
 1

Abstract—In modern healthcare environments, there is a strong

need to create an infrastructure that reduces time-consuming efforts
and costly operations to obtain a patient's complete medical record and
uniformly integrates this heterogeneous collection of medical data to
deliver it to the healthcare professionals. As a result, healthcare
providers are more willing to shift their electronic medical record
(EMR) systems to clouds that can remove the geographical distance
barriers among providers and patients. Since a shared electronic health

record (EHR) essentially represents a virtualized aggregation of
distributed clinical records from multiple healthcare providers, sharing
of such integrated EHRs should comply with various authorization
policies from these data providers. In our previous work, we present
and implement a secure medical data sharing system to support
selective sharing of composite EHRs aggregated from various
healthcare providers in cloud computing environments. In this paper,
we point out that when EMR systems are migrated to clouds, it is also

critical to ensure that EMR systems are compliant with government
regulations such as the Health Insurance Portability and
Accountability Act (HIPAA). Also, we propose a HIPAA compliance
management approach by leveraging logic-based techniques and apply
it to our cloud-based EHRs sharing system. We also describe our
evaluation results to demonstrate the feasibility and effectiveness of
our approach.

Keywords: HIPAA regulations, Compliance, Cloud Computing

I. INTRODUCTION

In modern healthcare domain, electronic health records

(EHRs) (DesRoches et al., 2008; Eichelberg et al., 2005) have

been widely adopted to enable healthcare providers, insurance

companies and patients to create, manage and access patients'

healthcare information from anywhere, and at any time.

Typically, a patient may have many different healthcare

providers including primary care physicians, specialists,

therapists, and miscellaneous medical practitioners. Besides, a

patient may have different types of insurances, such as medical

insurance, dental insurance and vision insurance, from different

healthcare insurance companies. As a result, a patient's EHRs

can be found scattered throughout the entire healthcare sector.

From the clinical perspective, in order to deliver quality patient

care, it is critical to access the integrated patient care

information that is often collected at the point of care to ensure

the freshness of time-sensitive data (Grimson et al., 2001). This

further requires an efficient, secure and low-cost mechanism

for sharing EHRs among multiple healthcare providers.

Particularly, in some emergency healthcare situations,

immediate exchange of patient’s EHRs is crucial to save lives.

However, in current healthcare settings, healthcare providers

mostly establish and maintain their own electronic medical

record (EMR) systems for storing and managing EHRs. Such

self-managed data centers are very expensive for healthcare

providers. Besides, the sharing and integration of EHRs among

EMR systems managed by different healthcare providers are

extremely slow and costly. Thus, a common and open

infrastructure platform can play a key role in changing such a

situation and improve the healthcare quality.

Cloud computing has become a promising computing

paradigm drawing extensive attention from both academia and

industry (Mell & Grance, 2011). This paradigm shifts the

location of computing infrastructure to the network as a service

associated with the management of hardware and software

resources. It has shown tremendous potential to enhance

collaboration, scale, agility, cost efficiency and availability of

services. Hence, healthcare providers along with many other

software vendors are more and more willing to shift their EMR

systems into clouds instead of building and maintaining their

own data centers. Cloud computing, as cornerstone, not only

increases the efficiency of medical data management and

sharing process, but also enables the access to healthcare

ubiquitous since patients' healthcare related data will be always

accessible from anywhere at any time. Therefore, managing

healthcare applications in clouds could make revolutionary

changes in the way we are dealing with healthcare information

today.

It is promising for both healthcare providers and patients to

have EHR applications and services in clouds. However, this

adoption may also lead to many security challenges associated

with authentication, identity management, access control,

policy integration, trust management, compliance management

and so on (Takabi et al., 2010; Wu et al., 2010). If those

challenges cannot be properly resolved, they may hinder the

success of tapping healthcare into clouds. Our previous work

(Jin et al., 2009; Wu, 2012) focuses on tackling access control

issues when EHRs are shared with various healthcare providers

in cloud computing environments. Sharing EHRs is one of the

key requirements in healthcare domain for delivering high

quality of healthcare services. However, the sharing process

could be very complex and involved with various entities in

such a dynamic environment. Each EMR system in clouds is

associated with multiple healthcare practitioners with different

duties and objectives. Also, a shared EHR instance may consist

of several sensitive portions of patient's healthcare information

such as demographic details, allergy information, medical

histories, laboratory test results, and radiology images (X-rays,

Towards HIPAA-compliant Healthcare

Systems in Cloud Computing

Ruoyu Wu, Arizona State University, USA

Gail-Joon Ahn, Arizona State University, USA

Hongxin Hu, Delaware State University, USA

 2

CTs). Access control solutions must be in place to guarantee

that access to sensitive information is limited only to those

entities that have a legitimate need-to-know privilege allowed

by patients. For example, a patient may not be willing to share

his medical information regarding a HIV/AIDS diagnosis with

a dentist unless a specific treatment is required.

Besides above access control issue, compliance management

is also a very important problem when adopting cloud

computing into healthcare domain. We have witnessed many

healthcare providers have been suffering from sensitive

information leakage and policy violations due to the lack of

systematic compliance management mechanisms. For instance,

recent data breach at ChoicePoint costs more than 27 million

dollars (Otto et al., 2007). To protect patients' privacies, Health

Insurance Portability and Accountability Act (HIPAA) has

been approved and enforced for healthcare domain by US

government. Therefore, it is critical to ensure EMR systems to

be compliant with HIPAA regulations when migrating them to

clouds.

The consequence of noncompliance is priceless including

patients’ privacy disclosures, government fines, the cost of

court representation, lost reputation, brand damage,

government audits, and workforce training cost. All system

states of an EMR system are defined by system policies.

Checking whether an EMR system is compliant with HIPAA

regulations is enforced by checking whether its system policies

are compliant with HIPAA regulations. However, there are

several challenges on this compliance management process:

First, it is a manual and labor-intensive process; Second, it

creates additional overheads to health information transactions;

Third, HIPAA regulations are complex and in part vague,

requiring interpretation and domain knowledge; and last but not

least, the complexity in achieving compliance objectives can

rapidly increase as the updates of HIPAA regulations and the

upscale of EMR systems are occurred. Besides, the compliance

management process will be more complex and critical when it

comes to cloud computing environments. Since a cloud is an

open platform, there will be more healthcare related

information interactions among various healthcare providers. It

is more likely that sensitive healthcare information disclosure

happens if those EMR systems in clouds do not comply with

HIPAA regulations. In addition, more distributed healthcare

information will be aggregated and managed by large

healthcare providers for providing comprehensive and quality

healthcare services in clouds. If those large healthcare

providers’ EMR systems are not HIPAA-compliant, huge

amount of healthcare information could be disclosed.

Therefore, it is critical to have a novel systematic and

automated approach in place to ensure EMRs to be compliant

with HIPAA regulations in clouds.

