
Policy-Driven Security Management for Fog Computing:
Preliminary Framework and A Case Study

Clinton Dsouza Gail-Joon Ahn Marthony Taguinod
Laboratory of Security Engineering for Future Computing (SEFCOM)
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University
{cvdsouza, gahn, mtaguino}@asu.edu

Abstract

With the increasing user demand for elastic provision-
ing of resources coupled with ubiquitous and on-demand
access to data, cloud computing has been recognized as an
emerging technology to meet such dynamic user demands.
In addition, with the introduction and rising use of mobile
devices, the Internet of Things (IoT) has recently received
considerable attention since the IoT has brought physical
devices and connected them to the Internet, enabling each
device to share data with surrounding devices and virtual-
ized technologies in real-time. Consequently, the explod-
ing data usage requires a new, innovative computing plat-
form that can provide robust real-time data analytics and
resource provisioning to clients. As a result, fog computing
has recently been introduced to provide computation, stor-
age and networking services between the end-users and tra-
ditional cloud computing data centers. This paper proposes
a policy-based management of resources in fog computing,
expanding the current fog computing platform to support
secure collaboration and interoperability between different
user-requested resources in fog computing.

1. Introduction

Internet of Things (IoT) has gained considerable popu-

larity from both academia and industry professionals. IoT

combines information and computing processes to control

very large collections of different objects [1]. The con-

cept of IoT encompasses every smart connected device, in-

cluding personal devices utilized by people in their every-

day lives [2]. Such connectivity and shareability enable

the proliferation of connected objects, and in turn create

data explosion which comes from billions of devices lo-

cated around the world. However, unless these disparate

devices can work together to create meaningful informa-

tion and services, all the data from devices may be mean-

ingless [3]. Therefore, the integration must be conducted

seamlessly and intelligently.

The increased use of a “pay-as-you-go” cloud comput-

ing model has reduced the overall cost of users owning and

managing private data centers. This has given rise to in-

creasing user demand for computing, networking, and stor-

age resources as well as the need for efficient management

and access to highly virtualized resources. However, cur-

rent computing models cannot account for and handle the

huge data load, and thus require an innovative approach

with the capability in communicating more closely with

physical devices by extending cloud computing services to

the edge of the network. As a result, fog computing also

termed edge-of-network has recently been introduced [7].

Fog computing is a virtualized platform providing comput-

ing, networking and storage services between end devices

and traditional cloud computing data centers. The primary

purpose of such an environment is to deliver seemingly infi-

nite collection of resources for fulfilling customers’ needs.

Given the high volume of interplay required between the

fog environments, interacting end-user devices, and cloud

computing data centers, a number of security concerns need

to be addressed. In particular, due to the distributed nature

of the fog computing, a more dynamic and robust policy

management is necessary to accommodate diverse security

requirements. In this paper, we articulate research chal-

lenges in policy management for fog computing and pro-

pose a policy-driven security management approach includ-

ing policy analysis and its integration with fog computing

paradigm.

This paper is organized as follows. Section 2 briefly

overviews fog computing model including architectural

components. In Section 3, we discuss the proposed policy

management framework for fog computing followed by a

case study with the fog computing testbed in Section 4. Sec-

tion 5 describes the related work and Section 6 concludes

16
IEEE IRI 2014, August 13-15, 2014, San Francisco, California, USA

978-1-4799-5880-1/14/$31.00 ©2014 IEEE

Figure 1. Fog Computing: Architectural Com-
ponents [6]

the paper along with the future directions.

2 Overview of Fog Computing

To understand diverse requirements for fog comput-

ing paradigm, we leverage Smart Transportation Systems

(STSs) as an exemplary use-case for fog computing in this

section. An abstract view of fog computing is illustrated in

Figure 1. STSs are heterogeneous distributed systems de-

signed for enabling real-time communication between com-

muters and smart systems and constantly monitoring traffic

activities to allow traffic preemption and guide commuters

safely. In addition, STSs are expected to collect environ-

mental data which includes traffic density, vehicle routing,

vehicle speed, pre-emptive emergency routing, and so on.

