
Verifying Access Control Properties with Design by
Contract: Framework and Lessons Learned
Carlos E. Rubio-Medrano and Gail-Joon Ahn

Ira. A. Fulton Schools of Engineering
Arizona State University
Tempe, AZ, USA

{crubiome, gahn}@asu.edu

Karsten Sohr
Center for Computing Technologies (TZI)

Universität Bremen
Bremen, Germany
sohr@tzi.de

Abstract—Ensuring the correctness of high-level security prop-
erties including access control policies in mission-critical ap-
plications is indispensable. Recent literature has shown how
immaturity of such properties has caused serious security
vulnerabilities, which are likely to be exploited by malicious
parties for compromising a given application. This situation gets
aggravated by the fact that modern applications are mostly
built on previously developed reusable software modules and
any failures in security properties in these reusable modules
may lead to vulnerabilities across associated applications. In
this paper, we propose a framework to address this issue by
adopting Design by Contract (DBC) features. Our framework
accommodates security properties in each application focusing on
access control requirements. We demonstrate how access control
requirements based on ANSI RBAC standard model can be
specified and verified at the source code level.
Index Terms—security, access control, formal verification

I. INTRODUCTION

Recent literature has shown severe consequences of
mission-critical applications containing serious security vul-
nerabilities, which are believed to be caused by the misuse
of the several reusable software modules such as application
programming interfaces (APIs) that modern software appli-
cations rely on to provide security-based functionality [1],
[2]. For instance, a secure communication channel is realized
as a set of APIs in the software applications. Among the
possible causes of this misuse problem, researchers have found
the overall design and the informal specifications of such
modules are often insufficient or complicated for developers to
understand their behavior correctly. Consequently, they even
fail to fully understand what the modules do and how their
configuration parameters should be manipulated. Hence, the
integration of their self-developed code and reusable modules
may not be fully achieved. The problem gets aggravated by
the fact that modern software applications are expected to
make use of these reusable modules as much as possible,
in an effort to reduce both the development costs and the
production time. Unfortunately, this situation opens the door
for the propagation of security vulnerabilities among several
applications as a result of the incorrect enforcement of security
properties in reusable software modules and threatens the
security and safety of applications as a whole.

In order to cope with this problem, we propose a framework
tailored for use of specification techniques, such as design by
contract (DBC) [3], to provide high-level abstract descriptions
of the security properties devised for a reusable software
module, in such a way they can be found easy to under-
stand and follow by future developers. In addition, we argue
these specifications can be also used for providing automated
verification techniques so the correct implementation of the
security properties at the source code level can be verified.
In this paper, we focus on security properties intended to
provide access control guarantees for sensitive resources by
means of a well-known role-based access control (RBAC)
model [4]. As RBAC has emerged as the leading access
control model for defining access control constraints, e.g.
who is allowed to access what, correct implementation of
these constraints becomes crucial to effectively enforce the
access control model devised for a given software application.
Throughout this paper, we adopt DBC which is an effective
technique for defining, communicating and verifying the cor-
rect enforcement of RBAC constraints specified with the Java
Modeling Language (JML), a DBC-based behavioral interface
specification language for Java [5]. Using JML features, we
model a set of classes from the main components of RBAC,
as defined in ANSI RBAC standard model [6]. Using this new
set of classes, we show how RBAC constraints can be defined
in JML, relating them to other behavioral specifications also
written in JML, in such a way it helps developers understand
what a JML-specified software module is expected to do at
runtime as well as corresponding RBAC constraints. Moreover,
since our approach is mostly based on a well-defined standard,
the RBAC constraints defined in our JML classes become
independent of any supporting software module that is used to
implement security features at the source code level. In other
words, it also enables a seamless integration when the JML-
specified module is reused to implement RBAC constraints
differently. In order to verify that the RBAC constraints are
correctly enforced at the source code level, we also propose an
extension to JET [7], a JML-based tool providing automated
runtime testing for Java modules. The contributions of this pa-
per are as follows: First, it proposes a solution to the problem
of misusing mission-critical software modules, by introducing
a framework tailored for the specification and verification of

