
Automatic Extraction of Secrets from Malware

Ziming Zhao, Gail-Joon Ahn and Hongxin Hu

Laboratory of Security Engineering for Future Computing (SEFCOM)
Arizona State University, Tempe, AZ 85281, USA

{zmzhao, gahn, hxhu}@asu.edu

Abstract—As promising results have been obtained in de-
feating code obfuscation techniques, malware authors have
adopted protection approaches to hide malware-related data
from analysis. Consequently, the discovery of internal cipher-
text data in malware is now critical for malware forensics
and cyber-crime analysis. In this paper, we present a novel
approach to automatically extract secrets from malware. Our
approach identifies and extracts binary code relevant to secret
hiding behaviors. Then, we relocate and reuse the extracted
binary code in a self-contained fashion to reveal hidden
information. We demonstrate the feasibility of our approach
through a proof-of-concept prototype called ASES (Automatic
and Systematic Extraction of Secrets) along with experimental
results.

I. INTRODUCTION

Malicious codes have been tremendously evolved with

various intents and techniques. With the boom in Internet

and electronic commerce, we witnessed the switch of mal-

ware authors’ interests from boasts to economic benefits.

Along with this paradigm shift, malware authors have been

developing sophisticated methodologies to undermine the

analysis of captured malware and compromised systems. In

the early days of malicious code analysis, it was relatively

easy to reveal the malicious behaviors of malware. However,

the code analysis is no longer straightforward since we must

first defeat heavily obfuscated code and encrypted data.

One way to study the behavior of malware is to com-

prehend its binary code because corresponding source code

is not available in the most cases. Understanding malware

starts with disassembly, which recovers human-readable

symbolic representation of malware from its binary form.

Obfuscation techniques are prevalent in both benign and

malicious programs to prevent malware from being disas-

sembled and understood by analysts. Disassembly desyn-

chronization [28] has profound impacts on linear sweep

disassembly, while dynamically computed target addresses

such as indirect calls or jumps may thwart recursive traversal

disassembly. Static approaches [19] with the help of control

flow graphs and statistical methods can accurately identify a

large fraction of instructions obfuscated by aforementioned

techniques.

Recent obfuscation techniques such as packing [17] and

emulation [6] technologies have been widely adopted. Pack-

ing disguises malicious code as non-executable data in

malware files and transforms it back to executable code at

runtime. Emulation converts binary code to some bytecode

and attaches both bytecode and its corresponding emulator

to the malware. Static [14] and dynamic [17] approaches

have been proposed to automatically unpack such packed

malwares. Also, dynamic data-flow [29] and taint analy-

sis [24] have been presented to generate control flow graphs

for emulator-based malware analysis.

As code obfuscation techniques are not sufficient for

malware authors to disguise their motives, they attempt

to make use of other protection approaches, which are

normally used to protect data rather than code [12], to hide

their secrets from analysts. Therefore, prior code extraction

techniques may work smoothly for packing and emulation,

but they are ineffective to accommodate the new trend of

malware evolution.

Given the significance of this problem, another research

branch in malware analysis is concerned about the extraction

of malware-related data [11]. Data extraction plays an im-

portant role for malware forensics since investigators could

use the wealth of information that can be retrieved from

malware to identify suspicious activities. Previous solutions

for data extraction from malware were highly manual [4]. A

major drawback of these attempts is that human knowledge

of the binary code location and behavior is required.

Recently, Caballero et al. [10] and Kolbitsch et al. [18]

attempted to automatically extract interesting binary code

pieces and reuse them for security analysts. One application

of their binary code reuse technique is to reveal some

malware-related data. The method presented by Caballero et
al. [10] identifies the prototype of binary code fragments

that correspond to source code level functions. They used

dynamic analysis to extract the actual parameters for code

fragments and inferred the formal parameters by multiple

runs. Kolbitsch et al. [18] proposed a method, which also

uses the combination of static and dynamic analyses, to

extract the complete algorithm related to a certain activity

that may consist of multiple binary level functions. They

relocated and executed the extracted algorithm for domain

name generation and botnet protocol infiltration.

In this paper, we classify malware-related data as internal

or external plaintext or ciphertext in terms of its origin

and form. We observe that existing manual and automatic

solutions pay more attention to external ciphertext data, such

as botnet command and control (C&C) protocol. In this

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.27

159

paper, we address the reasons why internal ciphertext data

is equally important for malware forensics and cyber-crime

investigation. We formally define the research problem of

automatically extracting internal ciphertext data embedded

in malware to complement existing research efforts. In the

rest of the paper, we use the terminologies internal ciphertext
data and secret interchangeably.