Bonomi et al. [6] highlighted the key requirements for fog

computing which are driven by a STS environment. Fog

computing architecture comprises three core components as

follows:

• Internet of Things (IoT) Verticals

• Orchestration Layer

• Abstraction Layer

Each layer comprises both virtual and physical com-

ponents which contribute to the efficient and dynamic

functionality of a fog system. Figure 2 provides another

view of fog computing architecture and its components.

As illustrated in Figure 2, the IoT verticals are defined

as tenant applications or products which are rented for

use. Given the flexibility of fog computing platform

and its interoperable nature, multi-tenancy is unique and

highly desirable feature supported by a fog computing

environment. Multi-tenancy feature enables multiple

clients to host their applications on a single server and

these clients (tenants) host their applications on a single

fog computing instance. The orchestration layer supports

data aggregation, decisions, data sharing and migration,

and policy management for fog computing. The details

of this layer will be discussed in the subsequent section.

Finally, the abstraction layer is responsible for exposing a

uniform and programmable interface to the client and hides

the platform heterogeneity. Similar to the cloud model,

this layer relies on virtualization technologies and exposes

generic APIs that clients can invoke whilst developing

applications to be hosted in a fog computing platform.

We now present key features–in addition to those pre-

sented in [6]–which are targeted to not only support certain

use-case scenarios but provide a generic direction to support

a wide-range of users and reusable systems:

• Fog Node (FN) is defined as heterogeneous semi-

virtualized components deployed in a variety of envi-

ronments. These nodes can be deployed in the core,

edge, access networks and endpoints of a fog envi-

ronment with diverse programmable components. The

primary focus of FN is to facilitate seamless and uni-

form resource management including management of

the networking, computation and storage allocation of

each node. Each node can be a “Tiny Cloud” providing

short term support to users and application requests.

The design of an FN should be in a modular form with

the plug-in capability or new nodes when the current

one fails.

• Fog Instance (FI) is a virtualized instance as a sup-

porting module for FN in their resource management

and service requests. FIs are spawned dynamically

based on resource requirements and are intended to

provide computing, networking and short term stor-

age services. Figure 2 shows how FNs and FIs interact

with each other including other objects.

The subsequent section further articulates the orchestration

layer of the fog computing architecture and relevant issues

in policy management.

2.1 Orchestration Layer and Policy-based ser-
vices

The middle layer of fog computing consists of multiple

components such as Data API which involves a generic

framework on how data is shared across the platform and

Orchestration Layer API which comprises of the core

analytics and intelligence services for fog computing. The

17

Figure 2. Fog Node Workflow

orchestration service as a whole focuses on the life-cycle

management of services including policy services which

need to be dynamic and are expected to account for the

distributed nature of the fog computing paradigm. The

Orchestration Layer API in particular focuses on four

major functionalities: probing the application for data,

analyzing the acquired data, planning the allocation and

management of resources to manage the request, and

enforcing a decision.

Given the numerous interacting components in the

orchestration layer, policy-based service is a dominant

component that needs further in-depth analysis and devel-

opment. In [6], Bonomi et al. proposed several components

in the service orchestration layer including foglet soft-

ware agent, distributed databases, policy-based service

orchestration, and scalable messaging bus and introduced

a policy-based orchestration framework including the

specification of abstract requirements that need to be

accomplished by the proposed framework. Based on such

service modules, we attempt to extend the framework by

defining a policy management module that complements

the existing framework and provides policy-based security

management for the fog computing paradigm.

The policy management module involves the presence

of a decision maker engine that enables the defined policy-

based orchestration framework to enforce policies based

on actual interactions. Additionally, our policy module at-

tempts to concentrate on intricate communication modules

which makes the fog computing architecture unique. Our

module extends and covers the requirements set by the cur-

rent framework thus providing assurance to the fog comput-

ing paradigm.

