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Abstract—In modern healthcare environments, there is a strong 

need to create an infrastructure that reduces time-consuming efforts 
and costly operations to obtain a patient's complete medical record and 
uniformly integrates this heterogeneous collection of medical data to 
deliver it to the healthcare professionals. As a result, healthcare 
providers are more willing to shift their electronic medical record 
(EMR) systems to clouds that can remove the geographical distance 
barriers among providers and patients. Since a shared electronic health 

record (EHR) essentially represents a virtualized aggregation of 
distributed clinical records from multiple healthcare providers, sharing 
of such integrated EHRs should comply with various authorization 
policies from these data providers. In our previous work, we present 
and implement a secure medical data sharing system to support 
selective sharing of composite EHRs aggregated from various 
healthcare providers in cloud computing environments. In this paper, 
we point out that when EMR systems are migrated to clouds, it is also 

critical to ensure that EMR systems are compliant with government 
regulations such as the Health Insurance Portability and 
Accountability Act (HIPAA). Also, we propose a HIPAA compliance 
management approach by leveraging logic-based techniques and apply 
it to our cloud-based EHRs sharing system. We also describe our 
evaluation results to demonstrate the feasibility and effectiveness of 
our approach. 
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I. INTRODUCTION 

In modern healthcare domain, electronic health records 

(EHRs) (DesRoches et al., 2008; Eichelberg et al., 2005) have 

been widely adopted to enable healthcare providers, insurance 

companies and patients to create, manage and access patients' 

healthcare information from anywhere, and at any time. 

Typically, a patient may have many different healthcare 

providers including primary care physicians, specialists, 

therapists, and miscellaneous medical practitioners. Besides, a 

patient may have different types of insurances, such as medical 

insurance, dental insurance and vision insurance, from different 

healthcare insurance companies. As a result, a patient's EHRs 

can be found scattered throughout the entire healthcare sector. 

From the clinical perspective, in order to deliver quality patient 

care, it is critical to access the integrated patient care 

information that is often collected at the point of care to ensure 

the freshness of time-sensitive data (Grimson et al., 2001). This 

further requires an efficient, secure and low-cost mechanism 

for sharing EHRs among multiple healthcare providers. 

Particularly, in some emergency healthcare situations, 

immediate exchange of patient’s EHRs is crucial to save lives. 

However, in current healthcare settings, healthcare providers 

mostly establish and maintain their own electronic medical 

record (EMR) systems for storing and managing EHRs. Such 

self-managed data centers are very expensive for healthcare 

providers. Besides, the sharing and integration of EHRs among 

EMR systems managed by different healthcare providers are 

extremely slow and costly. Thus, a common and open 

infrastructure platform can play a key role in changing such a 

situation and improve the healthcare quality.  

Cloud computing has become a promising computing 

paradigm drawing extensive attention from both academia and 

industry (Mell & Grance, 2011). This paradigm shifts the 

location of computing infrastructure to the network as a service 

associated with the management of hardware and software 

resources. It has shown tremendous potential to enhance 

collaboration, scale, agility, cost efficiency and availability of 

services. Hence, healthcare providers along with many other 

software vendors are more and more willing to shift their EMR 

systems into clouds instead of building and maintaining their 

own data centers. Cloud computing, as cornerstone, not only 

increases the efficiency of medical data management and 

sharing process, but also enables the access to healthcare 

ubiquitous since patients' healthcare related data will be always 

accessible from anywhere at any time. Therefore, managing 

healthcare applications in clouds could make revolutionary 

changes in the way we are dealing with healthcare information 

today. 

It is promising for both healthcare providers and patients to 

have EHR applications and services in clouds. However, this 

adoption may also lead to many security challenges associated 

with authentication, identity management, access control, 

policy integration, trust management, compliance management 

and so on (Takabi et al., 2010; Wu et al., 2010). If those 

challenges cannot be properly resolved, they may hinder the 

success of tapping healthcare into clouds.  Our previous work 

(Jin et al., 2009; Wu, 2012) focuses on tackling access control 

issues when EHRs are shared with various healthcare providers 

in cloud computing environments. Sharing EHRs is one of the 

key requirements in healthcare domain for delivering high 

quality of healthcare services. However, the sharing process 

could be very complex and involved with various entities in 

such a dynamic environment. Each EMR system in clouds is 

associated with multiple healthcare practitioners with different 

duties and objectives. Also, a shared EHR instance may consist 

of several sensitive portions of patient's healthcare information 

such as demographic details, allergy information, medical 

histories, laboratory test results, and radiology images (X-rays, 

Towards HIPAA-compliant Healthcare 

Systems in Cloud Computing 

Ruoyu Wu, Arizona State University, USA 

Gail-Joon Ahn, Arizona State University, USA 

Hongxin Hu, Delaware State University, USA 



 2 

CTs). Access control solutions must be in place to guarantee 

that access to sensitive information is limited only to those 

entities that have a legitimate need-to-know privilege allowed 

by patients. For example, a patient may not be willing to share 

his medical information regarding a HIV/AIDS diagnosis with 

a dentist unless a specific treatment is required.  

Besides above access control issue, compliance management 

is also a very important problem when adopting cloud 

computing into healthcare domain. We have witnessed many 

healthcare providers have been suffering from sensitive 

information leakage and policy violations due to the lack of 

systematic compliance management mechanisms. For instance, 

recent data breach at ChoicePoint costs more than 27 million 

dollars (Otto et al., 2007). To protect patients' privacies, Health 

Insurance Portability and Accountability Act (HIPAA) has 

been approved and enforced for healthcare domain by US 

government. Therefore, it is critical to ensure EMR systems to 

be compliant with HIPAA regulations when migrating them to 

clouds.  

The consequence of noncompliance is priceless including 

patients’ privacy disclosures, government fines, the cost of 

court representation, lost reputation, brand damage, 

government audits, and workforce training cost. All system 

states of an EMR system are defined by system policies. 