In this work, we propose a compliance management

approach which ensures EMR systems to be compliant with

HIPAA regulations in cloud computing environments. More

specifically, we first extract policy patterns from both HIPAA

regulations and policies in EMR systems, and then a generic

policy specification scheme is formulated to accommodate

those identified patterns. In addition, we propose a two-step

transformation approach, in which the first step is to transform

both HIPAA regulations and system policies specified in a

natural language into a formal representation and the second

step is to further transform the formal policy representation into

a logic-based representation. In addition, we discuss our

compliance analysis method, which ensures policies in EMR

systems are in compliance with HIPAA regulations by

leveraging logic-based reasoning techniques. We apply this

approach to our cloud-based EHRs sharing system. In addition,

our evaluation results demonstrate the feasibility and

effectiveness of our approach.

The rest of this paper is organized as follows: we discuss

background technologies including HIPAA regulations, EMR

systems and Answer Set Programming in Section II. In Section

III, we present an overview of our secure EHRs sharing

framework with HIPAA compliance management

enhancement. Section IV discusses our HIPAA compliance

management approach in details. Section V describes the

system design and implementation of prototype system

followed by system evaluation in Section VI. We discuss the

related work in Section VII. Finally, Section VIII concludes

this paper and discusses our future direction.

II. BACKGROUND TECHNOLOGIES

In this section, we describe background technologies
including HIPAA regulations, current EMR systems, and

Answer Set Programming (ASP) which is a declarative

programming paradigm oriented towards combinatorial search

problems and knowledge intensive applications.

A. HIPAA Regulations

The U.S. HIPAA title II was enacted in 1996 for numerous

reasons which include the need for increased protection of

patient medical records against unauthorized use and

disclosure. The HIPAA requires the U.S. Department of Health

and Human Services (HHS) to develop, enact and enforce

regulations governing electronically managed patient

information in the healthcare industry. As a result, a special

committee in HHS prepared several recommendations based

upon extensive expert witness testimony from academia,

industry and government, deriving the following conclusions:

The Privacy Rule requires implementing policies and

procedures to provide federal protections for personal health

information held by covered entities and gives patients an array

of rights with respect to that information.

The Security Rule specifies a series of administrative,

physical, and technical safeguards for covered entities to assure

the confidentiality, integrity, and availability of electronic

protected health information.

The Enforcement Rule states the actions that must be taken

by HHS to ensure compliance and accountability under the

HIPAA, including the process for reviewing complaints and

assessing fines.

In this paper, we focus on the section §164 of HIPAA, which

regulates the security and privacy issues in the health care

industry. It covers general provisions, security standards for the

 3

protection of electronic health information, and privacy of

individually identifiable health information. We are especially

concerned with the subsection §164.506, which covers the use

and disclosure of electronic health information in carrying out

treatment, payment, or health care operations.

B. EMR Systems

In today's healthcare domain, paper-based medical

information records are transforming into EMRs. There are a

lot of benefits brought by EMRs including improved quality of

care, improved documentation and accuracy, reduced expense,

reduced medical errors, better access to medical information,

enhanced security, and so on. The Centers for Disease Control

and Prevention (CDC) reported that the EMR adoption rate had

steadily risen to 48.3 percent at the end of 2009 (Feingold,

2011). EMR systems are also becoming more and more popular

in other regions of the world, such as Asia and Europe.

An EMR system is a software system that provides an

electronic version of a patient's health records such as the

patient's progress, problems, medications, vital signs, past

health history, immunizations, laboratory data and radiology

reports. A core EMR system consists of the clinical data

repository (CDR), clinical decision support system (CDSS),

controlled medical vocabulary (CMV), computerized provider

order entry (CPOE), pharmacy management system, and the

electronic medication administration record (eMAR). There are

a lot of commercial EMR systems as well as many open source

EMR systems such as: VistA (http://worldvista.org/),

PatientOS (http://www.patientos.org/), OpenMRS

(http://openmrs.org/), and OpenEMR (http://www.oemr.org/).

We give a brief description for those open source EMR system

as follows:

 VistA is a mature health information system developed

by the US Department of Veterans Affairs. It is in place

across all Veterans hospitals and clinics and has been

shown to decrease costs significantly.

 PatientOS is an industry-driven open-source system that

gains revenue from service contracts of installing and

customizing this system. It appears to be a front-end

implementation of openEHR.

 OpenMRS is a community-developed, open-source

system led by a collaborative effort of the Regenstrief

Insitute (Indiana University) and Partners in Health

(Boston Philanthropic Organisation). It was intended to

provide sustainable health information technology that

could be used to fight diseases most prevalent in

low-resource countries, including AIDS, tuberculosis

and malaria.

 OpenEMR is an ONC-ATB Ambulatory EHR

2011-2012 certified electronic health records and

medical practice management application. It features

fully integrated electronic health including records,

practice management, scheduling, and electronic billing.

C. Answer Set Programming

ASP (Marek, 1999; Lifschitz, 2008) is a recent form of

declarative programming that has emerged from the interaction

between two lines of research---nonmonotonic semantics of

negation in logic programming and applications of satisfiability

solvers to search problems. The idea of ASP is to represent the

search problem we are interested in as a logic program whose

intended models, called ―stable models (a.k.a. answer sets),‖

correspond to the solutions of the problem, and then find these

models using an answer set solver---a system for computing

stable models. Like other declarative computing paradigms,

such as SAT (Satisfiability Checking) and CP (Constraint

Programming), ASP provides a common basis for formalizing

and solving various problems, but is distinct from others such

that it focuses on knowledge representation and reasoning: its

language is an expressive nonmonotonic language based on

logic programs under the stable model semantics (Gelfond &

Lifschitz, 1988; Ferraris et al., 2011), which allows elegant

representation of several aspects of knowledge such as

causality, defaults, and incomplete information, and provides

compact encoding of complex problems that cannot be

translated into SAT and CP (Lifschitz & Razborov, 2006). As

the mathematical foundation of answer set programming, the

stable model semantics was originated from understanding the

meaning of negation as failure in Prolog, which has the rules of

the form

𝑎1 ← 𝑎2 ,⋯ , 𝑎𝑚 𝑛𝑜𝑡 𝑎𝑚+1 ,⋯ , 𝑛𝑜𝑡 𝑎𝑛 1

where all 𝑎1 are atoms and not is a symbol for negation as

failure, also known as default negation. Intuitively, under the

stable model semantics, rule (1) means that if you have

generated 𝑎2 , ⋯ , 𝑎𝑚 and it is impossible to generate any of

𝑎𝑚+1 ,⋯ ,𝑎𝑛 then you may generate 𝑎1. This explanation seems

to contain a vicious cycle, but the semantics are carefully

defined in terms of fixpoint.