3 Policy-Driven Security Management:
Preliminary Framework

As discussed in the previous section, policy collab-

oration is an important component in the orchestration

layer of a fog computing model. The concept of policy

collaboration is introduced with the goal to support secure

sharing and communication in a distributed environment.

However, unlike previous approaches which focused on

policy collaboration from a singular perspective, a fog com-

puting architecture involves not only the virtual component

interaction, but also a physical component interaction

with each other as well as associated virtual components.

This would imply that FNs and FIs would communicate

with physical devices and cloud computing data centers in

parallel. These multi-level collaboration requirements give

rise to a new set of security problems involving identity

management, resource access management, distributed

decision enforcement, dynamic load-balancing, quality of

security and service, and so on. The policy management

module as part of the extended framework helps address

the highlighted security issues.

Our policy management module, as depicted in Figure 3,

is primarily dedicated to support the orchestration layer of

the fog architecture, thus the bulk of the computation oc-

curs within the fog nodes and the supportive fog instances

depending on the policies to be enforced and services

being requested for provisioning task. The extended policy

management framework consists of modules wherein

each module plays a specific and decisive role and can be

plugged and played in real-time based on configurations

defined by administrators of corresponding hosted applica-

tions and the owner of a particular fog environment.

We summarize each module and their responsibilities in

the framework as follows:

Policy Decision Engine This module is programmed

to make aggregated decisions based on data provided

by all attached components. Based on the services re-

quested and the target user, the policy decision engine

analyzes the rules defined in the Policy Repository and

generates a decision which is then later enforced.

Application Administrator The multi-tenant nature

of the fog computing paradigm raises the requirement

for an administrator to define policies and rules that

18

bind a user to a particular applications and allow for se-

cure collaboration and migration of client data across

multiple FNs owned by a particular application or mul-

tiple applications.

Policy Resolver The policy framework adopts

attribute-based security framework wherein all users

are authenticated and identified based on a set of at-

tributes which they present. One or more of these at-

tributes will be used to validate the identity of the user

and thus the policy resolver consists of multiple sub-

components to verify the request of the user based on

his attributes and entitle the presented identity with as-

sociated rules and policies.

(a) Attribute Finder This module analyzes the set of

attributes presented by a user and queries the at-

tribute database to determine the identity of the

user. The attribute finder then sends the result to

the Policy Resolver for further aggregation.

(b) Attribute Database A repository of user attributes

identifying a users access privileges against a re-

quested resource.

Policy Repository A secure repository consisting of

rules and policies which are referred by the Policy De-

cision Engine while the policy decision is made.

(a) Policy Rules The set of policies/rules that de-

fines multi-level policy domains of a fog comput-

ing environment covering operational, security-

related, and network management requirements.

Once user attributes are matched by the Policy

Resolver, the Policy Decision Engine will refer

to the policy rules to determine (i) the influence

of governance and provisioning that allows the

user to access the requested applications and (ii)

what constraints need to be enforced based on the

user’s access privileges.

Policy Enforcer: The most active component of the

policy management framework is the Policy Enforcer.

The Policy Enforcer module resides within either a vir-

tual instance such as an FN, an FI, and cloud comput-

ing data center, or within physical device such as a mo-

bile device, GPS system, and a connected vehicle.

3.1 Use-case Scenarios: Smart Transportation
Systems

As we briefly introduced in Section 2, our use-case sce-

nario is based on Smart Transportation Systems (STSs).

We first demonstrate the role of fog computing in support-

ing STSs. STSs are intelligent and adaptive systems that

Figure 3. The Extended Policy Management

accommodate dynamic traffic changes and provide real-

time traffic information to travelers by considering poten-

tial conflicts and safety issues. STSs consist of diverse

interacting components and each component requests and

provides multiple resources and data information: Smart

Traffic Lights (STLs), Connected Vehicle (CV), Emergency

Connected Vehicle (ECV), and pedestrian with smart de-

vices. In the use-case scenarios in this paper, STLs play an

important role as FIs by relaying communication data be-

tween FNs and other physical smart devices. STLs can be

considered as a System of Systems of traffic lights in an ur-

ban transportation system. Based on these components, we

consider the following use-case scenarios:

Scenario 1: Bob leaves for work at 7:30 AM and is

required to reach his office by 8:00 AM. His office ad-

dress is stored in the GPS system linked to his CV.