Checking whether an EMR system is compliant with HIPAA 

regulations is enforced by checking whether its system policies 

are compliant with HIPAA regulations. However, there are 

several challenges on this compliance management process: 

First, it is a manual and labor-intensive process; Second, it 

creates additional overheads to health information transactions; 

Third, HIPAA regulations are complex and in part vague, 

requiring interpretation and domain knowledge; and last but not 

least, the complexity in achieving compliance objectives can 

rapidly increase as the updates of HIPAA regulations and the 

upscale of EMR systems are occurred. Besides, the compliance 

management process will be more complex and critical when it 

comes to cloud computing environments. Since a cloud is an 

open platform, there will be more healthcare related 

information interactions among various healthcare providers. It 

is more likely that sensitive healthcare information disclosure 

happens if those EMR systems in clouds do not comply with 

HIPAA regulations. In addition, more distributed healthcare 

information will be aggregated and managed by large 

healthcare providers for providing comprehensive and quality 

healthcare services in clouds. If those large healthcare 

providers’ EMR systems are not HIPAA-compliant, huge 

amount of healthcare information could be disclosed. 

Therefore, it is critical to have a novel systematic and 

automated approach in place to ensure EMRs to be compliant 

with HIPAA regulations in clouds. 

In this work, we propose a compliance management 

approach which ensures EMR systems to be compliant with 

HIPAA regulations in cloud computing environments. More 

specifically, we first extract policy patterns from both HIPAA 

regulations and policies in EMR systems, and then a generic 

policy specification scheme is formulated to accommodate 

those identified patterns. In addition, we propose a two-step 

transformation approach, in which the first step is to transform 

both HIPAA regulations and system policies specified in a 

natural language into a formal representation and the second 

step is to further transform the formal policy representation into 

a logic-based representation. In addition, we discuss our 

compliance analysis method, which ensures policies in EMR 

systems are in compliance with HIPAA regulations by 

leveraging logic-based reasoning techniques. We apply this 

approach to our cloud-based EHRs sharing system. In addition, 

our evaluation results demonstrate the feasibility and 

effectiveness of our approach. 

The rest of this paper is organized as follows: we discuss 

background technologies including HIPAA regulations, EMR 

systems and Answer Set Programming in Section II. In Section 

III, we present an overview of our secure EHRs sharing 

framework with HIPAA compliance management 

enhancement. Section IV discusses our HIPAA compliance 

management approach in details. Section V describes the 

system design and implementation of prototype system 

followed by system evaluation in Section VI. We discuss the 

related work in Section VII. Finally, Section VIII concludes 

this paper and discusses our future direction. 

 

II. BACKGROUND TECHNOLOGIES 

In this section, we describe background technologies 
including HIPAA regulations, current EMR systems, and 

Answer Set Programming (ASP) which is a declarative 

programming paradigm oriented towards combinatorial search 

problems and knowledge intensive applications. 

A. HIPAA Regulations 

The U.S. HIPAA title II was enacted in 1996 for numerous 

reasons which include the need for increased protection of 

patient medical records against unauthorized use and 

disclosure. The HIPAA requires the U.S. Department of Health 

and Human Services (HHS) to develop, enact and enforce 

regulations governing electronically managed patient 

information in the healthcare industry. As a result, a special 

committee in HHS prepared several recommendations based 

upon extensive expert witness testimony from academia, 

industry and government, deriving the following conclusions:  

The Privacy Rule requires implementing policies and 

procedures to provide federal protections for personal health 

information held by covered entities and gives patients an array 

of rights with respect to that information. 

The Security Rule specifies a series of administrative, 

physical, and technical safeguards for covered entities to assure 

the confidentiality, integrity, and availability of electronic 

protected health information. 

The Enforcement Rule states the actions that must be taken 

by HHS to ensure compliance and accountability under the 

HIPAA, including the process for reviewing complaints and 

assessing fines. 

In this paper, we focus on the section §164 of HIPAA, which 

regulates the security and privacy issues in the health care 

industry. It covers general provisions, security standards for the 
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protection of electronic health information, and privacy of 

individually identifiable health information. We are especially 

concerned with the subsection §164.506, which covers the use 

and disclosure of electronic health information in carrying out 

treatment, payment, or health care operations.  

B. EMR Systems 

In today's healthcare domain, paper-based medical 

information records are transforming into EMRs. There are a 

lot of benefits brought by EMRs including improved quality of 

care, improved documentation and accuracy, reduced expense, 

reduced medical errors, better access to medical information, 

enhanced security, and so on.  The Centers for Disease Control 

and Prevention (CDC) reported that the EMR adoption rate had 

steadily risen to 48.3 percent at the end of 2009 (Feingold, 

2011). EMR systems are also becoming more and more popular 

in other regions of the world, such as Asia and Europe. 

An EMR system is a software system that provides an 

electronic version of a patient's health records such as the 

patient's progress, problems, medications, vital signs, past 

health history, immunizations, laboratory data and radiology 

reports. A core EMR system consists of the clinical data 

repository (CDR), clinical decision support system (CDSS), 

controlled medical vocabulary (CMV), computerized provider 

order entry (CPOE), pharmacy management system, and the 

electronic medication administration record (eMAR). There are 

a lot of commercial EMR systems as well as many open source 

EMR systems such as: VistA (http://worldvista.org/), 

PatientOS (http://www.patientos.org/), OpenMRS 

(http://openmrs.org/), and OpenEMR (http://www.oemr.org/). 

We give a brief description for those open source EMR system 

as follows: 

 VistA is a mature health information system developed 

by the US Department of Veterans Affairs. It is in place 

across all Veterans hospitals and clinics and has been 

shown to decrease costs significantly. 

 PatientOS is an industry-driven open-source system that 

gains revenue from service contracts of installing and 

customizing this system. It appears to be a front-end 

implementation of openEHR. 

 OpenMRS is a community-developed, open-source 

system led by a collaborative effort of the Regenstrief 

Insitute (Indiana University) and Partners in Health 

(Boston Philanthropic Organisation). It was intended to 

provide sustainable health information technology that 

could be used to fight diseases most prevalent in 

low-resource countries, including AIDS, tuberculosis 

and malaria. 

 OpenEMR is an ONC-ATB Ambulatory EHR 

2011-2012 certified electronic health records and 

medical practice management application. It features 

fully integrated electronic health including records, 

practice management, scheduling, and electronic billing. 