In order to automatically extract secrets embedded in

malware, we propose a novel technique combining static

analysis and code execution together to reveal valuable

hidden information in binary. Our approach takes a mali-

cious binary code as input, then automatically discovers the

plaintext value of hidden secrets in this binary. Our method

does not require prior knowledge of (i) the existence and

location of secrets and (ii) protection algorithms used in

given malicious code. The key idea behind our solution is

that the malicious code itself has to decode its embedded

secrets before using them if the hidden secrets exist. Hence,

we can identify the binary variables which have to be used

as plaintext, infer the existence of secrets and locate the

decoding algorithm. Then, we use binary code relocation

technique to inject identified code into another process

address. By executing this code in a protected process, we

can reveal the hidden information in malware.

The differences and advantages of our approach over

existing proprietary algorithm extraction solutions are as

follows: 1) Caballero et al. [10] used a bottom-up approach

to identify the interfaces of all binary functions in malware.

Instead, we use a top-down approach to merely extract

interesting binary code which is responsible for the behavior

we are concerned about; 2) instead of extracting the proto-

type of binary functions, we recover the actual parameters

and runtime context of each invocation of binary function.

Therefore, our binary code reuse does not involve human

analysts to provide parameters for code execution; and 3)

our approach performs static analysis to identify interesting

code while Kolbitsch et al. [18] proposed dynamic analysis

to pinpoint interesting binary. However, dynamic analysis

could not cover all the control paths and is vulnerable to

malware defense techniques [16].

In addition, we demonstrate the feasibility and applica-

bility of our solution by implementing a proof-of-concept

prototype called ASES (Automatic and Systematic Extraction

of Secrets, /asẽs/), which is an IDA Pro [3] plugin to recover

external modules and API names loaded by malware, along

with our experimental results.

The rest of this paper is organized as follows. Section II

presents the problem definition and overviews our approach

and system architecture. Section III describes our decryptor

identification method. Section IV presents our binary reloca-

tion algorithm. The evaluation of our solution is discussed

in Section V followed by the related work in Section VI.

Section VII discusses the future work and concludes the

paper.

II. SYSTEM OVERVIEW

In this section, we first categorize malware-related data

based on two different dimensions. We then overview the

research issues in extracting internal ciphertext data in

binary. Also, we outline our approach with a motivating

example.

�������	
��

������

�����
��
�

��	���
���������������

���

��
�������

������
�������

�����
����

Figure 1: Malware-related Data

A. Malware-related Data

Figure 1 shows malware-related entities and data. The

malware itself, the host victim machine and C&C server are

the three major players in a typical cyber-crime setup. In

terms of origin, malware-related data could be categorized

into external data and internal data. External data, such

as local host information, may be retrieved by malware

on the fly or obtained from network communication with

C&C servers. For example, a malware may query the hard

disk serial number of its host machine, transform it into an

encrypted form with its proprietary algorithm and send it

to its C&C server. Then the C&C server may send back

an encrypted spam template so that the malware could

decrypt it and send spam in the future. Internal data is

embedded in malware in a static way. Although data segment

is designed to store global and static variables initialized by

programmers, programmers may choose to store data in any

other customized segments.

In terms of form, malware-related data may be divided

into plaintext and ciphertext data. In Figure 1, the solid

rectangle and arrow indicate encrypted data and secured

communication while the dashed rectangle and arrow rep-

resent plaintext data and unprotected communication. In

practice, external data is observed in form of both plaintext

and ciphertext. Local host information is normally obtained

by operating system APIs or interrupts. This information

is not encrypted since confidentiality is not a serious issue

between a host machine (OS and CPU) and its applications.

On the contrary, C&C messages between the server and

malware are usually encrypted to prevent analysts from

comprehending them easily.

Some internal data exists as plaintext which may be in the

form of text or programmer-defined structure. The internal

plaintext data may be introduced in compiling or linking

stage by malware programmers as global or static variables.

One example of data generated by a compiler is a string.

For example, it would be ‘This Program Cannot Be Run

in DOS Mode’ in PE header. If a windows executable is

invoked in real-mode, a stub will display this message and

160

make this program exit. The PE header also includes other

plaintext data, such as import address table which indicates

external libraries used by this program. Internal plaintext

data could be easily recovered by tools such as GNU strings
which print printable character sequences in any file format.