2013 IEEE 37th Annual Computer Software and Applications Conference

0730-3157/13 $26.00 © 2013 IEEE

DOI 10.1109/COMPSAC.2013.7

21

RBAC constraints based on the RBAC ANSI standard model
(Section III). Second, using our approach, we introduce a
set of different ways to specify RBAC constraints, in such
a way that the specific RBAC requirements for applications
can be better handled by both policy architects and software
developers (Sections III-C1 through III-C3). Third, we provide
a methodology to map these RBAC constraints with source
code level constructs, in such a way the verification of the
JML-based constraints against the source code can be achieved
(Section III-D). Finally, we provide a customization of an
existing tool to automatically carry out the verification task
with the runtime testing (Section IV). We provide a summary
of future work and concluding remarks in Sections V and VI.

II. BACKGROUND

A. Design by Contract and JML

Design by Contract (DBC) [3] has been extensively ex-
plored in literature as a software development methodology
based on the assumption that implementers and clients of a
given software module establish a contract between each other
in order for the module to be used correctly. Commonly, such
a contract is defined in terms of pre and post conditions,
among other related constructs. Before using a DBC-specified
software module M, clients must make sure M’s preconditions
hold. In a similar fashion, implementers must make sure M’s
postconditions hold once M has finished execution and M’s
preconditions were satisfied. The Java Modeling Language
(JML) [5], is a behavioral interface specification language
(BISL) for Java, with a rich support for DBC contracts. Using
JML, the behavior of Java modules, e.g., what a Java class or
interface is expected to do at runtime, can be specified using
pre, post conditions, and class invariants, which are commonly
expressed in the form of assertions, and are added to Java
source code as comments of the form //@ or /*@...@*/.

B. RBAC ANSI standard

Role-based Access Control (RBAC) is nowadays regarded
as the leading access control model for defining and enforcing
access control properties in software systems, mainly due to
its flexibility and manageability [4]. As RBAC started gaining
popularity as a suitable solution for access control, there was a
need to precisely define its main features and components, in
an effort to allow for both research and commercial products
to rely on a standardized reference other than in custom-
made solutions. With this in mind, the American National
Standards Institute (ANSI) [8] released a standard model
that provides a well-defined yet flexible definition of RBAC,
which is mostly based on the ideas collected throughout the
years from researchers in both industry and academia. Such
a standard model, referred as the RBAC ANSI standard [6],
provides well-defined descriptions of the main RBAC features,
including components, system and administrative functions, as
well as a description of the different types of RBAC systems
that have been discussed in literature.

III. OUR APPROACH: PROBLEM STATEMENT AND
DBC-BASED VERIFICATION FRAMEWORK

A. Problem Description
As modern software increases in both size and complexity,

developers have turned into using pre-fabricated software
modules that encapsulate some of the functions devised for
their target software to reduce the overall costs and the time of
the development process as well as to leverage the experience
and knowledge invested in developing such modules, thus
possibly reducing the existence of software bugs in their final
products [9]. If such modules are to be used correctly, that is,
they indeed contribute to the objectives just described above,
it must be clear to developers about what a given module does
(runtime behavior), how the module communicates with other
modules, and what security constraints, if any, exist for it. This
is particularly true for modules implementing highly-sensitive
security functionality. Recently, lack of proper understanding
of the runtime behavior of software modules has been regarded
as the main cause for the existence of security vulnerabilities,
as shown by Georgiev, et.al. [1], who discovered that a series
of major software products failed to correctly use their sup-
porting APIs for implementing security-sensitive functionality
such as a secure communication channel. The main cause for
these pitfalls was identified as both the poor design as well
as the lack of proper specifications of the supporting APIs,
in such a way that their intended behavior as well as the
security constraints attained to them were easily understood
by developers.