 While it is known that the transitive closure (e.g.,

reachability) cannot be expressed in first-order logic, it can be

handled in the stable model semantics. Given the fixed extent of

edge relation, the extent of reachable is the transitive closure of

edge.

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑋,𝑌 ← 𝑒𝑑𝑔𝑒 𝑋,𝑌

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑋, 𝑌 ← 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑋,𝑍 , 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑍, 𝑌

Several extensions were made over the last twenty years. The

addition of cardinality constraints turns out to be useful in

knowledge representation. A cardinality constraint is of the

form 𝑙𝑜𝑤𝑒𝑟{𝑙1 ,⋯ , 𝑙𝑛 }𝑢𝑝𝑝𝑒𝑟 where 𝑙1 , ⋯ , 𝑙𝑛 are literals and

lower and upper are numbers. A cardinality constraint is

satisfied if the number of satisfied literals in 𝑙1 , ⋯ , 𝑙𝑛 is in

between lower and upper. It is also allowed to contain variables

in cardinality constraints. For instance,

http://www.patientos.org/

 4

𝑚𝑜𝑟𝑒_𝑡ℎ𝑎𝑛_𝑜𝑛𝑒_𝑒𝑑𝑔𝑒(𝑋) ← 2{𝑒𝑑𝑔𝑒 𝑋, 𝑌 : 𝑣𝑒𝑟𝑡𝑒𝑥(𝑌)}.

means that more_than_one_edge(X) is true if there are at least

two edges connect X with other vertices.

 The language also has useful constructs, such as strong

negations, weak constraints, and preferences. What

distinguishes ASP from other nonmonotonic formalisms is the

availability of several efficient implementations, answer set

solvers, such as smodels, cmodels, clasp which led to practical

nonmonotonic reasoning that can be applied to industrial level

applications.

III. OVERVIEW OF SECURE EHRS SHARING

FRAMEWORK

In this section, we present our secure EHRs sharing

framework which securely manages the access to composite

EHRs integrated from various healthcare providers at different

granularity levels. In particular, our framework supports

HIPAA compliance management to ensure the sharing of EHRs

to be compliant with HIPAA regulations in clouds. Figure 1

shows an overview of our framework. Healthcare providers

from various domains such as primary care, pharmacy, clinic

lab and emergency care host their EMRs in clouds to achieve

lower operation cost, higher interoperability, and ubiquitous

service delivery and so on. They can reside in a single cloud or

multiple clouds depending on their deployment needs.

Different cloud types, such as public cloud, private cloud, and

hybrid cloud, are also choices for healthcare providers

according to their security and cost concerns. The EHR

Aggregator module retrieves distributed EHRs from various

EMR systems in clouds based on their domain EHR data

schemas, and aggregates them into virtual composite EHRs.

The Reference Monitor module contains two sub modules:

Access Control sub module provides selective EHRs sharing

capability to regulate the access of the composite EHRs with

only authorized users; Compliance Management sub module

ensures EHRs sharing to be compliant with HIPAA regulations.

Stakeholders involved include patients, healthcare practitioners

and system administrators. Patients are the owners of EHRs

who specify access control policies to control who can access

which portions of their EHRs. Healthcare practitioners are the

viewers of EHRs who submit access requests. And they are

usually associated with specific healthcare providers with

various roles such as general doctors, dentists, doctor assistants,

emergency medical technicians, and medical insurance agents.

Administrators perform administrative functions such as

activating or deactivating users, and registering or

de-registering healthcare providers. Details on the EHR

Aggregator module and the Access Control sub module have

been discussed in our previous work (Wu, 2012). In this paper,

we focus on addressing the Compliance Management sub

module in our framework.

IV. COMPLIANCE MANAGEMENT APPROACH

In this section, we present a compliance management

approach which enables to bridge the gap between EMR

systems and HIPAA regulations in cloud computing

environments, as shown in Figure 2. The inputs of this

approach are high-level HIPAA regulations and policies in

EMR systems. The policy translator module transforms both

high-level HIPAA regulations and healthcare systems’ policies

into a generic policy representation. The logic translator

module further transforms the generic representations of

HIPAA regulations and healthcare systems’ policies into logic

programs. Then, the logical reasoning module provides

compliance analysis service.

The reasons why we introduce a layer of generic policy

representation instead of directly transforming policies into the

logical representation in our framework are as follows: First,

the generic policy representation facilitates the process of

compliance analysis since both HIPAA regulations and

healthcare systems’ policies are uniformly represented by using

the same policy scheme; Second, the generic policy

representation improves the interoperability, consistency, and

reusability of the policies from different organizations and

resources; Third, different policy reasoning techniques can be

adopted upon our generic policy representation. Hence, the

compliance analysis in our framework will not be limited to any

specific reasoning technique.

On the other hand, there are several well-established access

control policy languages such as XACML

(https://www.oasis-open.org/committees/) and EPAL

(http://www.w3.org/Submission/2003/SUBM-EPAL-2003111

0/). The reasons we define a new generic policy representation

are as follows: First, existing policy languages provide

rich-feature supports on policy specification and enforcement

rather than the focus of this work–policy compliance

management. Second, our generic policy representation scheme

is defined based on the extracted policy patterns, which are

Figure 1: Secure EHRs Sharing Framework Overview

 5

directly derived from HIPAA regulations. Hence, our policy

representation for HIPAA regulations are more concise than

other general-purpose languages, which would increase system

overheads in terms of transformation processes due to their

relatively complex syntaxes.

A. Extracting Policy Pattern

To conduct compliance analysis, both HIPAA regulations

and healthcare systems’ policies should be transformed into a

generic policy representation. In order to define a uniform

policy scheme, general policy patterns should be identified. We

present an approach to achieve such a goal as shown in Figure

3. Since this process is a one-time effort and requires high

intelligence, it is currently driven manually. First, we identify

keywords from HIPAA regulations and healthcare systems’

policies. Then, we categorize identified keywords into different

classes and give a label to each class. Regarding any new

HIPAA regulation, we map each keyword from the regulation

to a class. The composition of different labels constructs a

structured pattern. After analyzing all identified policy patterns,

we formulate a generic policy scheme to facilitate a uniform

representation of both HIPAA regulations and healthcare

systems’ policies. Figure 3 demonstrates an example for

extracting policy patterns from one section of HIPAA

regulations. Note that even though we only analyzed one

particular section of HIPAA regulations, we still believe our

approach is general enough and is able to accommodate other

sections of HIPAA regulations as well as various healthcare

systems’ policies for policy pattern extractions.

Table 1 shows the keyword dictionary we extracted from

section §164.506. It contains six classes and each class is

associated with a label and several keywords. Based on this

keywords dictionary, we analyze all rules from section

§164.506. Rule examples and corresponding policy patterns are

partially given as follows:

 164.506(a) Except with respect to uses or disclosures

that require an authorization, a covered entity may use or

disclose protected health information for treatment,

payment, or health care operations.