C. Answer Set Programming 

ASP (Marek, 1999; Lifschitz, 2008) is a recent form of 

declarative programming that has emerged from the interaction 

between two lines of research---nonmonotonic semantics of 

negation in logic programming and applications of satisfiability 

solvers to search problems. The idea of ASP is to represent the 

search problem we are interested in as a logic program whose 

intended models, called ―stable models (a.k.a. answer sets),‖ 

correspond to the solutions of the problem, and then find these 

models using an answer set solver---a system for computing 

stable models. Like other declarative computing paradigms, 

such as SAT (Satisfiability Checking) and CP (Constraint 

Programming), ASP provides a common basis for formalizing 

and solving various problems, but is distinct from others such 

that it focuses on knowledge representation and reasoning: its 

language is an expressive nonmonotonic language based on 

logic programs under the stable model semantics (Gelfond & 

Lifschitz, 1988; Ferraris et al., 2011), which allows elegant 

representation of several aspects of knowledge such as 

causality, defaults, and incomplete information,  and provides 

compact encoding of complex problems that cannot be 

translated into SAT and CP (Lifschitz  & Razborov, 2006). As 

the mathematical foundation of answer set programming, the 

stable model semantics was originated from understanding the 

meaning of negation as failure in Prolog, which has the rules of 

the form 

 

𝑎1 ←  𝑎2 ,⋯ , 𝑎𝑚  𝑛𝑜𝑡 𝑎𝑚+1 ,⋯ , 𝑛𝑜𝑡 𝑎𝑛    1      

 

where all 𝑎1  are atoms and not is a symbol for negation as 

failure, also known as default negation. Intuitively, under the 

stable model semantics, rule (1) means that if you have 

generated 𝑎2 , ⋯ , 𝑎𝑚  and it is impossible to generate any of 

𝑎𝑚+1 ,⋯ ,𝑎𝑛  then you may generate 𝑎1. This explanation seems 

to contain a vicious cycle, but the semantics are carefully 

defined in terms of fixpoint. 

 While it is known that the transitive closure (e.g., 

reachability) cannot be expressed in first-order logic, it can be 

handled in the stable model semantics. Given the fixed extent of 

edge relation, the extent of reachable is the transitive closure of 

edge. 

 

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑋,𝑌  ← 𝑒𝑑𝑔𝑒 𝑋,𝑌  

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑋, 𝑌  ← 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑋,𝑍 , 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑍, 𝑌   
 

Several extensions were made over the last twenty years. The 

addition of cardinality constraints turns out to be useful in 

knowledge representation. A cardinality constraint is of the 

form 𝑙𝑜𝑤𝑒𝑟{𝑙1 ,⋯ , 𝑙𝑛 }𝑢𝑝𝑝𝑒𝑟  where 𝑙1 , ⋯ , 𝑙𝑛  are literals and 

lower and upper are numbers. A cardinality constraint is 

satisfied if the number of satisfied literals in 𝑙1 , ⋯ , 𝑙𝑛  is in 

between lower and upper. It is also allowed to contain variables 

in cardinality constraints. For instance, 

http://www.patientos.org/
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𝑚𝑜𝑟𝑒_𝑡ℎ𝑎𝑛_𝑜𝑛𝑒_𝑒𝑑𝑔𝑒(𝑋) ← 2{𝑒𝑑𝑔𝑒 𝑋, 𝑌 : 𝑣𝑒𝑟𝑡𝑒𝑥(𝑌)}. 
 

means that more_than_one_edge(X) is true if there are at least 

two edges connect X with other vertices. 

 The language also has useful constructs, such as strong 

negations, weak constraints, and preferences. What 

distinguishes ASP from other nonmonotonic formalisms is the 

availability of several efficient implementations, answer set 

solvers, such as smodels, cmodels, clasp which led to practical 

nonmonotonic reasoning that can be applied to industrial level 

applications. 

 

III. OVERVIEW OF SECURE EHRS SHARING 

FRAMEWORK 

In this section, we present our secure EHRs sharing 

framework which securely manages the access to composite 

EHRs integrated from various healthcare providers at different 

granularity levels. In particular, our framework supports 

HIPAA compliance management to ensure the sharing of EHRs 

to be compliant with HIPAA regulations in clouds. Figure 1 

shows an overview of our framework. Healthcare providers 

from various domains such as primary care, pharmacy, clinic 

lab and emergency care host their EMRs in clouds to achieve 

lower operation cost, higher interoperability, and ubiquitous 

service delivery and so on. They can reside in a single cloud or 

multiple clouds depending on their deployment needs. 

Different cloud types, such as public cloud, private cloud, and 

hybrid cloud, are also choices for healthcare providers 

according to their security and cost concerns. The EHR 

Aggregator module retrieves distributed EHRs from various 

EMR systems in clouds based on their domain EHR data 

schemas, and aggregates them into virtual composite EHRs. 

The Reference Monitor module contains two sub modules: 

Access Control sub module provides selective EHRs sharing 

capability to regulate the access of the composite EHRs with 

only authorized users; Compliance Management sub module 

ensures EHRs sharing to be compliant with HIPAA regulations. 

Stakeholders involved include patients, healthcare practitioners 

and system administrators. Patients are the owners of EHRs 

who specify access control policies to control who can access 

which portions of their EHRs. Healthcare practitioners are the 

viewers of EHRs who submit access requests. And they are 

usually associated with specific healthcare providers with 

various roles such as general doctors, dentists, doctor assistants, 

emergency medical technicians, and medical insurance agents. 

Administrators perform administrative functions such as 

activating or deactivating users, and registering or 

de-registering healthcare providers. Details on the EHR 

Aggregator module and the Access Control sub module have 

been discussed in our previous work (Wu, 2012). In this paper, 

we focus on addressing the Compliance Management sub 

module in our framework.  