B. Model RBAC Classes
Figure 1 shows a snapshot of our proposed JML-based

implementation of the RBAC ANSI standard. Following such
a document, class JMLRBACAbstractRole defines both
the basic data and functionality devised for roles in a RBAC
model, and it is later refined by classes JMLRBACCoreRole
and JMLRBACHierarchicalRole. The former is intended
to model RBAC core settings, whereas the latter defines
the functionality devised for hierarchical ones. The relation-
ship between a given protected object (JMLRBACResource)
and an operation (JMLRBACOperation) that can be per-
formed over it is modeled by means of a first-class ob-
ject of type JMLRBACPermission. Separation of duty
constraints are modeled by class JMLRBACAbstractSOD,
and proper refinements for both static (JMLRBACSSD) and
dynamic (JMLRBACDSD) constraints are provided as well.
Users, e.g. human agents, are modeled by means of class
JMLRBACUser. For the brevity, formal verification of the
adherence of our proposed approach and the RBAC ANSI
standard is omitted.

C. Defining Model RBAC Constraints
As described in Section I we strive to present different

ways to specify RBAC constraints based on the model classes
described in Section III-B, in order to allow for RBAC policy
architects to choose the approach that better fits both the
RBAC and the behavioral requirements of their applications.

22

Fig. 1: JMLModel Classes depicting the RBAC ANSI standard

First, we introduce our role-based constraints, which restrict
access to a given Java methodM by specifying a role, or set of
roles, the caller of M must have before M is executed. Then,
we present our so-called session-based constraints, which
establish RBAC access restrictions based on the properties
of a given session, as defined in the RBAC ANSI standard.
Examples of these session-based constraints may include re-
quiring a given user session to have several roles active at the
time method M is called. Finally, we present our permission-
based constraints, which restrict access to M by enlisting a
set of RBAC permissions that must be granted before the
method is executed successfully. Figure 2 shows examples of
the proposed approach discussed in this section.
1) Role-based Constraints: Figure 2(a) shows an exam-

ple of a role-based constraint, which is intended to restrict
access to the security-sensitive transfer() method to
only callers who manage to be granted the role Manager.
We start by declaring the JML model field role, of type
JMLHierarchicalRole (lines 5-6). As described in Sec-
tion III-B, such a class is intended to model roles that may be
organized in a role hierarchy, as defined in the RBAC ANSI
standard. Next, we make use of such a JML model field to
specify the need for such a role to be senior to role Manager
(lines 11-12), which is in turn defined by means of the custom-
made class JMLRBACBankManagerRole (not shown), a
subclass of JMLRBACHierarchicalRole. Based on the
semantics of the hierarchical RBAC component defined in the
RBAC ANSI standard, any role that happens to be senior
to the specified role Manager should satisfy this constraint
correctly 1. We outline how to map the model field role to an
actual implementation construct in Section III-D.
2) Session-based Constraints: Figure 2(b) shows an ex-

ample of a session-based constraint. Following the example
discussed in the previous section, we require the activation
of role Manager (JMLRBACBankManagerRole) during the
current RBAC session defined by the JML model field of
the same name (lines 5-6), of type JMLRBACSession. The
RBAC constraint, which is in turn defined in lines 11-13,
requires the current session to have the Manager role activated
before a method transfer() is executed. The pure method

1Our implementation of class JMLRBACHierarchicalRole guarantees
that all roles defined by means of this class are both junior and senior roles
of themselves.

containsActiveRole() of class JMLRBACSession
returns true if the provided parameter has been activated as
a role in the session object. As defined in the RBAC ANSI
standard, a RBAC session S can have their roles activated
dynamically if needed, as soon as the set of currently active
roles is a subset of the roles assigned. This kind of session-
based constraints are useful when the concept of a session
has been identified as a central feature required for a given
software application. For instance, banking applications usu-
ally rely on session-based transactions, e.g. requiring a user to
be authenticated before a subset of his/her assigned roles can
be activated. Later on, operations on the system, e.g. transfer-
ring money between bank accounts, become available if the
activated roles within the session contain proper permissions
authorizing them.
3) Permission-based Constraints: Figure 2(c) shows the