Extracted Pattern: <condition> <actor> <modality>

<action> <object> for <purpose>

 164.506(b)(1) A covered entity may obtain consent of

the individual to use or disclose protected health

information to carry out treatment, payment, or health

care operations.

Extracted Pattern: <actor> <modality> <action>

<object> to <action> <object> for <purpose>

 164.506(c)(1) A covered entity may use or disclose

protected health information for its own treatment,

payment, or health care operations.

Extracted Pattern: <actor> <modality> <action>

<object> for <purpose>

 164.506(c)(2) A covered entity may disclose protected

health information for treatment activities of a health

care provider.

Extracted Pattern: <actor> <modality> <action>

<object> for <purpose>

B. Formulating Policy Specification

To enable compliance analysis of policies, it is essential to

put a generic and uniform policy specification in place. Our

policy specification scheme is built upon the identified policy

patterns based on the approach addressed earlier and shown as

follows:

Definition 1. [Generic Policy Specification] A generic policy
is represented as a 8-tuple p = <actor, modality, action, object,

purpose, condition, id, effect>, where

Figure 2: Compliance Management Approach

Figure 3: Approach for Policy Pattern Extraction

Table 1: Key Word Dictionary

Class ID Class Label

Class 1 Actor Covered entity(CE), healthcare provider, individual, patient

Class 2 Action use, disclose, require, obtain, carry out, permit, has, had, pertains, participate

Class 3 Purpose treatment, payment, health care operations, health care fraud, abuse detection, compliance

Class 4 Object phi, consent

Class 5 Modality may

Class 6 Conditions except, if, when

 6

actor = < D, R, O > is a 3-tuple, where D, R and O represent

disseminator, receiver, and owner, respectively;

modality depends on the implication that a policy expresses.

For instance, if the policy expresses the concept of

obligation, the corresponding modality can be must; if the

policy expresses the concept of privilege, the corresponding

modality can be may;

action is a particular action defined by a policy, such as use,

disclose, share, and so on;

object is a protected healthcare resource, such as patient

demographic details, medical histories, laboratory test

results, radiology images (X-rays, CTs), and so on;

purpose is the reason for an actor to perform an action on an

object;

condition = < CD, CR, CO, CCON > is a 4-tuple, where

CD, CR, CO and CCON indicate conditions on disseminator,
receiver, owner and context, respectively;

id is the citation to the portion of HIPAA regulations to which

a policy refers; and

effect is the authorization effect of a policy including permit

and deny.

C. Transformation Approach

In this section, we discuss our two-step transformation

approach. In the first step, we transform both HIPAA

regulations and healthcare systems’ policies into a uniform

formal representation. In the second step, we transform the

formal representation into a logical representation. The first

step in our transformation is shown in Figure 4. It mainly

contains four sub-procedures: Establishing Word Dictionary,

Natural Language Processing, Matching and Removing

Disjunction. We address the details of each procedure as

follows:

 Establishing Word Dictionary. The goal of this step is to

categorize keywords. More specifically, we first identify

keywords from the given text and categorize identified

keywords into different classes. We then assign a label to

each class. This step utilizes the word dictionary built

when extracting generic policy patterns. Each class is

managed and stored in an arraylist data structure.

 Natural Language Processing. The goal of this step is to

divide each rule into syntactically correlated parts of

words. Some NLP technique (Lewis & Jones, 1996),

such as sentence detection, tokenization, pos-tagging,

and chunking are utilized in this step. Sentence detection

API detects how many sentences are there in the input

text. Tokenization API segments an input sentence into

tokens. Tokens can be words, punctuation, numbers and

so on. Pos-tagging API marks tokens with their

corresponding word type based on the token itself and

the context of the token. And chunking API divides each

rule into syntactically correlated parts of words like noun

groups, verb groups and so on. This step facilitates the

next matching step.

 Matching. The goal of this step is to identify each

element of the generic policy scheme including

disseminator, receiver, owner, modality, action, object,

purpose, condition, ruleID and effect. More specifically,

Figure 4: Approach for the First Step Transformation

 7

based on the results of previous procedures, we compare

each correlated part with dictionary words and return the

label if there exists a matching word in the word

dictionary. Then based on the label, the placement of the

word in the generic policy scheme is determined.

 Removing Disjunction. To remove disjunction from the

rules, each rule may need to be split into several separate

rules. Since the elements of receiver, action and purpose

in a rule may have multiple instances, we further split a

given rule based on those instances. More specifically,

we store instances with disjunction relationships into an

arraylist data structure. Based on the length of the

arraylist, numbers of constructing rule processes are

repeated.

The following example demonstrates how our transformation

approach works with HIPAA rules in a natural language:

 Input: 164.506(c)(1) A covered entity may use or

disclose protected health information for its own

treatment, payment, or health care operations.

 Output: (<CE, CE, CE>, may, use, phi, treatment, N/A,

164.506(c)(1), allow)

(<CE, CE, CE>, may, use, phi, payment, N/A,

164.506(c)(1), allow)

(<CE, CE, CE>, may, use, phi, healthcare operation,

N/A, 164.506(c)(1), allow)

(<CE, CE, CE>, may, disclose, phi, treatment, N/A,

164.506(c)(1), allow)

(<CE, CE, CE>, may, disclose, phi, payment, N/A,

164.506(c)(1), allow)

(<CE, CE, CE>, may, disclose, phi, healthcare
operation, N/A, 164.506(c)(1), allow)

In this example, we can notice two actions: use and disclose

and three purposes: treatment, payment, and health care

operations in the HIPAA rule represented in a natural language.

Based on the combination of actions and purposes, we obtain

six sub-rules during the transformation process.

The second step of our transformation approach is to

transform the generic representation of policies into a logical

representation for conducting policy reasoning analysis. We

adopt ASP as the underlying logic programming. This

procedure interprets the semantics of the generic policy
specification in terms of the Answer Set semantics. Based on

each element of the generic policy definition, we define

following ASP predicates: decision(ID, EFFECT) where ID is

a policy id variable and EFFECT is a policy authorization

decision variable; actor(D, R, O) where D, R and O are

variables respectively for disseminator, receiver, and owner;

modality(M); action(A); object(OBJ); purpose(P) and

condition(C). We consider decision(ID, EFFECT) as the ASP

rule head and the rest predicates as the ASP rule body. Hence,

an ASP representation of generic policy is expressed as

follows:

 decision(ID, EFFECT) :- actor(D, R, O), modality(M),

action(A), object(OBJ), purpose(P), condition(C).

The following example shows how our transformation converts

a generic policy representation into an ASP representation:

 Generic representation of a HIPAA regulation: (<CE,

CE, CE>, may, use, PHI, treatment, N/A,

164.506(c)(1)(1), permit)

 ASP representation: decision(164506c11, permit) :-

actor(ce, ce, ce), modality(may), action(use),

object(phi), purpose(treatment), condition(na).