IV. COMPLIANCE MANAGEMENT APPROACH 

In this section, we present a compliance management 

approach which enables to bridge the gap between EMR 

systems and HIPAA regulations in cloud computing 

environments, as shown in Figure 2. The inputs of this 

approach are high-level HIPAA regulations and policies in 

EMR systems. The policy translator module transforms both 

high-level HIPAA regulations and healthcare systems’ policies 

into a generic policy representation. The logic translator 

module further transforms the generic representations of 

HIPAA regulations and healthcare systems’ policies into logic 

programs. Then, the logical reasoning module provides 

compliance analysis service.  

The reasons why we introduce a layer of generic policy 

representation instead of directly transforming policies into the 

logical representation in our framework are as follows: First, 

the generic policy representation facilitates the process of 

compliance analysis since both HIPAA regulations and 

healthcare systems’ policies are uniformly represented by using 

the same policy scheme; Second, the generic policy 

representation improves the interoperability, consistency, and 

reusability of the policies from different organizations and 

resources;  Third, different policy reasoning techniques can be 

adopted upon our generic policy representation. Hence, the 

compliance analysis in our framework will not be limited to any 

specific reasoning technique.  

On the other hand, there are several well-established access 

control policy languages such as XACML 

(https://www.oasis-open.org/committees/) and EPAL 

(http://www.w3.org/Submission/2003/SUBM-EPAL-2003111

0/). The reasons we define a new generic policy representation 

are as follows: First, existing policy languages provide 

rich-feature supports on policy specification and enforcement 

rather than the focus of this work–policy compliance 

management. Second, our generic policy representation scheme 

is defined based on the extracted policy patterns, which are 

 
 

Figure 1:  Secure EHRs Sharing Framework Overview 

 



 5 

directly derived from HIPAA regulations. Hence, our policy 

representation for HIPAA regulations are more concise than 

other general-purpose languages, which would increase system 

overheads in terms of transformation processes due to their 

relatively complex syntaxes.    

A. Extracting Policy Pattern 

To conduct compliance analysis, both HIPAA regulations 

and healthcare systems’ policies should be transformed into a 

generic policy representation. In order to define a uniform 

policy scheme, general policy patterns should be identified. We 

present an approach to achieve such a goal as shown in Figure 

3. Since this process is a one-time effort and requires high 

intelligence, it is currently driven manually. First, we identify 

keywords from HIPAA regulations and healthcare systems’ 

policies. Then, we categorize identified keywords into different 

classes and give a label to each class. Regarding any new 

HIPAA regulation, we map each keyword from the regulation 

to a class. The composition of different labels constructs a 

structured pattern. After analyzing all identified policy patterns, 

we formulate a generic policy scheme to facilitate a uniform 

representation of both HIPAA regulations and healthcare 

systems’ policies. Figure 3 demonstrates an example for 

extracting policy patterns from one section of HIPAA 

regulations. Note that even though we only analyzed one 

particular section of HIPAA regulations, we still believe our 

approach is general enough and is able to accommodate other 

sections of HIPAA regulations as well as various healthcare 

systems’ policies for policy pattern extractions.  

Table 1 shows the keyword dictionary we extracted from 

section §164.506. It contains six classes and each class is 

associated with a label and several keywords. Based on this 

keywords dictionary, we analyze all rules from section 

§164.506. Rule examples and corresponding policy patterns are 

partially given as follows: 

 

 164.506(a) Except with respect to uses or disclosures 

that require an authorization, a covered entity may use or 

disclose protected health information for treatment, 

payment, or health care operations. 

Extracted Pattern: <condition> <actor> <modality> 

<action> <object> for <purpose> 

 

 164.506(b)(1) A covered entity may obtain consent of 

the individual to use or disclose protected health 

information to carry out treatment, payment, or health 

care operations. 

Extracted Pattern: <actor> <modality> <action> 

<object> to <action> <object> for <purpose> 

 

 164.506(c)(1) A covered entity may use or disclose 

protected health information for its own treatment, 

payment, or health care operations. 

Extracted Pattern: <actor> <modality> <action> 

<object> for <purpose> 

 

 164.506(c)(2) A covered entity may disclose protected 

health information for treatment activities of a health 

care provider. 

Extracted Pattern: <actor> <modality> <action> 

<object> for <purpose> 

B. Formulating Policy Specification 

To enable compliance analysis of policies, it is essential to 

put a generic and uniform policy specification in place. Our 

policy specification scheme is built upon the identified policy 

patterns based on the approach addressed earlier and shown as 

follows: 

Definition 1. [Generic Policy Specification] A generic policy 
is represented as a 8-tuple p = <actor, modality, action, object, 

purpose, condition, id, effect>, where 

 

 
 

Figure 2:  Compliance Management Approach 

 
 

Figure 3:  Approach for Policy Pattern Extraction 

 

Table 1:  Key Word Dictionary 

Class ID Class Label  

Class 1 Actor Covered entity(CE), healthcare provider, individual, patient 

Class 2 Action use, disclose, require, obtain, carry out, permit, has, had, pertains, participate 

Class 3 Purpose treatment, payment, health care operations, health care fraud, abuse detection, compliance 

Class 4 Object phi, consent 

Class 5 Modality may 

Class 6 Conditions except, if, when 

 



 6 

actor = < D, R, O > is a 3-tuple, where D, R and O represent 

disseminator, receiver, and owner, respectively; 

 

modality depends on the implication that a policy expresses. 

For instance, if the policy expresses the concept of 

obligation, the corresponding modality can be must; if the 

policy expresses the concept of privilege, the corresponding 

modality can be may; 

 
action is a particular action defined by a policy, such as use, 

disclose,  share, and so on; 

 

object is a protected healthcare resource, such as patient 

demographic details, medical histories, laboratory test 

results,  radiology images (X-rays, CTs), and so on; 

 

purpose is the reason for an actor to perform an action on an 

object; 

 

condition = < CD, CR, CO, CCON > is a 4-tuple, where 

CD, CR, CO and CCON indicate conditions on disseminator, 
receiver, owner and context, respectively; 

 

id is the citation to the portion of HIPAA regulations to which 

a policy refers; and 

 

effect is the authorization effect of a policy including permit 

and deny. 