definition of a permission-based RBAC constraint requiring
a given role, defined in lines 5-6, to have been autho-
rized a permission regarded as TransferPermission of type
JMLRBACPermission. Recall that in the RBAC ANSI hi-
erarchical component, a permission P is said to be authorized
to a given role R if it was explicitly assigned to R, or it has
been assigned to another role that happens to be junior to R.
Method containsAuthorizedPermission() of class
JMLRBACHierarchicalRole first calculates the set of all
authorized permissions for the role object, by first retrieving
all permissions assigned to roles that happen to be junior to it,
even directly or as a result of exploring a given role hierarchy.
Later, each of the retrieved permissions is compared against
the provided permission parameter for equivalence, by using
the equals() method of class JMLRBACPermission,
which is overridden to better compare two given instances
of such a class.

D. Mapping Model Constraints and Implementation Code
As described in previous sections, we aim to provide an

approach for the runtime verification of the RBAC model
constraints. As the first step, we provide a way to relate
our model approach with the actual source code of a given
application. For such a purpose, we leverage the existing
JML features for relating model and source code constructs.
As demonstrated in [10], JML provides a way to define
proper source code values for model constructs by using
the represents keyword. For Java reference types, e.g.
our model class JMLRBACHierarchicalRole, references
to a JML model field are substituted by a reference to an
implementation field of equivalent type. Moreover, in JML,
it is also possible to define model methods, so the value of
a model field gets assigned the result of evaluating a model
method at runtime. Commonly, model methods providing
an implementation value for a model field are regarded as
abstraction functions. Figure 2(d) shows the mapRole()
model method (lines 12-30) that is used in the represents
clause for model field role (line 10). This model method serves
as an abstraction function providing the mapping between
our model field role and the actual source code implemen-

23

1 //@ model import edu.asu.sefcom.rbac.*;
2 public interface BankAccount{
3
4 //@ public instance model int balance;
5 //@ public instance model
6 //@ JMLRBACHierarchicalRole role;
7
8 /*@ public normal_behavior
9 @ requires acc != null && amt > 0 &&
10 @ amt <= acc.balance &&
11 @ role.isSeniorRoleTo(
12 @ new JMLRBACBankManagerRole("Manager"));
13 @ assignable ...
14 @ ensures ...
15 @*/
16 public void transfer(BankAccount acc, int amt);
17 }

(a) Role-based RBAC constraints

1 //@ model import edu.asu.sefcom.rbac.*;
2 public interface BankAccount{
3
4 //@ public instance model int balance;
5 //@ public instance model
6 //@ JMLRBACSession session;
7
8 /*@ public normal_behavior
9 @ requires acc != null && amt > 0 &&
10 @ amt <= acc.balance &&
11 @ session.containsActiveRole(
12 @ new JMLRBACBankManagerRole("Manager"));
13 @ assignable ...
14 @ ensures ...
15 @*/
16 public void transfer(BankAccount acc, int amt);
17 }

(b) Session-based RBAC constraints

1 //@ model import edu.asu.sefcom.rbac.*;
2 public interface BankAccount{
3
4 //@ public instance model int balance;
5 //@ public instance model
6 //@ JMLRBACAbstractRole role;
7
8 /*@ public normal_behavior
9 @ requires acc != null && amt > 0 &&
10 @ amt <= acc.balance &&
11 @ role.
12 @ containsAuthorizedPermission(
13 @ new

JMLRBACPermission("TransferPermission"));
14 @ assignable ...
15 @ ensures ...
16 @*/
17 public void transfer(BankAccount acc, int amt);
18 }

(c) Permission-based RBAC constraints

1 import org.apache.shiro.*;
2 //@ model import edu.asu.sefcom.rbac.*;
3
4 public class CustomerAccount implements BankAccount{
5
6 //@ private represents role <- mapRole();
7
8 /*@ private model pure
9 @ JMLRBACHierarchicalRole mapRole(){
10 @ JMLRBACHierarchicalRole newRole =
11 @ new JMLRBACHierarchicalRole("DefaultRole");
12 @
13 @ Subject currentUser = SecurityUtils.getSubject();
14 @
15 @ if (currentUser.hasRole("manager")) {
16 @ newRole = new JMLRBACBankManagerRole("Manager");
17 @ newRole.addPermission(
18 @ new JMLRBACPermission("TransferPermission"));
19 @ }
20 @ return newRole;
21 @ }
22 @*/
23 }