D. Compliance Analysis

A policy is in compliance with another policy if the same

effects are obtained when those policies are applied to the same

request; otherwise, the policy is in non-compliance with the

other policy. To apply this proposition to HIPAA analysis, we

further make this intuition more precise by defining the notion

of non-compliance. With respect to the same policy variables, if

the effect of healthcare systems’ policy is allow while the effect

of HIPAA regulations is deny, we call this non-compliance case

as less-constrained non-compliance. If the effect of healthcare

system is deny while the effect of HIPAA regulations is allow,

we call this case as over-constrained non-compliance. Policy
makers of the healthcare systems should strengthen the control

of the policy if less-constrained non-compliance is detected or

loosen the control of the policy if over-constrained

non-compliance is detected. The compliance definition can be

also extended to analyze the compliance relations between a

policy and a policy set or between two policy sets. In practice,

both healthcare systems’ policies and HIPAA regulations

contain multiple sub-policies. If the healthcare systems’

policies do not comply with HIPAA regulations, our approach

can identify the counterexamples for compliance analysis.

After the two-step transformation, we have ASP
representations of both HIPAA regulations and local healthcare

systems’ policies. To bridge the semantics of both HIPAA

regulations and healthcare systems’ policies phrases in ASP,

we perform a terminology mapping process. It is an essential

process which maps the phrases in healthcare systems’ policies

onto the terminology used in HIPAA regulations. Then,

corresponding ASP rules are created to represent those

terminology mappings. Ideally, terminology should be mapped

early during the phase system policies being made, since

regulation-based compliance requirements should be

considered later on. However, in practice, we need to deal with

healthcare systems whose policies have been specified. These
policies may be defined before the existence of regulations, or

based on an older version of the regulations, or specified

without consideration of the regulations at all.

Consider the ASP representation of HIPAA regulations as

privacy/security property program F, the ASP representation of

the local healthcare systems’ policies as program G and the

terminology mapping rules as H. Then the problem of

compliance checking can be casted into the problem of

checking whether the program

𝐺 ∪ 𝐹 ∪ 𝐻 ∪ 𝐸

 8

has no answer set using ASP solver, where E is the program

expressing program G and program F has conflicting decision

results. If no answer is found, it implies that the

privacy/security property F is verified. Otherwise, an answer

set returned by an ASP solver serves as a counterexample that

indicates why the program G does not entail F (Ahn et al.,

2010).

V. SYSTEM DESIGN AND IMPLEMENTATION

A. System Architecture

Figure 5 shows the system architecture of our cloud-based

EHRs sharing system. The bottom is an infrastructure layer

which provides computing and storage capabilities to host

various EMR systems. This can be achieved by several cloud

computing software solutions such as XenServer, OpenStack,

and Eucalyptus. By leveraging the cloud infrastructure,

healthcare providers can tremendously reduce their cost for

building and maintaining their own data canters to host EMR

systems. The middle box is the management module including

User Interface, Security Service module, EHR Manager

module, Policy Manager module and CONNECT module. The

User Interface has three kinds of different views according to

users’ identities: (1) Healthcare practitioners are able to

discover a patient with at least 3 characters of the patient's

name. By selecting the desired patient, they can submit the

patient’s EHRs access request. Based on the authorization

result, the request will be allowed or denied; (2) Patients are

able to view their EHRs from particular healthcare providers

they are associated with or the composite EHRs aggregated

from all healthcare providers they obtained services from.

System policies for certain EMRs or on the composite EHRs

need to be consented by patients; (3) Administrators have the

capability to manage users and healthcare providers’ EMR

systems registered in the whole system. Security Service

module consists of three core sub-modules: Authentication

sub-module authenticates users to make sure only legitimate

users can access the system; Access Control sub-module

controls users’ access to EHRs from particularly registered

EMR systems or portions of the composite EHRs based on

authorization results generated from Policy Manager; and

Compliance Management sub-module provides transformation

and reasoning services to enforce our proposed HIPAA

compliance management approach in Section IV. More

specifically, both HIPAA regulations and system polices in the

natural language representation can be transformed into a

formal representation, and further be converted to a logic-based

representation through the transformation service. Reasoning

service facilitates compliance analysis to check whether system

policies comply with HIPAA regulations by leveraging

logical-based techniques. EHR Manager module retrieves

distributed EHRs or the composite EHRs from CONNECT

module and share them with authorized users under the control

of Access Control module. Policy Manager module consists of

two sub modules: Policy Enforcement sub-module enforces

related policies when receiving EHRs access requests from

users and generates authorization results to Access Control

module; and Policy Specification sub-module provides

capability for patients to specify their access control policies

based on the policy scheme defined in Definition 1. CONNECT

module includes four sub-modules: Registry Management

sub-module provides administrative functionalities on EMR

systems hosted in the cloud infrastructure like adding, deleting,

listing and updating; Patient Discovery sub-module enables

healthcare practitioners to discover patients from all registered

EMR systems and stores discovery results in a local database

for caching; EHRs Retrieval sub-module retrieves all related

distributed EHRs from registered EMR systems in clouds. EHR

data schemas from various healthcare domains such as primary

care, pharmacy and clinic lab are realized by this module.

Elemental healthcare information is retrieved and constructed

into EHR instances based on their EHR data schemas; and

Aggregator sub-module provides aggregation functionality to

integrate all distributed EHR instances from EHRs Retrieval

module. Since CONNECT module is not the focus of this

paper, its design details can be found in (Wu, 2012).

B. Implementation Details

Our cloud infrastructure environment is built with Citrix

XenServer 6.0 and three Dell PowerEdge R510 rack servers

with 16 cores, 30 GB RAM and 925 GB disk space. We

deployed several OpenMRS 1.8.2 as EMR systems into VMs

running on the cloud infrastructure. MySQL Community Sever

5.5 is used for database server. The core EHRs aggregation and

sharing logic are implemented using Java and the presentation

layer is written in JavaSever Pages (JSP). A transformation tool
with two major functionalities for policy transformation is

implemented to support compliance management module. The

first functionality is developed based on OpenNLP. It

transforms any HIPAA regulations or healthcare systems’

policies specified in natural language into the generic policy

representation. OpenNLP is an open source natural language

processing project and hosts a variety of java-based NLP tools.

Some functions of our tool, such as sentence-detecting,

tokenization, pos-tagging, and chunking, were implemented

based on OpenNLP’s APIs. The sentence-detecting can detect

Figure 5: System Architecture

 9

that a punctuation character marks the end of a sentence or not.

In other words, a sentence is defined as the longest white space

trimmed character sequence between two punctuation marks.

