systems. This growth tends
to introduce diversity and heterogeneity into the network,
especially as new operating systems, network devices, and
security technologies are adopted.

In this paper, we discuss the overview of a system-driven
policy framework called Chameleos-x [6] and describe how

†All correspondence should be addressed to: Dr. Gail-Joon Ahn, Soft-
ware and Information Systems Department, College of Computing and In-
formatics, University of North Carolina at Charlotte, 9201 University City
Blvd., Charlotte, NC 28223; email:gahn@uncc.edu. This work was sup-
ported, in part, by funds provided by National Science Foundation (NSF-
IIS-0242393) and Department of Energy Early Career Principal Investiga-
tor Award (DE-FG02-03ER25565).

a practical, system-driven approach could be used to ad-
dress the problem of enforcing security policies consistently
in a changing, diversity-rich environment. The Chameleos-
x framework is specially designed to facilitate the man-
agement of consistent security policies in heterogeneous
environments. Our prior works clearly demonstrated how
we could develop a policy language to specify access con-
trol policies across different operating systems [5]. There
are few related works. Ponder [2] is a policy specification
language for distributed systems. It is also a flexible lan-
guage that targets a number of different systems. The differ-
ence between Ponder and our work is that Ponder is strictly
a policy specification language, while Chameleos-x is in-
volved in both policy specification and enforcement. Also,
Chameleos-x has pluggable policy sets to support multi-
ple system entities in large and heterogeneous environments
and also provides a facility to help evaluate specified poli-
cies. Woo and Lam [7] designed a flexible language that
used default logic to model authorization rules. The Au-
thorization Specification Language (ASL) [3] is a flexible
and expressive language that can be used for multiple ac-
cess control policies. Related projects also include logical
access control frameworks [1].

In Chameleos-x, we attempt to deploy comprehensive
security policies for various types of systems. Also, we use
a three-pronged strategy to enforce policies for those sys-
tems – (1) Chameleos-x assists in the configuration phase of
the policy deployment process; (2) Chameleos-x allows the
evaluation of policies so that the organization can be confi-
dent that the policies work as expected; and (3) Chameleos-
x has a response mode, which refers to the ability of the
Chameleos-x architecture to proactively enforce the pol-
icy based on changing conditions and events. Chameleos-
x benefits organizations by introducing numerous cost and
time savings. Users would be able to use a language with a
common syntax to design the security policy for heteroge-
neous systems. They would not have to relearn a different
syntax in order to deploy the same policy from one system
to the next. System designers and network engineers bene-
fit by being able to design more secure and reliable systems

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

and networks as the result of a systematic policy deploy-
ment process.

This paper is organized as follows. We discuss the de-
sign, architecture, and realization of Chameleos-x in Sec-
tion 2, followed by a discussion of our experiments and re-
sults in Section 3. Section 4 concludes the paper.

2. Policy Framework: Chameleos-x

The Chameleos-x policy framework can be implemented
using two major components: a policy specification lan-
guage and a policy enforcement architecture. In this sec-
tion, we describe the terminology used to describe the com-
ponents in Chameleos-x, and discuss the Chameleos-x lan-
guage and architecture.

2.1. Language and Architecture

In Chameleos-x, we introduce several new terminolo-
gies. It includes operation modes, session, context, and
context library. Chameleos-x is designed to work with three
high-level operation modes: Configuration, Evaluation, and
Response. A session represents a typical period of time
when Chameleos-x is run. A context can refer to an en-
tity on just one single system, or span across multiple sys-
tems. To facilitate the definition of contexts, Chameleos-
x supports context libraries. A context library, as its name
implies, is a collection of contexts related to a particular do-
main. The Chameleos-x policy framework includes a lan-
guage component that is used for policy specification. It
is intended to cover many notions that are used to spec-
ify policies, including basic access control concepts. We
have developed the basic grammar of the Chameleos-x lan-
guage in Extended BNF (EBNF). Due to space limitations,
we omit the EBNF grammar specification in this paper.
The three major components of the Chameleos-x architec-
ture are the Management Console, Translator, and Enforce-
ment Monitor. The Management Console is a central man-
agement interface operated by the evaluator. It is used to
“push” Chameleos-x policies to various hosts that are run-
ning the Chameleos-x Enforcement Monitor. The Manage-
ment Console also specifies which operation mode should
be used in each session. The Chameleos-x Enforcement
Monitor is a daemon that runs continually in the background
on systems that are part of the Chameleos-x framework
(that is, the servers, firewalls, and IDSs). Its responsibil-
ity is to receive the Chameleos-x policy from the Manage-
ment Console, and apply it on its host system. To do so,
the Chameleos-x policy would have to be translated. This
translation process is done by the Chameleos-x Transla-
tor, which is used to convert the Chameleos-x policy into
one or more system-specific policies. The Translator re-
sides together with the Chameleos-x Enforcement Monitor