(d) Mapping Role-based constraints of Figure 2(a) to an implemen-
tation

Fig. 2: Approaches for specifying RBAC constraints using DBC

tation intended to enforce the constraints defined in the JML
specifications. Figure 2(d) presents a case when the Apache
Shiro [11] security API is used for implementation purposes.
Using such an API, information about the externally-defined
RBAC settings for the CustomerAccount application can
be obtained and used to create proper JML model constructs
depicting our approach in the body of the mapRole()
abstract function. First, an instance of the Apache Shiro class
Subject (currentUser), which contains information about
the current executing user at runtime, is obtained (lines 19-20).
Later, information contained on this currentUser reference is
used to populate a freshly created instance of our model class
JMLRBACHierarchicalRole (lines 22-28), in such a way
the object returned by the mapRole() abstract function can
be used every time a RBAC constraint using the role field is
encountered as illustrated in Figure 2(a) (lines 11-13). Even
though this running example has been mostly focused on
our proposed role-based model constraints, a similar approach
can be used to provide a mapping between our session and

permission-based constraints and a corresponding source code
implementation.

IV. EVALUATION

A. Supporting Tool
JET [7] is a dedicated tool tailored for providing automated

unit testing of JML-specified Java modules. Using JET, testers
can verify the correctness of a Java module by checking the
implementation of each of its methods (either public, protected
or private) against their corresponding JML specifications.
More details can be found at [7]. We have modified JET
to allow for both initialization and finalization routines to
be executed before and after a unit test is performed. An
initialization routine is defined in such a way it retrieves
all information regarding the RBAC settings devised for an
application and creates proper data structures so that our
abstraction functions discussed in Section III-D can effectively
provide a mapping between the implementation constructs and
the RBAC constraints. In a complementary way, a finaliza-
tion routine is expected to perform some cleanup work, e.g.

24

disposing data structures, that better fits the testing process
needs. As an example, in Figure 2(d), an initialization routine
would populate the necessary data structures such that the
Subject class (lines 19-20) can effectively contain the
RBAC information required by the mapRole() abstraction
function (lines 12-31).

B. Experimental Process
We conducted a series of experiments tailored to measure

the runtime performance as well as the effectiveness of both
our approach and our supporting tool, which we describe
in previous sections. For such a purpose, we adopt a sam-
ple banking application distributed within 20 Java classes
containing 833 lines of code and 861 lines of JML speci-
fications, and depicts an RBAC model for restricting access
to security-sensitive operations, e.g. transfer, withdraw, and
deposit, which are implemented as Java methods. In addition,
it makes use of the Apache Shiro API [11] for implementing
security-related functionality. We performed our experiments
on a PC equipped with an Intel Core Duo CPU running at
3.00 GHZ, with 4 GB of RAM, running Microsoft Windows
7 64-Bit Enterprise Edition. The Java JRE used was Java
SE 1.7.0 06 as provided by Oracle Inc. Our first experiment
was intended to measure the impact of our approach in the
runtime performance of our sample application. As described
in [7], our supporting tool JET translates our proposed model
classes into RAC code, which is used to provide runtime
verification for RBAC constraints. We executed a sample trace
of the Java methods exposed by our sample application and
calculated the average execution time over 1,000 repetitions.
Figure 3 presents our experimental results. The notation R-
X refers to an execution of our sample trace by using a
RBAC setting with a X number of roles. The term W/RAC
refers to the sample application compiled with a standard Java
compiler, whereas RAC denotes the same application compiled
with our supporting tool. All running times are measured in
milliseconds. As expected, the introduction of RAC code has
a noticeable impact on performance. This is mostly due to
the RAC code generated to process both the JML contracts
as well as the abstraction functions (Section III-D) mapping
our model classes with implementation constructs. In addition,
increasing the number of roles in the sample RBAC setting
also increases execution time, as more processing time is
needed for the abstraction functions to process a larger number
of roles.
A second experiment was designed to measure the ef-