When his CV approaches the first STL, it communi-

cates with the STL and receives an optimum route to

its destination based on the estimated time of arrival.

As he approaches the next STL, based on the current

traffic condition factoring in his intended arrival time,

the system will update the GPS with the same or alter-

nate route for the requested travel.

Scenario 2: While Bob is on his way to his office, a

firetruck, which is categorized as an ECV, travels on

the same route to respond a reported emergency. This

ECV will provide the nearest STL with its final des-

tination and by doing so, the corresponding STL will

also update Bob’s GPS to inform him of an approach-

ing ECV so that he could either prepare to pull over or

provide an alternate route to avoid the ECV.

Scenario 3: A school bus travels to the designated

school, Tempe High School and on its route it makes

multiple stops to pick up students thus affecting the

traffic flow. The school bus will communicate its final

19

destination with the first STL and the STL will then

notify all adjoining STLs of the approaching school

bus. Since its route is pre-determined, STLs notify all

connected vehicles of an approaching school bus and

advise an appropriate precaution. The current route is

the same as Bob’s route and his GPS system will warn

him of an approaching school bus.

Scenario 4: Bob exceeds the speed limit and is fast ap-

proaching an STL where a pedestrian is about to cross.

The STL detects Bob’s CV and notifies him via GPS

of a probable collision detection. At the same time, the

STL notifies the pedestrian of an approaching CV and

updates its traffic information to alert adjacent STLs.

The above-mentioned scenarios require real-time data

analytics and aggregation along with dynamic relays of in-

formation between the smart vehicles, traffic lights, FNs

and FIs. To manage the secure collaboration and contin-

uous connectivity between all interacting instances, a ro-

bust policy management framework is critical to ensure in-

teroperability in a fog ecosystem as well as ensure secure

communication among the different entities. To enable such

complex collaboration and data sharing, we need to evalu-

ate and resolve conflicts and anomalies dynamically whilst

directing the requested information securely to its final des-

tination. In addition, it is necessary to articulate the rele-

vant policy requirements to support our scenarios. We cate-

gorize such requirements into three primary non-functional

requirements:

1. Operational Requirements: focusing on enforcement

of operational constraints for interacting components

in a fog ecosystem to prevent misuse and any potential

breach of unauthorized data.

2. Network Requirements: focusing on maintenance of

secure communication channel, network load balanc-

ing, and network QoS requirements.

3. Security Requirements: focusing on authenticating

and authorizing access requests between various fog

components and smart devices as well as ensuring pol-

icy specifications are met for multi-tenant applications

in the fog computing environments.

To support these requirements and to ensure that a uni-

form yet secure collaboration is maintained while commu-

nicating in dynamic and distributed environment, the pol-

icy specifications are defined and each specification also

attempts to capture constraints associated with devices or

instances in physical or virtual in the fog computing envi-

ronments. The generalized specification leverages the fol-

lowing two schemas:

• Data schema: specifies a set of defined attributes asso-

ciated with a physical or virtual component.