Chameleos-x

Enforcement
Monitor

Chameleos-x

Translator

Host (Security-Aware System)

1

2

3

4

5

6

Management
Console

Chameleos-x

policies

System
policy 1

System
policy 2

System
policyn

Execution
Program

Figure 1. The Chameleos-x architecture.

(it could either be part of the Monitor, or a separate entity
that is invoked by the Monitor). Each Chameleos-x variant
would have its own Translator. For instance, if we are work-
ing with the Snort IDS, the Chameleos-ids Translator will
convert the Chameleos-ids policy into a Snort configura-
tion file. The layout of the components in the Chameleos-
x architecture is shown in Figure 1.

2.2. Realization of Chameleos-x

In this section, we discuss our ongoing work that we are
carrying out towards a full implementation of Chameleos-
x. The first implementation decision we have to make is the
language that we should use to implement the Chameleos-
x components like the Chameleos-x Enforcement Monitor
and the Chameleos-x Translator. Due to the multi-platform
nature of Chameleos-x, Java would sound like the natural
choice as the development language for the components, es-
pecially the Monitor. However, we chose to implement the
components in portable C instead, since the Monitor would
need to access low-level services on the hosts, which is
something that Java does not offer conveniently. The Trans-
lator was implemented using Perl, while the extension rou-
tine libraries were developed using Perl and Bourne shell
scripts, where appropriate. These components ran on the
three UNIX systems: Linux, FreeBSD, and OpenBSD. In
addition, our management console used NetBSD as its op-
erating system. The decision to use different platforms was
deliberately made in order to test Chameleos-x’s ability to
function in heterogeneous environments.

As mentioned in the language and architecture of
Chameleos-x, the Chameleos-x policy framework uses con-
texts to describe various entities that are affected by the con-
figuration and evaluation processes. Contexts are stored in
context libraries to facilitate the creation of new Chameleos-
x policies. While we could develop our own context library,
for the purposes of experimentation in this section, we

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

chose to select a context library that is ubiquitous on UNIX
systems – the /etc/services file. Each Chameleos-
x policy can be divided into three sections, which relates to
the three operation modes: Configuration (config), Eval-
uation (eval), and Response (response). The correct
section of the policy is invoked depending on which of
these three operation modes is being used in a typical ses-
sion. For brevity, we mainly discuss how the Chameleos-
firewall policy can be constructed and realized in real
systems.

The Chameleos-firewall policy in Figure 2 (a) has
three sections: Configuration, Evaluation, and Response.
Firewalls tend to follow either a default-deny or default-
allow policy, depending on the nature of the organiza-
tion. For instance, an organization that favors a more
restricted and closed environment, such as the military,
tend to opt for a default-deny policy. More open envi-
ronments like academic institutions may opt for a default-
allow policy. To support these policies, we have imple-
mented a global policy() function which accepts one of
two constants: CHL FW DEFAULT DENY (for default-deny)
or CHL FW DEFAULT ALLOW (for default-allow). We also
use a define group() function which allows groups to
be defined. In this example, we have defined a group called
blacklist that consists of the IP address 10.0.0.3. Note that
we can actually include more than one IP address in a group;
we are just using a single IP address in this case to sim-
plify our discussion. In the Configuration section, we deny
access to the ftp context from the blacklist group by using
the deny context() function. We allow access to the http
context from everyone else by using the allow context()

function with the constant CHL FW ALL.

In terms of implementation, we used a directory tree to
store the extension routines shown in Figure 2 (b). In the
diagram, Chameleos-firewall has two extensions: pf and
iptables. Each routine in the extension (init, global policy,
etc.) was implemented as either a Perl script or Bourne
shell script. The idea is to have these scripts generate a
configuration file for their respective extensions. For in-
stance, in the case of pf, the Translator would translate the
Chameleos-firewall policy in Figure 2 (a) by convert-
ing it into a configuration file that pf can load (using the
pf.conf syntax). On the other hand, if iptables was used,
the translator would generate a shell script with the relevant
iptables commands according to the original Chameleos-
firewall policy.