fectiveness of our supporting tool to detect faulty imple-
mentations of RBAC constraints. For such a purpose, we
augmented our banking application with an auxiliary method,
called checkRoles(), intended to check at runtime if
a list of roles, received as a parameter, includes any role
allowed to execute a given banking method under test. If so,
checkRoles() returns legitimately, otherwise, a security
exception is thrown. Information about the roles allowed to
execute a given method is provided by our RBAC constraints,
whereas information on the executing roles at runtime is

0

50

100

150

200

250

300

350

400

450

R-05 R-15 R-30

Role-based

R-05 R-15 R-30

Session-based

R-05 R-15 R-30

Permission-based

E
xe

cu
ti

o
n

 T
im

e
(M

ill
is

ec
o

n
d

s)

W/RAC RAC

Fig. 3: Performance measurements for a sample banking
application

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C A R

Role-based

C A R

Session-based

C A R

Permission-based

E
ff

ec
ti

ve
n

es
s

R
at

e

Round 1 Round 2

Fig. 4: Effectiveness measurements for a sample banking
application

provided by the Apache Shiro API, in an approach similar
to the one shown in Figure 2(d). Based on this, we followed
an approach based on mutation testing [12], by deliberately
inserting changes, also known as mutants, to the list or
roles taken by checkRoles() as a parameter: first, we
introduced a technique calling adding mutants, which would
insert additional role names to the aforementioned parameter
list. In a similar fashion, we introduced our changing and
removing techniques, which would change and remove role
names for the parameter list, respectively. We applied these
three techniques to different methods of our sample application
and recorded the results obtained by our tool: In an initial first
round, we observed the performance of our tool to detect our
manually-inserted mutants when provided with our original
set of RBAC constraints as JML specifications. We run each
method separately, activating a single mutation at a time. Later,
in a second round, we introduced some changes in our JML
specifications in an effort to increase the amount of faulty
implementation cases detected by the tool, and executed the

25

testing process once again. Changes in the JML specifications
included both the refinement of the RBAC constraints, e.g.
adding specification cases, and the implementation of the
abstraction functions introduced in Section III-D. We repeated
the experimental process several times and collected the results
shown in Figure 4 2. Our results show the effectiveness rate,
that is, the number of successfully-detected user cases divided
by the total number of use cases produced by the tool. As it
can be observed in Figure 4, initial effectiveness rates detected
during round 1 are significantly improved after round 2, due
to the fact the JML specifications are strengthened to better
handle previously undetected cases.

V. RELATED AND FUTURE WORK

Formal verification of RBAC properties has been already
discussed in literature [13]. These approaches are mostly
focused on verifying the correctness of RBAC models with-
out addressing their corresponding verification against an
implementation at the source code level. The work closely
related to ours involves the use of DBC for security-related
purposes, which was explored by Dragoni, et.al. [14]. In
addition, Belhaouari, et.al. [15] introduce an approach for the
verification of RBAC properties using a DBC-like approach.
Approaches similar to ours are presented by Mustafa and
Sohr [16] and Rubio and Cheon [17]. A summary of our
future work comes as follows: first, we plan to work on a
refinement of the JML model classes introduced in Section
III-B, in an effort to better accommodate for a new kind of
RBAC constraints using JML specifications, as well as for a
better implementation of the RBAC ANSI standard. Second,
we plan to extend the capabilities of our proposed extension
to the JET tool in such a way the efficiency of the tool for
discovering faulting implementations can be increased. Finally,
we also plan to explore the suitability of our model classes to
accommodate for other JML-tools, e.g. tools based on static
analysis, as it was discussed in [16], so we can leverage the
benefits offered by using both dynamic and static approaches
for source code verification.