C. Transformation Approach 

In this section, we discuss our two-step transformation 

approach. In the first step, we transform both HIPAA 

regulations and healthcare systems’ policies into a uniform 

formal representation. In the second step, we transform the 

formal representation into a logical representation. The first 

step in our transformation is shown in Figure 4. It mainly 

contains four sub-procedures: Establishing Word Dictionary, 

Natural Language Processing, Matching and Removing 

Disjunction. We address the details of each procedure as 

follows: 

 Establishing Word Dictionary. The goal of this step is to 

categorize keywords. More specifically, we first identify 

keywords from the given text and categorize identified 

keywords into different classes. We then assign a label to 

each class. This step utilizes the word dictionary built 

when extracting generic policy patterns. Each class is 

managed and stored in an arraylist data structure. 

 

 Natural Language Processing. The goal of this step is to 

divide each rule into syntactically correlated parts of 

words. Some NLP technique (Lewis & Jones, 1996), 

such as sentence detection, tokenization, pos-tagging, 

and chunking are utilized in this step. Sentence detection 

API detects how many sentences are there in the input 

text. Tokenization API segments an input sentence into 

tokens. Tokens can be words, punctuation, numbers and 

so on. Pos-tagging API marks tokens with their 

corresponding word type based on the token itself and 

the context of the token. And chunking API divides each 

rule into syntactically correlated parts of words like noun 

groups, verb groups and so on. This step facilitates the 

next matching step. 

 

 Matching. The goal of this step is to identify each 

element of the generic policy scheme including 

disseminator, receiver, owner, modality, action, object, 

purpose, condition, ruleID and effect. More specifically, 

 
Figure 4:  Approach for the First Step Transformation 
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based on the results of previous procedures, we compare 

each correlated part with dictionary words and return the 

label if there exists a matching word in the word 

dictionary. Then based on the label, the placement of the 

word in the generic policy scheme is determined. 

 

 Removing Disjunction. To remove disjunction from the 

rules, each rule may need to be split into several separate 

rules. Since the elements of receiver, action and purpose 

in a rule may have multiple instances, we further split a 

given rule based on those instances. More specifically, 

we store instances with disjunction relationships into an 

arraylist data structure. Based on the length of the 

arraylist, numbers of constructing rule processes are 

repeated. 

 

The following example demonstrates how our transformation 

approach works with HIPAA rules in a natural language: 

 Input: 164.506(c)(1) A covered entity may use or 

disclose protected health information for its own 

treatment, payment, or health care operations. 

 Output: (<CE, CE, CE>, may, use, phi, treatment, N/A, 

164.506(c)(1), allow) 

(<CE, CE, CE>, may, use, phi, payment, N/A, 

164.506(c)(1), allow) 

(<CE, CE, CE>, may, use, phi, healthcare operation, 

N/A, 164.506(c)(1), allow) 

(<CE, CE, CE>, may, disclose, phi, treatment, N/A, 

164.506(c)(1), allow) 

(<CE, CE, CE>, may, disclose, phi, payment, N/A, 

164.506(c)(1), allow) 

(<CE, CE, CE>, may, disclose, phi, healthcare 
operation, N/A, 164.506(c)(1), allow) 

 

In this example, we can notice two actions: use and disclose 

and three purposes: treatment, payment, and health care 

operations in the HIPAA rule represented in a natural language. 

Based on the combination of actions and purposes, we obtain 

six sub-rules during the transformation process. 

The second step of our transformation approach is to 

transform the generic representation of policies into a logical 

representation for conducting policy reasoning analysis. We 

adopt ASP as the underlying logic programming. This 

procedure interprets the semantics of the generic policy 
specification in terms of the Answer Set semantics. Based on 

each element of the generic policy definition, we define 

following ASP predicates: decision(ID, EFFECT) where ID is 

a policy id variable and EFFECT is a policy authorization 

decision variable; actor(D, R, O) where D, R and O are 

variables respectively for disseminator, receiver, and owner; 

modality(M); action(A); object(OBJ); purpose(P) and 

condition(C). We consider decision(ID, EFFECT) as the ASP 

rule head and the rest predicates as the ASP rule body. Hence, 

an ASP representation of generic policy is expressed as 

follows: 
 

 decision(ID, EFFECT) :- actor(D, R, O), modality(M), 

action(A), object(OBJ), purpose(P), condition(C). 

 

The following example shows how our transformation converts 

a generic policy representation into an ASP representation:  

 

 Generic representation of a HIPAA regulation: (<CE, 

CE, CE>, may, use, PHI, treatment, N/A, 

164.506(c)(1)(1), permit) 

 ASP representation: decision(164506c11, permit) :- 

actor(ce, ce, ce), modality(may), action(use), 

object(phi), purpose(treatment), condition(na). 

 

D. Compliance Analysis 

A policy is in compliance with another policy if the same 

effects are obtained when those policies are applied to the same 

request; otherwise, the policy is in non-compliance with the 

other policy. To apply this proposition to HIPAA analysis, we 

further make this intuition more precise by defining the notion 

of non-compliance. With respect to the same policy variables, if 

the effect of healthcare systems’ policy is allow while the effect 

of HIPAA regulations is deny, we call this non-compliance case 

as less-constrained non-compliance. If the effect of healthcare 

system is deny while the effect of HIPAA regulations is allow, 

we call this case as over-constrained non-compliance. Policy 
makers of the healthcare systems should strengthen the control 

of the policy if less-constrained non-compliance is detected or 

loosen the control of the policy if over-constrained 

non-compliance is detected. The compliance definition can be 

also extended to analyze the compliance relations between a 

policy and a policy set or between two policy sets. In practice, 

both healthcare systems’ policies and HIPAA regulations 

contain multiple sub-policies. If the healthcare systems’ 

policies do not comply with HIPAA regulations, our approach 

can identify the counterexamples for compliance analysis. 