<?xml version="1.0" encoding="UTF-8"?>
<!--Document created by: Clinton Dsouza;

Gail-Joon Ahn, SEFCOM-ASU -->
<Specification-1 Target="STL1.0"

Requester="CV01"
Resource="Authentication-Device">

<Attributes Authentication="X.509"
UUID="CV01" GPS-Lat="33.4545"
GPS-Long="-111.98787"
Time="7:30:00pm">CV01</Attributes>

</Specification-1>
<Specification-2 Target="FN01"

Requester="STL1.0"
Resource="Authentication-User">

<Attribute Security_Token="X.509"
UUID="STL1.0" Location="Tempe,AZ"
Time="7:30:01">STL1.0</Attribute>

</Specification-2>
<Specification-3 Target="FN01"

Requester="FN02"
Resource="Security-Data_Migration">

<Attribute Security_token="X.509"
UUID="CV01" Destination="Mesa,AZ"
Origin="Tempe,AZ"
Target_Subject="FN02"
FN02:Security_Token="X.509"
FN02:Destination="Mesa,AZ">

</Attribute>
</Specification-3>

Figure 4. Data Schema Specification

• Policy schema: specifies a set of defined conditions as-

sociated with a requested action which are required to

be fulfilled for the transaction.

The values obtained from the above mentioned schemes are

used to determine the event, condition and action being per-

formed by the smart components. Additionally, the diverse

nature of the smart devices coupled with heterogeneous

fog computing system requires multiple policy enforcement

points. This implies that multi-dimensional specification of

policies is needed. We further introduce another level of

policy specification to address this issue in both Data and

Policy schemas as follows:

• Virtual specifications: consisting of virtualized in-

stances such as FNs, FIs and centralized cloud-based

data repositories.

• Physical specifications: consisting of connected smart

devices also known as Internet of Things.

To further support the realization and implementation of

a robust policy management framework and its associated

policy modules, we also adopt eXtensible Access Control

20

Markup Language (XACML) [9] to define a more formal-

ized and refined operational, security and network policy

specifications. Figure 4 shows a snippet of data schema

specification.

4 Implementation and Evaluation

We have implemented a preliminary testbed which not

only focuses on the policy decision enforcement but also

simulates a STS based on the use-cases detailed in Section

3.1. The testbed utilizes Google Maps API for displaying

alternative routes as well as real-time route of the user. On

the user-end we designed a mobile application that collects

user data within the time interval [every second to five min-

utes]. The collected data is stored in a database to be later

used for data aggregation. When a user provides his final

destination, the web-application determines a list of alter-

native routes apart from the user-chosen route. As the user

approaches a STL, his route changes based on updated traf-

fic information that the STL receives. The STL plays the

role of a Policy Enforcer wherein all necessary policy deci-

sions are routed to the STL for the enforcement on either a

CV or a pedestrian. The policy management framework has

been also implemented with key elements introduced ear-

lier. To support policy enforcement capability in our imple-

mentation, we also utilized ARM-based computers called

Raspberry-Pi, which can be emulated to behave as STLs

and thus behaves as policy enforcement points. In addition,

a generic policy decision engine is built based on OpenAZ

API. The testbed consists of five main components:

• User UI : is the front-end display which a user can use

to view his current position and get alerts on policy

decisions being pushed to his device.

• Collection Data Container: is a data object which con-

sists of road information such as traffic delays, road

closures, and current road usage by emergency vehi-

cle.

• Google Directions Services: are third-party services

which are utilized to obtain multiple possible routes

based on the data being collected in the collection data

container.

• STLs: are semi-virtual FNs to provide computation,

networking and storage capabilities to users and handle

requested services.

• Connected Vehicle: is a smart vehicle completely con-

trolled by the user which establishes secure communi-

cation with STLs and requests services.

Also, we utilize and configure the instances in a single

OpenStack project to simulate FIs and host the web applica-

tions. The FIs can also behave as supportive services when

the node instance is running out of memory.

4.1 Evaluation and Results

As mentioned above, our testbed is capable of evaluat-

ing one main component which we have deeply analyzed:

the Policy Enforcement Point (PEP). The PEP is one of the

primary components in the proposed policy management

framework. To evaluate the functionality of the PEP in our

testbed, we utilized the OpenAZ open-source implementa-

tion framework to analyze the security policies as shown in

Table 1. The policies have been specified in XACML and

were parsed through to extract attribute values before a de-

cision is made. We measured the performance of the PEP

based on the specified XACML policy set. Additionally,

based on the use-case scenarios, we also captured vital in-

formation such as time taken by the vehicle to approach a

STL, the distance of a vehicle from the STL, and the number

of vehicle attempting to communicate with a single STL.