To recover other plaintext data which is not in the form of

text, the knowledge of data structure is also needed. External

plaintext data could be captured by monitoring the host

behavior [33] or network behavior [25] of malware.

Compared with plaintext data extraction, ciphertext data

receives much more attention in malware analysis and foren-

sics because valuable information is more carefully protected

by malware programmers. In practice, most existing solu-

tions are performed to find, deobfuscate and understand the

transformation code chunks for deciphering data by human

analysts in a manual way [4]. Recently, Caballero et al. [10]

and Kolbitsch et al. [18] attempted to automatically reuse

binary in malware to decrypt and rewrite botnet protocols.

Their approaches deal with external ciphertext data, but

neglect the importance of internal ciphertext data.

B. Problem Definition

In a malware executable, internal sensitive data include

module names, API names, URLs, email addresses, and

any other meaningful strings and structures which may lead

to the disclosure of the malware behaviors or be used for

forensic analysis. External module and API names give a

static high-level outline of malware behaviors. URLs and

email addresses could help forensic analysts trace adver-

saries behind the scene. Due to the importance of such

information residing in an executable, malware authors use

data protection mechanisms ranging from simple XORs

to sophisticated cryptographic algorithms to hide them via

internal ciphertext data from security analysts [26]. Based

on our observation, we believe internal ciphertext data is as

important as external ciphertext data in cyber-crime analysis.

We denote internal ciphertext data, protection mechanisms,

and the code used to decrypt ciphers as secret, encryption
and decryptor, respectively.

Encrypting secrets has been widely adopted in construct-

ing real world malicious code by malware authors [5],

[26]. Although revealing these secrets by manual step-by-

step debugging or execution instrumentation is possible, this

process is very difficult for extracting large-scale secret due

to the following reasons: first, the process is tedious. In most

cases, extracting secret is to manually repeat the similar

analysis process. Valuable information may be overlooked

due to potential lack of consistent attention; second, the

process involved with both static and dynamic methods is

time-intensive. It usually takes 2 to 5 minutes for sandbox

systems, such as Anubis [1], to generate analysis reports;

and thirdly, the process may heavily rely on computation

and storage if instrumentation techniques are used.

�������

��� !"#$%%

�������	
��

��� !"�&$'

��� !"(&)*

��� !"(+,&

��� !"(+&-

��������

���������
���� ��������
�
���

��������������

��������	
�� �
	
����	
��

����� !�"*..

����� !�",%"

///

����� !*)!"�

///

����� !*),*0

�� ""!*)%�"�1��	�
��
�23�����4�������561

�� ""!*)%0��1%#�0($7�89:��;<�=>�?@A�BCD1

Figure 2: Motivating Example

Therefore, extracting secrets in large-scale is not practical

by adopting such primitive methods. Furthermore, there exist

many dynamic defense techniques [13], [15] to prevent

monitoring or instrumentation. Given a malicious binary

code, our goal is to recover plaintext data from encrypted

data in the code. Furthermore, the process of extraction

should not require human involvement and to access source

code or symbol information.

C. Motivating Example

Among sensitive data, external dynamically-linked li-

braries (DLL) and API names are of great importance owing

to the fact that they give us an outline of what kind of actions

a program performs. For example, a program which loads

crypt32.dll tends to make some cryptographic opera-

tions, such as encryption and hashing. A program loading

ws2_32.dll may imply some low level network actions,

as we discussed earlier. API names give a more detailed

static profile of the behavior of a program. Invocation of

CryptHashData implies some data is hashed during the

execution of this program. Also, correct identification of

WSAConnect and its parameters could tell analysts which

network protocol is being used by the program.

In implicit DLL loading, import lookup table (ILT) and

import address table (IAT) work together to provide loader

with information to make connection with external API in

Windows PE format [23]. ILT stores external API informa-

tion, such as API names and ordinal numbers in DLL. Then,

during binding, the entries in the IAT are overwritten with

the actual addresses of the symbols that are being imported.

Thereafter, the program could call external API by jumping

to its address indicated in IAT.

Because API information is stored in the format of

plaintext, existing tools, such as IDA Pro and Dumpbin [2],

can display the names of imported APIs by analyzing ILT

if they are implicitly loaded. Malware authors usually take

control over this loading procedure by decrypting ciphered

API information and explicitly loading external API at

runtime. This process, named run-time dynamic linking

under Microsoft platform, uses the LoadLibrary API to

load DLLs. The GetProcAddress API is used to look up

exported symbols by name, and FreeLibrary is invoked

to unload DLLs. Analogous APIs–such as dlopen, dlsym,

and dlclose–also exist in the POSIX standard.