After the two-step transformation, we have ASP 
representations of both HIPAA regulations and local healthcare 

systems’ policies. To bridge the semantics of both HIPAA 

regulations and healthcare systems’ policies phrases in ASP, 

we perform a terminology mapping process. It is an essential 

process which maps the phrases in healthcare systems’ policies 

onto the terminology used in HIPAA regulations. Then, 

corresponding ASP rules are created to represent those 

terminology mappings. Ideally, terminology should be mapped 

early during the phase system policies being made, since 

regulation-based compliance requirements should be 

considered later on. However, in practice, we need to deal with 

healthcare systems whose policies have been specified. These 
policies may be defined before the existence of regulations, or 

based on an older version of the regulations, or specified 

without consideration of the regulations at all. 

 

Consider the ASP representation of HIPAA regulations as 

privacy/security property program F, the ASP representation of 

the local healthcare systems’ policies as program G and the 

terminology mapping rules as H. Then the problem of 

compliance checking can be casted into the problem of 

checking whether the program 

 

𝐺 ∪ 𝐹 ∪ 𝐻 ∪ 𝐸 



 8 

has no answer set using ASP solver, where E is the program 

expressing program G and program F has conflicting decision 

results. If no answer is found, it implies that the 

privacy/security property F is verified. Otherwise, an answer 

set returned by an ASP solver serves as a counterexample that 

indicates why the program G does not entail F (Ahn et al., 

2010). 

V. SYSTEM DESIGN AND IMPLEMENTATION 

A. System Architecture 

Figure 5 shows the system architecture of our cloud-based 

EHRs sharing system. The bottom is an infrastructure layer 

which provides computing and storage capabilities to host 

various EMR systems. This can be achieved by several cloud 

computing software solutions such as XenServer, OpenStack, 

and Eucalyptus. By leveraging the cloud infrastructure, 

healthcare providers can tremendously reduce their cost for 

building and maintaining their own data canters to host EMR 

systems. The middle box is the management module including 

User Interface, Security Service module, EHR Manager 

module, Policy Manager module and CONNECT module. The 

User Interface has three kinds of different views according to 

users’ identities: (1) Healthcare practitioners are able to 

discover a patient with at least 3 characters of the patient's 

name. By selecting the desired patient, they can submit the 

patient’s EHRs access request. Based on the authorization 

result, the request will be allowed or denied; (2) Patients are 

able to view their EHRs from particular healthcare providers 

they are associated with or the composite EHRs aggregated 

from all healthcare providers they obtained services from. 

System policies for certain EMRs or on the composite EHRs 

need to be consented by patients; (3) Administrators have the 

capability to manage users and healthcare providers’ EMR 

systems registered in the whole system. Security Service 

module consists of three core sub-modules: Authentication 

sub-module authenticates users to make sure only legitimate 

users can access the system; Access Control sub-module 

controls users’ access to EHRs from particularly registered 

EMR systems or portions of the composite EHRs based on 

authorization results generated from Policy Manager; and 

Compliance Management sub-module provides transformation 

and reasoning services to enforce our proposed HIPAA 

compliance management approach in Section IV. More 

specifically, both HIPAA regulations and system polices in the 

natural language representation can be transformed into a 

formal representation, and further be converted to a logic-based 

representation through the transformation service. Reasoning 

service facilitates compliance analysis to check whether system 

policies comply with HIPAA regulations by leveraging 

logical-based techniques. EHR Manager module retrieves 

distributed EHRs or the composite EHRs from CONNECT 

module and share them with authorized users under the control 

of Access Control module. Policy Manager module consists of 

two sub modules: Policy Enforcement sub-module enforces 

related policies when receiving EHRs access requests from 

users and generates authorization results to Access Control 

module; and Policy Specification sub-module provides 

capability for patients to specify their access control policies 

based on the policy scheme defined in Definition 1. CONNECT 

module includes four sub-modules: Registry Management 

sub-module provides administrative functionalities on EMR 

systems hosted in the cloud infrastructure like adding, deleting, 

listing and updating; Patient Discovery sub-module enables 

healthcare practitioners to discover patients from all registered 

EMR systems and stores discovery results in a local database 

for caching; EHRs Retrieval sub-module retrieves all related 

distributed EHRs from registered EMR systems in clouds. EHR 

data schemas from various healthcare domains such as primary 

care, pharmacy and clinic lab are realized by this module. 

Elemental healthcare information is retrieved and constructed 

into EHR instances based on their EHR data schemas; and 

Aggregator sub-module provides aggregation functionality to 

integrate all distributed EHR instances from EHRs Retrieval 

module. Since CONNECT module is not the focus of this 

paper, its design details can be found in (Wu, 2012). 

B. Implementation Details 

Our cloud infrastructure environment is built with Citrix 

XenServer 6.0 and three Dell PowerEdge R510 rack servers 

with 16 cores, 30 GB RAM and 925 GB disk space. We 

deployed several OpenMRS 1.8.2 as EMR systems into VMs 

running on the cloud infrastructure. MySQL Community Sever 

5.5 is used for database server. The core EHRs aggregation and 

sharing logic are implemented using Java and the presentation 

layer is written in JavaSever Pages (JSP). A transformation tool 
with two major functionalities for policy transformation is 

implemented to support compliance management module. The 

first functionality is developed based on OpenNLP. It 

transforms any HIPAA regulations or healthcare systems’ 

policies specified in natural language into the generic policy 

representation. OpenNLP is an open source natural language 

processing project and hosts a variety of java-based NLP tools. 

Some functions of our tool, such as sentence-detecting, 

tokenization, pos-tagging, and chunking, were implemented 

based on OpenNLP’s APIs. The sentence-detecting can detect 

 
 

Figure 5:  System Architecture 
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that a punctuation character marks the end of a sentence or not. 

In other words, a sentence is defined as the longest white space 

trimmed character sequence between two punctuation marks. 

The tokenization segments an input character sequence into 

tokens. The pos-tagging uses a probability model to predict the 

correct pos-tag out of the tag set. The chunking divides a text in 

syntactically correlated parts of words, like noun groups, verb 
groups. The second functionality of our tool is to transform the 

generic policy representation into ASP programs for the 

purpose of logic-based policy reasoning. Figure 6 shows an 

example of how our tool transforms HIPAA regulations 

defined in a natural language into the generic policy 

representation. Figure 7 demonstrates how our tool transforms 

HIPAA regulations with the generic policy representation into 

ASP programs. 