The tokenization segments an input character sequence into

tokens. The pos-tagging uses a probability model to predict the

correct pos-tag out of the tag set. The chunking divides a text in

syntactically correlated parts of words, like noun groups, verb
groups. The second functionality of our tool is to transform the

generic policy representation into ASP programs for the

purpose of logic-based policy reasoning. Figure 6 shows an

example of how our tool transforms HIPAA regulations

defined in a natural language into the generic policy

representation. Figure 7 demonstrates how our tool transforms

HIPAA regulations with the generic policy representation into

ASP programs.

VI. EVALUATION

In this section, we present a case study to demonstrate the

feasibility of our compliance management approach and

discuss the system performance evaluation on transformation

and reasoning services.

A. Case Study

1) Policy Transformation

Our prototype system supports the selective sharing of

composite EHRs aggregated from various EMR systems in

cloud computing environments. The access of the composite

EHRs is controlled based on system policies in natural

language consented by patients. Ensuring the system is in

compliance with HIPAA regulations is actually transformed to

the problem of checking whether system policies comply with

HIPAA regulations. Suppose there is a healthcare provider

called E-Health utilizing our cloud-based system to provide
healthcare services to its customers. We select one of their

system policies as an example to demonstrate the compliance

analysis. Other system policies can be examined in the same

way.

 System Policy: E-Health may share your information

with your doctors, hospitals or other health care

providers to help them provide medical care to you.

Using our transformation approach, the above system policy

can be transformed into following three sub-rules represented

in our policy specification scheme:

 (<E-Health, doctor, patient>, may, share, information,

treatment, N/A, l11, permit)

 (<E-Health, hospitals, patient>, may, share, information,

treatment, N/A, l12, permit)

 (<E-Health, health care providers, patient>, may, share,

information, treatment, N/A, l13, permit)

Furthermore, the above three sub-rules can be transformed

into corresponding ASP rules as follows:

 decision(l11, permit) :- actor(ehealth, doctor, patient),

modality(may), action(share), object(information),

purpose(treatment), condition(na).

 decision(l12, permit) :- actor(ehealth, hospitals, patient),

modality(may), action(share), object(information),

purpose(treatment), condition(na).

 decision(l13, permit) :- actor(ehealth, hcp, patient),
modality(may), action(share), object(information),

purpose(treatment), condition(na).

2) Terminology Mapping

In order to conduct compliance analysis, terminology

mapping is an essential activity, which entails mapping the

natural language phrases in healthcare systems’ policies onto

the terminology used in HIPAA regulations. A prerequisite of

the terminology mapping is to properly define two

terminologies: regulation terminology and healthcare system

policy terminology. In this case study, the regulation
terminology is based on a keywords dictionary extracted from

the section §164.506 in HIPAA. The local healthcare system’s

policy terminology is based on the analysis of the policy we

chose in the OSF Healthcare system. The terminology mapping

table for the case study is shown in Table 2.

3) Compliance Analysis

To make this case study more concise, we choose one

HIPAA rule (§164.506(1)) to evaluate the system’s policy. In

Figure 6: Generic Policy Representation Transformation

Figure 7: ASP Representation Transformation

Table 2: Terminology Mapping

System Policy Terminology HIPAA Terminology

E-Health covered entity

doctor covered entity

hospital covered entity

health care provider covered entity

information PHI

share disclose

provide medical care to you treatment

 10

practice, our approach can be applied to the whole HIPAA

regulations to construct a knowledge base for compliance

analysis. Figure 8 shows ASP representation for our case study.

After we run this program, no answer set is found, which means

the local healthcare policy complies with the HIPAA

regulations. Suppose we have the system’s policy with a policy
ID of l12:

 decision_system(l12, deny) :- actor(ehealth, hospitals,

patient), modality(may), action(share),

object(information), purpose(treatment), condition(na).

The ASP solver can find out one answer set as follows:

 modality(may) action(share) action(use)

object(information) object(phi) purpose(treatment)

condition(na) actor(ehealth, hospitals, patient) actor(ce,ce,ce)
decision local(l12,deny) decision hipaa(c11,permit)

The above answer set indicates a counterexample explaining

the violation of HIPAA regulations. According to the

modified version of local policy l12, the request for E-Health

to share the patients’ information with hospitals for the

purpose of treatment will be denied. However, HIPAA

regulations will allow the request. Hence, the system policy
l12 does not comply with HIPAA regulations.

B. Performance Evaluation

As HIPAA regulations are typically complex and lengthy,

the efficiency and scalability are two critical metrics for

evaluating the transformation service in our Compliance

Management sub-module. We conducted experiments on a
cloud instance with 2 cores 2.40 GHz CPU and 4 GB RAM in

our XenServer-based cloud system. More specifically, we

measured the time consumed by each transformation step. The

rules to be transformed in our experiments are randomly

selected from HIPAA regulations section §164.506. Due to the

limited number of rules in that section, rules may repeatedly

appear in the transformation input. Note that the repeated rules

are still valid inputs since we focus on the time consumed by

the transformation process. Figure 9 shows performance

measurements on policy transformation and ASP

transformation. It indicates that policy transformation (from
HIPAA regulations to the generic policy representation)

constantly consumed the time along with the increase of

HIPAA rules while ASP transformation was quite stably

performed. Also, we further evaluated the performance on each

sub-task under policy transformation as discussed in Section

IV(C): Natural Language Processing (sub 2) and Matching &

Removing Disjunction (sub 3 & 4). We observed that Natural

Language Processing consumed on average 85% of the total

transformation time.

Also, we measured the time consumed by ASP solver with a

static number of HIPAA rules as a knowledge base to check a

local healthcare system's policies with the linear increase of
rule size from the same healthcare system mentioned in our

case study. We chose 9 rules of HIPAA regulations from the

section §164.506 as a compliance knowledge base. As shown in

Table 3, when the number of local healthcare system policies is

10, the reasoning time is just 12.3 milliseconds. When the

number of local healthcare system policy increases to 50, the

time consumed by reasoning is still less than 1 second. Hence,

the time overhead in our reasoning process is manageable.

Figure 8: ASP Representation of the Case Study

Figure 9: Transformation Time

Table 3: Reasoning Time

of Policies: 10 20 30 40 50

of Answer Sets: 2 4 6 8 10

Time (ms): 12.3 42.4 104.7 305.9 917.4

 11

VII. RELATED WORK

 We discuss the related work from four aspects:

formalization efforts for regulations, logics for specifying

policies, regulations and requirement analysis and access

control in cloud computing.

Formalization Efforts for Regulations: PrivacyLFP

(DeYoung et al., 2010) is proposed as an extension of Logic of

Privacy and Utility (LPU) (Barth et al., 2006; Barth et al.,

2007). Lam et al. (2009) have formalized §164.502, §164.506,

and §164.510 of HIPAA in a fragment of stratified Datalog

with one alternation of negation, and built a prototype tool to

check the lawfulness of a transmission. May et al. (2006)

presented privacy APIs, which extends the traditional matrix

model of access control, and used them to formalize two

versions of HIPAA §164.506.