VI. CONCLUSIONS
In this paper, we have introduced a solution for the problem

of misusing reusable software modules, e.g. APIs, which has
been found to cause serious vulnerabilities in mission-critical
software applications. In order to cope with this problem, we
have introduced a framework for the abstract specification of
security constraints based on ANSI RBAC, a formal model
for providing access control guarantees in software systems.
The approach described in this paper is mostly based on the
Java Modeling Language, a DBC-based specification language
for Java, and includes both a set of model classes based on
the RBAC ANSI standard as well as a supporting tool to
carry out the runtime verification of the implementing source
code against a set of JML-based specifications. Based on the
results presented throughout this work, we believe DBC and

2The terms C, A and R stand for the changing, adding and removing
techniques described above.

JML are effective tools to allow for software designers, policy
architects, and developers to better communicate, implement,
and verify the correct enforcement of the RBAC constraints
devised for software applications.

ACKNOWLEDGMENT
This project was partially supported by the grants from US

National Science Foundation.

REFERENCES
[1] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and

V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 38–49.

[2] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: an analysis of android ssl
(in)security,” in Proceedings of the 2012 ACM conference on Computer
and communications security, ser. CCS ’12. New York, NY, USA:
ACM, 2012, pp. 50–61.

[3] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, October
1969.

[4] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
Based Access Control Models,” IEEE Computer, vol. 29, no. 2, pp.
38–47, 1996.

[5] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.-T. Leavens,
K. Leino, and E. Poll, “An overview of JML tools and applications,”
in Proc. 8th Int’l Workshop on Formal Methods for Industrial Critical
Systems (FMICS 03), 2003, pp. 73–89.

[6] American National Standards Institute Inc., “Role Based Access Con-
trol,” 2004, ANSI-INCITS 359-2004.

[7] Y. Cheon, “Automated random testing to detect specification-code in-
consistencies,” in Proceedings of the 2007 International Conference on
Software Engineering Theory and Practice, 2007.

[8] American National Standards Institute, “ANSI Website,” 2013, http://
www.ansi.org.

[9] F. Foukalas, Y. Ntarladimas, A. Glentis, and Z. Boufidis, “Protocol
reconfiguration using component-based design,” in Proceedings of the
5th IFIP WG 6.1 international conference on Distributed Applications
and Interoperable Systems, ser. DAIS’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 148–156.

[10] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards, “Model variables:
cleanly supporting abstraction in design by contract: Research articles,”
Softw. Pract. Exper., vol. 35, no. 6, pp. 583–599, May 2005.

[11] T. A. S. Foundation, “Apache shiro 1.2.1,” 2013, http://shiro.apache.org/.
[12] Y. Jia and M. Harman, “An analysis and survey of the development of

mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649 –678, sept.-oct. 2011.

[13] H. Hu and G. Ahn, “Enabling verification and conformance testing for
access control model,” in Proceedings of the 13th ACM symposium on
Access control models and technologies, ser. SACMAT ’08. New York,
NY, USA: ACM, 2008, pp. 195–204.

[14] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan, “Security-by-
contract: Toward a semantics for digital signatures on mobile code,”
in Public Key Infrastructure, ser. Lecture Notes in Computer Science,
J. Lopez, P. Samarati, and J. Ferrer, Eds. Springer Berlin Heidelberg,
2007, vol. 4582, pp. 297–312.

[15] H. Belhaouari, P. Konopacki, R. Laleau, and M. Frappier, “A design
by contract approach to verify access control policies,” in Engineering
of Complex Computer Systems (ICECCS), 2012 17th International
Conference on, july 2012, pp. 263 –272.

[16] T. Mustafa, M. Drouineaud, and K. Sohr, “Towards Formal Specification
and Verification of a Role-Based Authorization Engine using JML
(Position Paper),” in 5th ACM ICSE Workshop on Software Engineering
for Secure Systems (SESS10), South Africa, May 2010.

[17] C. Rubio and Y. Cheon, “Access control contracts for java program
modules,” in Proceedings of the 5th IEEE International Workshop on
Security, Trust, and Privacy for Software Applications, ser. STPSA 2010,
July 19-23 2010.

26