VI. EVALUATION 

In this section, we present a case study to demonstrate the 

feasibility of our compliance management approach and 

discuss the system performance evaluation on transformation 

and reasoning services.  

A. Case Study 

1) Policy Transformation 

Our prototype system supports the selective sharing of 

composite EHRs aggregated from various EMR systems in 

cloud computing environments. The access of the composite 

EHRs is controlled based on system policies in natural 

language consented by patients. Ensuring the system is in 

compliance with HIPAA regulations is actually transformed to 

the problem of checking whether system policies comply with 

HIPAA regulations. Suppose there is a healthcare provider 

called E-Health utilizing our cloud-based system to provide 
healthcare services to its customers. We select one of their 

system policies as an example to demonstrate the compliance 

analysis. Other system policies can be examined in the same 

way.     

 

 System Policy: E-Health may share your information 

with your doctors, hospitals or other health care 

providers to help them provide medical care to you. 

 

Using our transformation approach, the above system policy 

can be transformed into following three sub-rules represented 

in our policy specification scheme: 
 

 (<E-Health, doctor, patient>, may, share, information, 

treatment, N/A, l11, permit) 

 (<E-Health, hospitals, patient>, may, share, information, 

treatment, N/A, l12, permit) 

 (<E-Health, health care providers, patient>, may, share, 

information, treatment, N/A, l13, permit) 
 

Furthermore, the above three sub-rules can be transformed 

into corresponding ASP rules as follows: 

 

 decision(l11, permit) :- actor(ehealth, doctor, patient), 

modality(may), action(share), object(information), 

purpose( treatment), condition(na).  

 decision(l12, permit) :- actor(ehealth, hospitals, patient), 

modality(may), action(share), object(information),  

purpose(treatment), condition(na). 

 decision(l13, permit) :- actor(ehealth, hcp, patient), 
modality(may), action(share), object(information), 

purpose( treatment), condition(na). 

 

2) Terminology Mapping 

In order to conduct compliance analysis, terminology 

mapping is an essential activity, which entails mapping the 

natural language phrases in healthcare systems’ policies onto 

the terminology used in HIPAA regulations. A prerequisite of 

the terminology mapping is to properly define two 

terminologies: regulation terminology and healthcare system 

policy terminology. In this case study, the regulation 
terminology is based on a keywords dictionary extracted from 

the section §164.506 in HIPAA. The local healthcare system’s 

policy terminology is based on the analysis of the policy we 

chose in the OSF Healthcare system. The terminology mapping 

table for the case study is shown in Table 2.  

 

3) Compliance Analysis 

To make this case study more concise, we choose one 

HIPAA rule (§164.506(1)) to evaluate the system’s policy. In 

 
 

Figure 6:  Generic Policy Representation Transformation 

 

 
 

Figure 7:  ASP Representation Transformation 

 

Table 2:  Terminology Mapping 

System Policy Terminology HIPAA Terminology 

E-Health covered entity 

doctor covered entity 

hospital covered entity 

health care provider covered entity 

information PHI 

share disclose 

provide medical care to you treatment 
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practice, our approach can be applied to the whole HIPAA 

regulations to construct a knowledge base for compliance 

analysis. Figure 8 shows ASP representation for our case study. 

After we run this program, no answer set is found, which means 

the local healthcare policy complies with the HIPAA 

regulations. Suppose we have the system’s policy with a policy 
ID of l12: 

 

 decision_system(l12, deny) :- actor(ehealth, hospitals, 

patient), modality(may), action(share), 

object(information), purpose(treatment), condition(na). 

 

The ASP solver can find out one answer set as follows: 

 

 modality(may) action(share) action(use) 

object(information) object(phi) purpose(treatment) 

condition(na) actor(ehealth, hospitals, patient) actor(ce,ce,ce) 
decision local(l12,deny) decision hipaa(c11,permit)  

 

The above answer set indicates a counterexample explaining 

the violation of HIPAA regulations. According to the 

modified version of local policy l12, the request for E-Health 

to share the patients’ information with hospitals for the 

purpose of treatment will be denied. However, HIPAA 

regulations will allow the request. Hence, the system policy 
l12 does not comply with HIPAA regulations. 

B. Performance Evaluation 

As HIPAA regulations are typically complex and lengthy, 

the efficiency and scalability are two critical metrics for 

evaluating the transformation service in our Compliance 

Management sub-module. We conducted experiments on a 
cloud instance with 2 cores 2.40 GHz CPU and 4 GB RAM in 

our XenServer-based cloud system. More specifically, we 

measured the time consumed by each transformation step. The 

rules to be transformed in our experiments are randomly 

selected from HIPAA regulations section §164.506. Due to the 

limited number of rules in that section, rules may repeatedly 

appear in the transformation input. Note that the repeated rules 

are still valid inputs since we focus on the time consumed by 

the transformation process. Figure 9 shows performance 

measurements on policy transformation and ASP 

transformation. It indicates that policy transformation (from 
HIPAA regulations to the generic policy representation) 

constantly consumed the time along with the increase of 

HIPAA rules while ASP transformation was quite stably 

performed. Also, we further evaluated the performance on each 

sub-task under policy transformation as discussed in Section 

IV(C): Natural Language Processing (sub 2) and Matching & 

Removing Disjunction (sub 3 & 4). We observed that Natural 

Language Processing consumed on average 85% of the total 

transformation time.  

Also, we measured the time consumed by ASP solver with a 

static number of HIPAA rules as a knowledge base to check a 

local healthcare system's policies with the linear increase of 
rule size from the same healthcare system mentioned in our 

case study. We chose 9 rules of HIPAA regulations from the 

section §164.506 as a compliance knowledge base. As shown in 

Table 3, when the number of local healthcare system policies is 

10, the reasoning time is just 12.3 milliseconds.  When the 

number of local healthcare system policy increases to 50, the 

time consumed by reasoning is still less than 1 second. Hence, 

the time overhead in our reasoning process is manageable.  