Logics for Specifying Policies and Regulations: Hilty et al.

(2005) have shown how to specify future obligations from data

protection policies in Distributed Temporal Logic (DTL). They

used distributed event structures to model interactions between

multiple parties involved in data access and distribution. Basin

et al. (2010) used an extension of LTL, Metric First-Order

Temporal Logic (MFOTL) for specifying security properties.

Dinesh et al. (2008) have developed logic for reasoning about

conditions and exceptions in privacy laws. Lam et al. (2012)

presented an algorithm to create a finite model of a

representative hospital for any formalized healthcare policy of

a certain form, which is useful to produce testing cases for

compliance analysis. Besides, they demonstrated an approach

to automatically generate access control policy for

Attribute-Based Encryption (ABE) from the policy formalized

as a logic program, which benefits to hospital information

exchange (HIE). However, their compliance analysis

mechanism does not output counterexamples directly when

inconsistencies exist. Besides, their approach depends on a

specific logic language – Prolog. The generic policy scheme

proposed in this paper makes our approach applicable to

various logic programming languages.

Requirement Analysis: Researchers have investigated

methods to analyze security requirements using aspects (Xu et

al., 2006), goals (Giorgini et al., 2005; Van, 2004), problem

frames (Lin et al. 2003), trust assumptions (Haley et al. 2004)

and structured argumentation (Haley et al. 2005). More recent

work focused on the rigorous extraction of requirements from

security-related policies and regulations (Breaux et al., 2006;

Lee et al., 2004). To support the software engineering effort to

derive security requirements from regulations, Breaux et al.

(2008) presented a methodology to extract access rights and

obligations directly from regulation texts. They applied this

methodology specifically to HIPAA Privacy Rule. Maxwell et

al. (2010) presented a production rule framework that software

engineers can use to specify compliance requirements for

software. They applied the framework to check iTrust, an open

source electronic medical records system, for supporting

compliance with the HIPAA Security Rule. This is the closest

work to this paper in term of motivation. However, compared

with our work, their work has some limitations: First, they

formalized HIPAA regulations based on production rule

models. Thus, their formalization is constrained by a specific

logic programming technique. In contrast, our formalization of

HIPAA regulations is based on a generic policy specification

scheme, which can be then utilized by various logic-based

reasoning techniques. Second, in their work, users need to

prepare a canonical list of compliance requirements for

compliance analysis through selecting all related preconditions

and then querying the production rule model. The compliance

requirements generated by less-knowledgeable users may not

be comprehensive enough, which can further affect the

credibility of compliance analysis results. However, our

approach can automatically transform HIPAA regulations as a

knowledge base. Third, their compliance analysis process

cannot be conducted automatically. For each requirement in the

compliance requirements, they checked every existing

requirement represented by a template to examine whether it

already operationalizes the canonical requirement by replacing

legal text definitions with the appropriate and equivalent

definitions used in the existing requirement specification. In

our work, we transform both HIPAA regulations and healthcare

systems’ policies into ASP representation as an input for ASP

solver to carry out compliance analysis automatically. Finally,

the lack of evaluation of their approach leaves behind the

ambiguities of their solution.

Access Control in Cloud Computing: Zhang & Liu (2010)

identified a set of security requirements for eHealth application

in clouds and proposed an EHR security reference model to

support the sharing of EHRs. Jafari et al. (2011) proposed a

patient-centric digital right management (DRM) approach to

protect privacy of EHRs stored in a cloud based on the patient

preferences. However, those two approaches are not

fine-grained and cannot accommodate selective EHR sharing

requirements. Li et al. (2010) proposed a novel framework of

access control to realize patient-centric privacy for personal

health records in cloud computing by leveraging attribute based

encryption (ABE) techniques. Their approach is more from the

perspective of access control subject to ensure that EHRs can

be only shared with a selective set of users. Our approach is

focused on sharing selective portions of access control objects

with authorized users. Wu el al. (2010) proposed an approach

to enforce the Chinese Wall security policy at

Infrastructure-as-a-Service (IaaS) layer to address the problems

of insecure information flow in a cloud computing

environment.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a compliance management

approach to ensure the compliance between EMR systems and

legal regulations, such as HIPAA regulations, in cloud

computing environments. We first extracted policy patterns

from both HIPAA regulations and EMR systems’ policies,

along with a generic policy specification scheme. Then, we

discussed our transformation and compliance analysis method

to determine whether an EMR system is in compliance with

HIPAA regulations by leveraging logic-based reasoning

techniques. We designed and implemented a cloud-based

EHRs sharing system to demonstrate the practicality and

 12

efficiency of our approach.

As part of our future work, we would further investigate how

cross-referenced policies can be analyzed in our compliance

management approach. Also, we would attempt to refine and

enhance our approach to deal with most sections of HIPAA

regulations. In addition, we are planning to conduct extensive

evaluation of our approach with real-life healthcare systems’

policies in cloud computing environments.

REFERENCES

[1] DesRoches, C., Campbell, E., Rao, S., Donelan, K., Ferris, T., Jha, A.,

Kaushal, R., Levy, D., Rosenbaum, S. & Shields, A. (2008). Electronic

health records in ambulatory care - a national survey of physicians. New

England Journal of Medicine, 359(1), 50-60.

[2] Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A. & Laleci. G. (2005). A

survey and analysis of electronic healthcare record standards. ACM

Computing Surveys (CSUR), 37(4), 277-315.

[3] Grimson, J., Stephens, G., Jung, B., Grimson, W., Berry, D. & Pardon, S.

(2001). Sharing healthcare records over the internet. Internet Computing,

IEEE, 5(3), 49-58.

[4] Zhang, R. & Liu, L. (2010). Security models and requirements for

healthcare application clouds. In IEEE 3rd International Conference on

Cloud Computing (CLOUD) (pp. 268-275). IEEE.

[5] Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing

(Draft). NIST Special Publication, 145(6), 1-2.

[6] Takabi, H., Joshi, J.B.D. & Ahn, G.J. (2010). Security and privacy

challenges in cloud computing environments. IEEE Security & Privacy,

8(6), 24-31.

[7] Wu, R., Ahn, G.J., Hu, H. & Singhal, M. (2010). Information flow control

in cloud computing. In 6th International Conference on Collaborative

Computing: Networking, Applications and Worksharing

(CollaborateCom) (pp. 1-7). IEEE.

[8] Jin, J., Ahn, G.J., Hu, H., Covington, M.J. & Zhang, X. (2009).

Patient-centric authorization framework for sharing electronic health

records. In proceedings of the 14th ACM symposium on Access control

models and technologies (125-134). ACM

[9] Wu, R. (2012). Secure Sharing of Electronic Medical Records in Cloud

Computing. Master’s thesis, Arizona State University.