The actual translation process is outlined in Figure 2
(c). The initialization process is in charge of initializing
system-specific variables, as these may differ from system
to system (for example, Linux usually uses “eth0” as the
generic name for the first network interface, while the BSD
systems tend to use driver-based names, such as “xl0” or
“dc0”). The next stage in the translation process is gen-

eration, which refers to the generation of a system policy,
which is either a configuration file (as is the case for pf)
or another type of file (like the shell script for iptables).
If we are translating the Chameleos-firewall policy in
Figure 2 (a), the scripts global policy, define group,
deny context, and allow context would be called with
the correct parameters. These scripts append the correct
system-specific configuration details or commands to the
system policy. The validation, as the next step, is selec-
tive since some extensions do not allow for straightforward
validation. For instance, it is easy to validate a pf config-
uration file, since pf provides the necessary tool to do so
(pfctl -n <filename>). However, it is not easy to vali-
date a shell script with iptables commands. The last step
of translation is execution. The exec script is called, which
actually loads the system policy so that the Chameleos-
firewall policy is enforced.

3. Experiments and Results

Our experiments were designed with two objectives: (1)
to test the translation process of each Chameleos-x variant,
and (2) to test the enforcement/execution process of each
Chameleos-x variant. To perform these experiments, we
first designed and implemented a test network consisting of
six machines, each of which plays a single role: a firewall,
an IDS, a server, a “legit” machine that generates good traf-
fic, an “attacker” machine that generates bad traffic, and the
management console. Chameleos-x Enforcement Monitors
were installed on the firewall, IDS, and server. The manage-
ment console’s responsibility is to push Chameleos-x poli-
cies to the Monitors. The Monitor is in charge of translating
the Chameleos-x policy from the management console into
the correct system policy for its host.

To fulfill the two experimental objectives, we use two
“configuration suites” for testing each variant. A configu-
ration suite would consist of a specific firewall, IDS, and
server operating system and associated servers (such as the
HTTP and FTP servers). Additionally, in order to make
the experiment more accurate, we would have to make sure
each suite is heterogeneous and different from the other.
With that in mind, we designed the Configuration Suites as
shown in Figures 3 (a) and 3 (c). Configuration Suite 1 con-
sists of a firewall running OpenBSD with the pf firewalling
subsystem, an IDS running Snort, and a Linux server that is
geared to run Apache and vsftpd as its web and FTP servers
respectively. Configuration Suite 2 comprises a Linux fire-
wall with iptables, the Snort IDS, and a FreeBSD server
configured to run thttpd and ftpd. We also used a man-
agement console (running NetBSD) with the IP address
172.16.0.2 to push Chameleos-x policies to the machines
in each suite.

We then ran our experiment in two sessions: one with

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

chl_fw {
global_policy(CHL_FW_DEFAULT_ALLOW);

define_group(blacklist, "10.0.0.3");

config {
deny_context("ftp", "tcp", blacklist);
allow_context("http", "tcp", CHL_FW_ALL);

}
}

(a)

Extensions

iptablespf

init

 global_policy

 define_group

 allow_context

 deny_context

 validate

 exec

init

 global_policy

 define_group

 allow_context

 deny_context

 validate

 exec

Chameleos-firewall

(b)

Initialization

Generation

Validation

Execution

global_policy

define_group

deny_context

allow_context

(c)

Figure 2. (a) A simple Chameleos-firewall policy - simple.cfw; (b) Chameleos-firewall extensions;
(c) Translation flowchart for all Chameleos-x variants, using Chameleos-firewall as an example.

Attacker

Legit

Firewall IDS Server

OpenBSD pf Snort Linux

Apache

vsftpd

172.16.0.3172.16.0.1192.168.0.11

10.0.0.2

10.0.0.3

(a)

Attacker

Legit

Firewall IDS Server

Linux iptables Snort FreeBSD

thttpd

ftpd

172.16.0.4172.16.0.1192.168.0.11

10.0.0.2

10.0.0.3

(c)

declare_session("session-suite1") {
chl_fw("pf", "web", "192.168.0.11",

"simple.cfw");
chl_ids("snort", "web", "172.16.0.1",

"simple.cids");
chl_os("linux", "web", "172.16.0.3",

"simple.cos");
}

(b)

declare_session("session-suite2") {
chl_fw("iptables", "web", "192.168.0.11",

"simple.cfw");
chl_ids("snort", "web", "172.16.0.1",

"simple.cids");
chl_os("freebsd", "web", "172.16.0.4",

"simple.cos");

(d)

Figure 3. (a) Configuration Suite 1; (b) Session file for Configuration Suite 1 – session-suite1.chl; (c)
Configuration Suite 2; (d) Session file for Configuration Suite 2 – session-suite2.chl.