 
 

Figure 8:  ASP Representation of the Case Study 

 

 

 
Figure 9:  Transformation Time 

 

Table 3:  Reasoning Time 

# of Policies: 10 20 30 40 50 

# of Answer Sets: 2 4 6 8 10 

Time (ms): 12.3 42.4 104.7 305.9 917.4 
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VII. RELATED WORK 

 We discuss the related work from four aspects: 

formalization efforts for regulations, logics for specifying 

policies, regulations and requirement analysis and access 

control in cloud computing. 

Formalization Efforts for Regulations: PrivacyLFP 

(DeYoung et al., 2010) is proposed as an extension of Logic of 

Privacy and Utility (LPU) (Barth et al., 2006; Barth et al., 

2007). Lam et al. (2009) have formalized §164.502, §164.506, 

and §164.510 of HIPAA in a fragment of stratified Datalog 

with one alternation of negation, and built a prototype tool to 

check the lawfulness of a transmission. May et al. (2006) 

presented privacy APIs, which extends the traditional matrix 

model of access control, and used them to formalize two 

versions of HIPAA §164.506. 

Logics for Specifying Policies and Regulations: Hilty et al. 

(2005) have shown how to specify future obligations from data 

protection policies in Distributed Temporal Logic (DTL). They 

used distributed event structures to model interactions between 

multiple parties involved in data access and distribution. Basin 

et al. (2010) used an extension of LTL, Metric First-Order 

Temporal Logic (MFOTL) for specifying security properties. 

Dinesh et al. (2008) have developed logic for reasoning about 

conditions and exceptions in privacy laws. Lam et al. (2012) 

presented an algorithm to create a finite model of a 

representative hospital for any formalized healthcare policy of 

a certain form, which is useful to produce testing cases for 

compliance analysis. Besides, they demonstrated an approach 

to automatically generate access control policy for 

Attribute-Based Encryption (ABE) from the policy formalized 

as a logic program, which benefits to hospital information 

exchange (HIE). However, their compliance analysis 

mechanism does not output counterexamples directly when 

inconsistencies exist.  Besides, their approach depends on a 

specific logic language – Prolog. The generic policy scheme 

proposed in this paper makes our approach applicable to 

various logic programming languages.   

Requirement Analysis: Researchers have investigated 

methods to analyze security requirements using aspects (Xu et 

al., 2006), goals (Giorgini et al., 2005; Van, 2004), problem 

frames (Lin et al. 2003), trust assumptions (Haley et al. 2004) 

and structured argumentation (Haley et al. 2005). More recent 

work focused on the rigorous extraction of requirements from 

security-related policies and regulations (Breaux et al., 2006; 

Lee et al., 2004). To support the software engineering effort to 

derive security requirements from regulations, Breaux et al. 

(2008) presented a methodology to extract access rights and 

obligations directly from regulation texts. They applied this 

methodology specifically to HIPAA Privacy Rule. Maxwell et 

al. (2010) presented a production rule framework that software 

engineers can use to specify compliance requirements for 

software. They applied the framework to check iTrust, an open 

source electronic medical records system, for supporting 

compliance with the HIPAA Security Rule. This is the closest 

work to this paper in term of motivation. However, compared 

with our work, their work has some limitations: First, they 

formalized HIPAA regulations based on production rule 

models. Thus, their formalization is constrained by a specific 

logic programming technique. In contrast, our formalization of 

HIPAA regulations is based on a generic policy specification 

scheme, which can be then utilized by various logic-based 

reasoning techniques. Second, in their work, users need to 

prepare a canonical list of compliance requirements for 

compliance analysis through selecting all related preconditions 

and then querying the production rule model. The compliance 

requirements generated by less-knowledgeable users may not 

be comprehensive enough, which can further affect the 

credibility of compliance analysis results. However, our 

approach can automatically transform HIPAA regulations as a 

knowledge base. Third, their compliance analysis process 

cannot be conducted automatically. For each requirement in the 

compliance requirements, they checked every existing 

requirement represented by a template to examine whether it 

already operationalizes the canonical requirement by replacing 

legal text definitions with the appropriate and equivalent 

definitions used in the existing requirement specification. In 

our work, we transform both HIPAA regulations and healthcare 

systems’ policies into ASP representation as an input for ASP 

solver to carry out compliance analysis automatically. Finally, 

the lack of evaluation of their approach leaves behind the 

ambiguities of their solution. 

Access Control in Cloud Computing: Zhang & Liu (2010) 

identified a set of security requirements for eHealth application 

in clouds and proposed an EHR security reference model to 

support the sharing of EHRs. Jafari et al. (2011) proposed a 

patient-centric digital right management (DRM) approach to 

protect privacy of EHRs stored in a cloud based on the patient 

preferences. However, those two approaches are not 

fine-grained and cannot accommodate selective EHR sharing 

requirements. Li et al. (2010) proposed a novel framework of 

access control to realize patient-centric privacy for personal 

health records in cloud computing by leveraging attribute based 

encryption (ABE) techniques. Their approach is more from the 

perspective of access control subject to ensure that EHRs can 

be only shared with a selective set of users. Our approach is 

focused on sharing selective portions of access control objects 

with authorized users. Wu el al. (2010) proposed an approach 

to enforce the Chinese Wall security policy at 

Infrastructure-as-a-Service (IaaS) layer to address the problems 

of insecure information flow in a cloud computing 

environment.  

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we presented a compliance management 

approach to ensure the compliance between EMR systems and 

legal regulations, such as HIPAA regulations, in cloud 

computing environments. We first extracted policy patterns 

from both HIPAA regulations and EMR systems’ policies, 

along with a generic policy specification scheme. Then, we 

discussed our transformation and compliance analysis method 

to determine whether an EMR system is in compliance with 

HIPAA regulations by leveraging logic-based reasoning 

techniques. We designed and implemented a cloud-based 

EHRs sharing system to demonstrate the practicality and 
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efficiency of our approach. 

As part of our future work, we would further investigate how 

cross-referenced policies can be analyzed in our compliance 

management approach. Also, we would attempt to refine and 

enhance our approach to deal with most sections of HIPAA 

regulations. In addition, we are planning to conduct extensive 

evaluation of our approach with real-life healthcare systems’ 

policies in cloud computing environments.  
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