For brevity, we partially describe our evaluation results fo-

cusing on scenario 1 mentioned in Section 3.1. The intuition

behind our evaluation is to measure the performance of the

PEP with the following two different conditions:

1. Light traffic load: simulates when a few vehicles are

attempting to validate themselves with the STL.

2. Heavy traffic load: simulates when there are high vol-

ume requests from vehicles attempting to be validated

themselves.

The complexity in loading each rule is created by the

conditional statements defined in a single rule. For example,

in Table 1, Rule 1 has a set of conditional evaluations for

four attributes, while Rule 4 has a set of conditional evalua-

tions for seven attributes which obviously increase the eval-

uation time at the PEP. Table 2 summarizes the evaluation

results obtained from two security resources associated with

the number of rules tested upon them. The ultimate goal of

a fog system is to communicate decisions and service re-

quests with users in real-time. Although our results show

a near real-time policy enforcement case, given a situation

wherein there might exist thousands of policy sets and cor-

responding rules, a definite lag can be expected. The lighter

load of rules are executed in lesser amount of time than that

with a higher load of rules.

5 Related Work

Due to its infancy, there exist very few related work

in fog computing. In [6] and [7], Cisco research team

introduced the concept of fog computing and its underlying

architecture with concise definitions, and use-cases to

21

Table 1. Sample security rules
Rule

Subject(s) Resource
(App) Conditions(Attributes) Requester Action

1

STL1.0 |
FN1.0 |
STL2.0

Device Au-

thentication

UUID: CV4898, Time: 7:30pm, Auth.: X.509

Token, Curr. Location: 243 Apache Blvd.,

Tempe,AZ

CV01 GRANT

2 FN-ab-01
User Authen-

tication

UUID: STL1.0, Time: 7:30:01pm, Auth:

X.509 Token, Curr. Location: 243 Apache

Blvd, Tempe, AZ

STL1.0 GRANT

3 FN-ab-01
Instance Au-

thentication

UUID: FI-ab-01, Time: 7:30:02pm, Auth:

X.509 Token,Service Request: Data Migration FI-ab-01 DENY

4

FN-hk-02

—

FI-hk-02

Data

Migration

Authentica-

tion

UUID: FN-ab-02, Target UUID: FN-hk-1.2,

Service Requester: FN-ab-02, Time:

7:30:04pm, Location: Tempe, AZ, Auth:

X.509 Token, Service Request:

Instance Authentication

FN-ab-02 GRANT

Table 2. Evaluation Results

Security Resources Light Load (10 - 30 rules) (ms) Heavy Load (40 - 60 rules) (ms)

User Authentication 221 ms 259

Device Authentication 267 ms 329

promote the efficiency and necessity of such a dynamic

platform. Also, Madsen et al. evaluated the fog computing

platform from a very abstract perspective but have provided

certain interesting evaluation criteria that a fog platform

should meet such as M2M interactions and reliability

protocols which a fog system should utilize [10]. However

they did not present any conclusive implementation and

evaluation results of any reliability tests.

In addition, there exist numerous approaches related to

policy management in distributed computing environments

including [11]. There have also been significant advances

in the area of policy conflict detection and resolution in re-

lation with network policy such as [4] [5] [12] [13]. The

novel policy conflict and anomaly detection techniques cou-

pled with the resolution strategies have been proposed in

[13]. However, given the distributed nature of fog comput-

ing, there is a need to enhance existing policy management

approaches for supporting such dynamic fog ecosystems.

6 Conclusion

In this paper we have outlined key characteristics of Fog
Computing and have identified challenges in policy man-

agement that are critical for supporting secure sharing, col-

laboration and data reuse in a heterogeneous environment.