161

subroutine IATBuilder sub_40C7F3
... ;

1 lea eax, [ebp-400h] ;
2 push 0041FD8C ;xreary32.qyy
3 push eax ;
4 call sub_40E712 ;Decryptor
5 pop ecx ;
6 push eax ;
7 call GetModuleHandleA ;
8 mov edi, eax ;
9 lea eax, [ebp-400h] ;
10 push 00421634h ;FrgReebeZbqr
11 push eax ;
12 call sub_40E712h ;
13 pop ecx ;
14 push eax ;
15 push edi ;
16 call GetProcAddress ;
17 mov [4C0604], eax ;

... ;

Figure 3: Subroutine sub 40C7F3

As a motivating example, Figure 2 shows a simplified

call graph and data section of a sample virus. The solid line

with arrow indicates the calling operation. The dashed line

with single-headed arrow from subroutines to data indicates

the read operations. And, the dashed line with double-

headed arrow indicates read and write operations from the

subroutine to the data location. We use the same naming

convention as IDA Pro for subroutine and data. sub_x is

the name given to the subroutine at address x. dword_x
is a 32-bit data at location x. dd_x denotes a byte string

located at x, whose length is unknown.

In this motivating example, before performing any

malicious behavior, the virus builds a customized

IAT by calling sub_40C7F3, which first decrypts

DLL and API names, gets external API addresses by

invoking GetModuleHandle, LoadLibrary and

GetProcAddress, then writes them in the memory

ranging from 0x4C0288 to 0x4C09A0. This memory

range (0x4C0288 to 0x4C09A0) plays the same role

as an import address table. Any future calls to external

API will be redirected through this table. To achieve this

goal, sub_40C7F3 calls sub_40E712 recursively to

decrypt data stored from 0x42140C to 0x42192D, which

invokes sub_40E697 to mutate the keys. Therefore,

sub_40E712 is the decryptor and we call sub_40C7F3
as IATBuilder.

Figure 3 shows the decryption and customized IAT related

code in sub_40C7F3. Instruction 1 loads the effective ad-

dress of a local variable. EBP-400h indicates this variable

is not allocated by sub_40C7F3 but by its ancestor in call

graph. Through manual analysis, we notice this address is

used to store the decrypted strings. Instruction 2 pushes the

address of an encrypted string xreary32.qyy on stack.

Instruction 3 pushes the address for decrypted string on

stack. Then, Instruction 4 calls subroutine sub_40E712,

which is the decryptor. After sub_40E712 returns, the

decrypted string, which is kernel32.dll in this case,

subroutine Decryptor sub_40E712
1 push ebp ;
2 mov ebp, esp ;
3 sub esp, 38h ;Allocate local variables
4 mov esi, 00421ADCh ;Access global variable

... ;
5 lea edi, [ebp-1Ch] ;Access local variable
6 mov esi, 00421AC0h ;Access global variable
7 lea edi, [ebp-38h] ;Access local variable

... ;
8 call sub_40E675h ;Call another procedure

... ;

Figure 4: Subroutine sub 40E712

is stored at address EBP-400h. Instruction 6 pushes this

address on stack again for Instruction 7 to get the module

handle by calling Windows API GetModuleHandleA.

Instruction 8 stores this handle to EDI. Instructions 9

through 13 do the same actions as Instructions 1 through

5 do. The only difference is the input for sub_40E712 is

changed to FrgReebeZbqr that is an encrypted API name.

Instruction 14 pushes the name of API on stack, which is

SetErrorMode returned from Instruction 12. Instruction

16 gets the actual address of API SetErrorMode in EAX.

Instruction 17 stores this address in an entry 0x4C0604 of

the customized IAT table.

Figure 4 shows partial code of decryptor sub_40E712.

Instruction 3 reserves 38h bytes on stack for local variables

of this procedure. Instructions 4 and 6 move the addresses

of global variables (421ADCh, 421AC0h) to ESI for the

further use. Our analysis on this sample virus identifies

that these two global variables are keys for decryption.

Instructions 5 and 6 access local variables of this procedure

and Instruction 8 calls another subroutine.

D. Approach and System Architecture

In this section, we articulate the system architecture of

our proof-of-concept prototype called ASES, which automat-

ically recovers external API information. ASES is a C/C++

program on top of IDA Pro, which includes modules to

perform static analysis, binary relocation, and code execu-

tion. As an IDA Pro Plugin, ASES leverages the features of

IDA Pro including disassembly, control flow graph, cross

reference, and activation record analysis.