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

Configuration Suite 1, and one with Configuration Suite
2. In each session, the management console sent the
Chameleos-x variant policies to the respective machines on
the network. We then examined the machines to see if the
translation process and the enforcement/execution process
worked as expected.

To run the sessions, we developed a session file for each
suite (Figures 3 (b) and 3 (d)). The session file states
where the Chameleos-x policy should be sent: for exam-
ple, in Figure 3 (b), the chl fw statement specifies that
the Chameleos-firewall policy in the file simple.cfw

should be sent to 192.168.0.11 and the pf extension should
be invoked with the web service. We then invoked the fol-
lowing command at the management console:

$ chl-apply config session-suite1.chl

The chl-apply program sends the policies specified
in the session file to the Chameleos-x Enforcement Moni-
tors. It also has the option to specify which operation mode
should be used, which in this case is config. This causes
the Monitors to only translate the excerpt within the config
clause in each Chameleos-x policy. The translated policies
showed consistent behavior in both Configuration Suites 1
and 2, even though the same original Chameleos-x policies
were used without changes in each suite. In addition, the
translated policies implemented certain features using the
specific facilities offered by each target system. For exam-
ple, groups were defined differently in pf and iptables, but
the end behavior was consistent.

These favorable results show that a practical and system-
driven policy framework can be used to perform effective
evaluation of a network in a flexible and extensible man-
ner. It also firmly indicates that our policy framework
could successfully integrate a simple but powerful declara-
tive language with an enforcement architecture. The results
also demonstrate that Chameleos-x, with its system- and
platform-independent nature, is indeed capable of facilitat-
ing security policy management for heterogeneous environ-
ments, as represented by the consistent behavior exhibited
by the multiple kinds of systems in Configuration Suites 1
and 2.

4. Conclusion

We have described the design of Chameleos-x, a practical
and system-driven policy framework that can be used to
facilitate the management of security policies in heteroge-
neous environments. Chameleos-x is designed to assist sys-
tem and network developers in the configuration and eval-
uation of these systems for conformance to security poli-
cies. We also described our development and experimen-
tation of Chameleos-x. Our experiments involved the fea-
sibility assessment of Chameleos-x on our heterogeneous

“configuration suites”, where each suite comprises a spe-
cific operating system, firewall, and intrusion detection sys-
tem. Chameleos-x successfully demonstrated that it is able
to translate a single Chameleos-x policy into the system
policies for each suite, and still retain consistent behavior
in each case. For the future work, we would study on new
components for the Chameleos-x policy framework. Most
of these new components would be part of the Chameleos-
x Translator. These components include a syntax checker,
analyzer, and reverse translator. The syntax checker would
serve as the foundation for all syntax checking requirements
in the other components. The analyzer would be used to an-
alyze a Chameleos-x policy for conflicts and ambiguities.

References

[1] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo
Perlasca. A logical framework for reasoning about ac-
cess control models. In Proceedings of the 6th ACM
Symposium on Access Control Models and Technolo-
gies, pages 41–52, Chantilly, VA, 2001.

[2] Nicodemos Damianou, Naranker Dulay, Emil Lupu,
and Morris Sloman. The Ponder policy specification
language. In Policies for Distributed Systems and Net-
works: International Workshop (POLICY 2001), Lec-
ture Notes in Computer Science, volume 1995, pages
18–38. Springer-Verlag, January 2001.

[3] Sushil Jajodia, Pierangela Samarati, and V.S. Subrah-
manian. A logical language for expressing authoriza-
tions. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, pages 31–42, Oakland, CA, May
1997.

[4] Lawrence Teo and Gail-Joon Ahn. Towards the speci-
fication of access control policies on multiple operating
systems. In Proceedings of the 5th IEEE Workshop on
Information Assurance, pages 210–217, United States
Military Academy, West Point, NY, June 2004.

[5] Lawrence Teo and Gail-Joon Ahn. Managing hetero-
geneous network environments using an extensible pol-
icy framework. In Proceedings of ACM Symposium on
InformAtion, Computer and Communications Security
(ASIACCS’07), Singapore, March 2007.

[6] T.Y.C. Woo and S.S. Lam. Authorizations in distributed
systems: A new approach. Journal of Computer Sci-
ence, 6(2,3):107–136, 1993.

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