[10] Otto, P.N., Anton, A.I. & Baumer, D.L. (2007). The choicepoint

dilemma: How data brokers should handle the privacy of personal

information. IEEE Security & Privacy, 24-31.

[11] Feingold, J. (2011). Are More Doctors Adopting EHRs? Neusoft Blog.

Retrieved January 5, 2011, from

http://www.nuesoft.com/blog/are-more-doctors-adopting-ehrs/.

[12] Lifschitz, V. What is answer set programming. (2008). In proceeding of

the AAAI Conference on Artificial Intelligence, (pp. 1594–1597). AAAI

Press.

[13] Marek, V. W. (1999). Stable models and an alternative logic

programming paradigm. The Logic Programming Paradigm: a 25-Year

Perspective, Springer-Verlag, 375–398.

[14] Ferraris, P., Lee, J. & Lifschitz, V. (2011). Stable models and

circumscription. Artificial Intelligence, Elsevier, 175(1), 236-263.

[15] Gelfond, M. & Lifschitz, V. (1988). The stable model semantics for logic

programming. In proceedings of the 5th International Conference on

Logic programming (1070–1080). MIT Press.

[16] Lifschitz, V. & Razborov, A. (2006). Why are there so many loop

formulas? ACM Transactions on Computational Logic (TOCL), 7(2),

261-268.

[17] Lewis, D.D. & Jones, K.S. (1996). Natural language processing for

information retrieval. Communications of the ACM, 39(1), 92-101.

[18] Ahn, G.J., Hu, H., Lee, J. & Meng, Y. (2010). Representing and reasoning

about web access control policies. In IEEE 34th Annual Computer

Software and Applications Conference (COMPSAC) (pp. 137-146).

IEEE.

[19] DeYoung, H., Garg, D., Kaynar, D. & Datta, A. (2010). Logical

specification of the GLBA and HIPAA privacy laws. CyLab, 72.

[20] Barth, A., Datta, A., Mitchell, J.C. & Nissenbaum, H. (2006). Privacy and

contextual integrity: Framework and applications. In IEEE Symposium on

Security and Privacy (pp. 15-pp). IEEE.

[21] Barth, A., Mitchell, J., Datta, A. & Sundaram, S. (2007). Privacy and

utility in business processes. In 20
th
 IEEE Computer Security Foundations

Symposium (pp. 279-294). IEEE.

[22] Lam, P., Mitchell, J. & Sundaram, S. (2009). A formalization of HIPAA

for a medical messaging system. Trust, Privacy and Security in Digital

Business, Springer, 73-85.

[23] May, M.J., Gunter, C.A. & Lee, I. (2006). Privacy APIs: Access control

techniques to analyze and verify legal privacy policies. In 19th IEEE

Computer Security Foundations Workshop (pp. 13-pp). IEEE.

[24] Hilty, M., Basin, D. & Pretschner, A. (2005). On obligations. In

proceedings of 10th European Symposium on Research in Computer

Security (pp. 98-117). Springer.

[25] Basin, D., Klaedtke, F. & Muller, S. (2010). Monitoring security policies

with metric first-order temporal logic. In proceeding of the 15th ACM

symposium on Access control models and technologies (pp. 23-34).

ACM.

[26] Dinesh, N., Joshi, A., Lee, I. & Sokolsky, O. (2008). Reasoning about

conditions and exceptions to laws in regulatory conformance checking.

Deontic Logic in Computer Science, Springer, 110-124.

[27] Lam, P.E., Mitchell, J.C., Scedrov, A., Sundaram, S. & Wang, F. (2012).

Declarative privacy policy: finite models and attribute-based encryption.

In proceedings of the 2nd ACM SIGHIT symposium on International

health informatics (pp. 323-332). ACM.

[28] Xu, D., Goel, V. & Nygard, K. (2006). An aspect-oriented approach to

security requirements analysis. In IEEE 30th Annual Computer Software

and Applications Conference (COMPSAC) (pp. 79-82). IEEE.

[29] Giorgini, P., Massacci, F., Mylopoulos, J. & Zannone, N. (2005).

Modeling security requirements through ownership, permission and

delegation. In 13th IEEE International Conference on Requirements

Engineering (pp. 167-176). IEEE.

[30] Van Lamsweerde, A. (2004). Elaborating security requirements by

construction of intentional anti-models. In proceedings of the 26th

International Conference on Software Engineering (pp. 148-157). IEEE

Computer Society.

[31] Lin, L., Nuseibeh, B., Ince, D., Jackson, M. & Moffett, J. (2003).

Introducing abuse frames for analysing security requirements. In

proceedings of the 11th IEEE International Conference on Requirements

Engineering (pp. 371-372). IEEE.

[32] Haley, C.B., Laney, R.C., Moffett, J.D. & Nuseibeh, B. (2004). The effect

of trust assumptions on the elaboration of security requirements. In

proceedings of the 12th IEEE International Conference on Requirements

Engineering (pp. 102-111). IEEE.

[33] Haley, C.B., Moffett, J.D., Laney, R. & Nuseibeh, B. (2005). Arguing

security: Validating security requirements using structured

argumentation. In proceedings of the 3rd Symposium on Requirements

Engineering for Information Security (SREIS’05), co-located with the

13th International Requirements Engineering Conference (RE’05). IEEE.

[34] Breaux, T.D., Vail, M.W. & Anton, A.I. (2006). Towards regulatory

compliance: Extracting rights and obligations to align requirements with

regulations. In proceedings of the 14th IEEE International Conference on

Requirements Engineering (pp. 49-58). IEEE.

[35] Lee, S.W., Gandhi, R., Muthurajan, D., Yavagal, D. & Ahn, G.J. (2006).

Building problem domain ontology from security requirements in

regulatory documents. In proceedings of the 2006 international workshop

on Software engineering for secure systems (pp. 43-50). ACM.

[36] Breaux, T.D. & Anton, A.I. (2008). Analyzing regulatory rules for

privacy and security requirements. IEEE Transactions on Software

Engineering, 34(1), 5-20.

[37] Maxwell, J.C. & Anton, A.I. (2010). The production rule framework:

developing a canonical set of software requirements for compliance with

law. In proceedings of the 1st ACM International Health Informatics

Symposium (pp. 629-636). ACM.

[38] Jafari, M., Safavi-Naini, R. & Sheppard, N.P. (2011). A rights

management approach to protection of privacy in a cloud of electronic

health records. In proceedings of the 11
th
 annual ACM workshop on

Digital rights management (pp. 23-30). ACM.

[39] Li, M., Yu, S., Ren, K. & Lou, W. (2010). Securing personal health

records in cloud computing: Patient-centric and fine-grained data access

control in multi-owner settings. Security and Privacy in Communication

Networks, Springer, 89-106.

http://www.nuesoft.com/blog/are-more-doctors-adopting-ehrs/