ASES consists of four different phases: pre-processing,

decryptor identification, decryptor relocation and decryptor

reuse. Figure 5 shows the four phases of ASES and the

interactions between each module. In pre-procesing phase,

malicious code is disassembled by recursive descent dis-

assembly. Section information and plain import table are

read from PE header and stored in local database for

further analysis. All functions and function-like code are

identified, and function call relationships are stored in a

call graph as well. In each function, the stack layout is

also recovered: the starting address and size of each input

parameter are calculated and any accessed local variables

are identified. A control flow graph is also generated for

162

�����������
��

0�����
���
�

������	�������	
�
�
	
��

0
�
��
�	5�
(����

������	���������
	
��

A������
�
>
��	������
(����

������	��������

>��

$��	�����
>
��	������
(����

(�	�5������
0
�
	�����
(����

��	��	

����	 (�
	�����

����
8�����	����

������
8�����	����

>
��	��
��
���

0�����
���5
(���

8�����	����

�
	�
��

Figure 5: ASES System Architecture

1 const int VAR_SIZE = 100;
2 const int VAR_NUM = 20;
3 const int CODE_SIZE = 200;
4 const int CODE_NUMBER = 20;

...
5 #pragma data_seg(.data)
6 char g_Var[VAR_NUM][VAR_SIZE] = {{0}};

...
7 #pragma code_seg(.text)
8 char g_Code[CODE_NUMBER][CODE_SIZE] = {{0}};

Figure 6: Space Reservation

each function. Strings longer than 4 bytes in binary are all

recorded. Furthermore, both code and data cross-references

are recorded in database.

The second phase performs static analysis on disassembly

to identify decryptor. There are two major components

involved in this phase: encryption detection engine takes

disassembly as input and applies our naive algorithm to

identify call sites, where plaintext must be obtained as

parameters, as suspicious locations; and dependency engine

takes outputs from encryption detection engine and disas-

sembly, then calculates the start and end locations for binary

relocation. All information generated in this phase is stored

in memory structure for the subsequent steps.

In the first step of the third phase, the code between start
and end locations is copied from malware image to ASES
runtime address space. Then, ASES checks whether control

transfer instructions exist in the copied code. If a CALL
instruction is identified, ASES recursively copies callee to

its space. If a JMP instruction is identified, ASES checks

whether the jumped location is out of start and end. If that

is the case, ASES copies the jumped code to its space. Since

it is impossible to predict the number and size of functions

to be copied, ASES reserves a large amount of space to hold

the code. Figure 6 shows an example code to reserve space in

.data and .text sections under Windows Visual Studio

environment by using pragma directive. Statements 3 and

4 in Figure 6 define two constants to hold 20 regions with

200 bytes for code. Statements 7 and 8 reserve space in

.text section and define it as g_Code. After recursive

function relocation, ASES runs its variable relocation engine

to relocate binary variables. Similar to the way to reserve

code, ASES reserves space in .data section for variables

that need to be relocated.

FARPROC WINAPI GetProcAddress(
__in HMODULE hModule,
__in LPCSTR lpProcName);

Figure 7: Prototype of GetProcAddress

In the final code execution phase, ASES jumps to the

relocated start by calling g_Code[0] and waits for its

return. Since code is recursively copied and redirected by

function relocation engine, the execution context, epilogue

and decryptor itself are all executed. After code execution,

ASES outputs the value of all variables in this code.

III. DECRYPTOR IDENTIFICATION

The goal of decryptor identification is to find the code

that is responsible for internal cipher decoding. Note that

decryptor does not necessarily correspond to one high-

level language function. It may comprises several high-level

language functions and most importantly it includes the

instructions for passing function parameters. We first define

hot, start and end instructions for decryptor identification.

In light of these definitions, the problem of identifying

decryptor, its context and epilogue is transformed into

identifying hot instruction and its corresponding start and

end instructions.

Hot Instruction: In a program P , there exist some

instructions that certain data must be plaintext when these

instructions are ready to be executed. For instance, the Win-

dows API GetProcAddress, whose prototype is shown

in Figure 7, takes the name of function, which the caller

wants to use, as the second parameter. Therefore, when

GetProcAddress is called in a program, the second pa-

rameter must point to some plaintext API names, otherwise

the call will fail. We call an instruction hot instruction,

if its parameters are encrypted and decrypted at runtime.

Instruction 7 in Figure 3 is an example of hot instruction.

When the program counter in CPU reaches this location at

runtime, the string located by EAX at Instruction 6 must be

plaintext.