We outlined a set of use-case scenarios and have shown the

necessity of policy management as a core security manage-

ment module in a fog ecosystem. Also, we have proposed

a preliminary policy management framework accompanied

with policy specification criteria and relevant schemas. In

addition, we have demonstrated the feasibility and practi-

cality of our approach through a proof-of-concept imple-

mentation of a fog computing environment based on use-

case scenarios.

As part of future work, we will further address a sophis-

ticated way to detect policy conflicts and resolve the de-

tected conflicts. In particular, we will attempt to define a

set of anomalies that should be addressed in fog comput-

ing environments. In addition, we will extend our policy

management framework to support more complicated use-

cases along with diverse devices so that we can measure the

effectiveness of our approach with more realistic testbed.

Acknowledgment

This work is partially supported by grants from Cisco

Inc. The authors would like to thank Dr. Rodolfo Milito

at Cisco for his continuous support and valuable feedback

in this project. In addition, we would also like to thank

Jeong-Jin Seo at SEFCOM for his valuable contribution to

the initial development of the IoT testbed that supports and

simulates a STS environment.

22

References

[1] N. Bari, G. Mani, and S. Berkovich. Internet of

things as a methodological concept. In Computing
for Geospatial Research and Application (COM.Geo),
2013 Fourth International Conference on, pages 48–

55, July 2013.

[2] Dave Evans. The internet of everything: How more

relevant and valuable connections will change the

world. Cisco IBSG, 2012.

[3] Robert De La Mora. Cisco iox: An application en-

ablement framework for the internet of things. January

2014.

[4] A.A. Mansor, W.M.N.W. Kadir, T. Anwar, and

S. Sahibuddin. Analysis of adaptive policy-based ap-

proach to avoid policy conflicts. In Software Engi-
neering Conference (APSEC), 2012 19th Asia-Pacific,

volume 1, pages 754–759, Dec 2012.

[5] Zhengping Wu and Yuanyao Liu. Dynamic policy

conflict analysis for collaborative web services. In

Network and Service Management (CNSM), 2010 In-
ternational Conference on, pages 338–341, Oct 2010.

[6] Preethi Natarajan Flavio Bonomi, Rodolfo Milito and

Jiang Zhu. Fog computing: A platform for internet of

things and analytics. Big Data and Internet of Things:
A Roadmap for Smart Environments, Studies in Com-
putational Intelligence, 546:169–186, 2014.

[7] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and

Sateesh Addepalli. Fog computing and its role in the

internet of things. In Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pages

13–16. ACM, 2012.

[8] C.E. Rubio-Medrano, C. D’Souza, and Gail-Joon

Ahn. Supporting secure collaborations with attribute-

based access control. In Collaborative Computing:
Networking, Applications and Worksharing (Collabo-
ratecom), 2013 9th International Conference Confer-
ence on, pages 525–530, Oct 2013.

[9] Erik Rissanen et al. extensible access control markup

language (xacml) version 3.0. Oasis Standard, 2013.

[10] Henrik Madsen, Bernard Burtschy, G. Albeanu, and

Fl. Popentiu-Vladicescu. Reliability in the utility com-
puting era: Towards reliable Fog computing, pages

43–46. IEEE, 2013.

[11] L. Teo and Gail-Joon Ahn. Towards effective security

policy management for heterogeneous network envi-

ronments. In Policies for Distributed Systems and Net-
works, 2007. POLICY ’07. Eighth IEEE International
Workshop on, pages 241–245, June 2007.

[12] Hongxin Hu, Gail-Joon Ahn, and K. Kulkarni. Dis-

covery and resolution of anomalies in web access con-

trol policies. Dependable and Secure Computing,
IEEE Transactions on, 10(6):341–354, Nov 2013.

[13] Hongxin Hu, Gail-Joon Ahn, and K. Kulkarni. De-

tecting and resolving firewall policy anomalies. De-
pendable and Secure Computing, IEEE Transactions
on, 9(3):318–331, May 2012.

23