Start Instruction: We define start instruction as the

instruction from where relocation should start. For a given

hot instruction, there are many instructions that we could

start relocation from and end up with the same outcome. We

define supremum start instruction as a start instruction that

has the shortest path to the corresponding hot instruction.

163

End Instruction: End instruction is the last instruction

we need to relocate. An end instruction is not necessarily

the immediate precedent instruction of corresponding hot

instruction but the instruction that can provide an exact stack

match from the start instruction. For example, Instruction 5,

instead of Instruction 6 in Figure 3, is the end instruction for

a hot instruction 7. Failure to correctly identify end instruc-

tion may result in program crash due to stack imbalance.

A. Identifying Hot Instructions

The first step to identify hot instructions is to find the

functions whose parameters have to be plaintext. In this

work, we focus on identifying functions whose parame-

ters are strings and ignore parameters in other structured

forms. In standard C library, string parameters are passed

by char *. However, some char * parameters are not

strings. It could also be a pointer to memory buffer. There-

fore, we use the combination of formal parameter type and

name to infer whether this parameter is a plaintext string.

For each C library function, we check whether it has any

char * or const char * in its prototype. Then, we

use regular expression to check whether the name of this

parameter has any substring such as name and path in it.

If it is true, that means this function has at least one string

parameter. It is much easier to identify string parameters for

Windows library functions. Because Windows libraries use

PVOID to denote the address of memory buffer and LPSTR,

LPCSTR, LPWSTR, LPCWSTR, LPTSTR, and LPCTSTR
to represent string parameters. Windows function prototype

also provides information whether this parameter is for input

or output by defining __in and __out. This information

is also utilized since we are only concerned about input

parameters.

After we identify functions that take string parameters

with the above approach, we check whether the given

malware invokes any of these functions with the help of

disassembly and cross-reference information discovered by

IDA Pro. Then, we test whether the parameter of this func-

tion is encrypted. Although entropy testing [21] is successful

in identifying symmetric and asymmetric key encryption,

it is incapable of identifying substitution encryption for

which the entropy has no significant change. In addition,

to perform entropy analysis, a relatively large number of

samples should be collected. Besides, the encrypted data

is scattered in malware image and its amount is unknown.

To address this challenge, we present an effective method

to simply call the candidate instruction with its parame-

ters. For Instruction 7 in Figure 3, our solution invokes

GetModuleHandle(’xreary32.qyy’). Because file

xreary32.qyy does not exist, GetModuleHandle re-

turns false. We consider the parameter is encrypted and

Instruction 7 is a hot instruction.

B. Identifying Supremum Start Instructions

For every hot instruction, the entry point of the malicious

code could be viewed as its start instruction. However, if we

relocate code from the entry point to end instruction, many

instructions which do not belong to decryptor will be also

relocated. This leads us to consider two challenges: First,

unnecessary computational cost can be brought into since

unnecessary code may be executed. Second, the executed

unnecessary code may be maliciously performing some

network attacks and information theft.

Our goal is to identify all instructions relevant to the

hot instruction and to exclude irrelevant instructions at the

same time. The core idea is to use backward slicing [8],

[34] on hot instruction and its parameters to determine

all previous instructions which affect the parameters. The

final challenge is that given a hot instruction we need to

identify all of its parameters. Because there is no variable in

binary, this process is not as obvious as high-level language

counterpart. Inspired by Clemens et al. [18], we use the

prototype information retrieved from library header files to

infer the binary parameters and perform a backward slicing

on each parameter. Finally, among the instructions identified

by backward slicing the one that precedes all others is

recognized as the supremum start instruction.

C. Identifying End Instructions

Different calling conventions in C/C++ result in different

responsibility for stack cleanup. A __stdcall function

cleans the stack by itself, while a __cdecl function needs

the help from its caller to restore the stack. Hence, for binary

code that corresponds to a __stdcall function, the end

instruction is the same one as the hot instruction. However,

the end instruction for a __cdecl function is not so clear

to determine. If we simply relocate a __cdecl function

binary without relocating its caller’s stack cleanup code, the

size of data pushed on stack before the function is called

and the size of data popped from stack after the function is

executed do not match each other. Such a stack imbalance

will cause the crash of the hosting process.

The basic idea to determine an end instruction is to

emulate the stack size change from a start instruction. Note

that emulation of other behaviors in binary function is

not necessary. Because only the size of stack is used for

determining the end instruction, the actual value on the

stack is irrelevant for the analysis. Our approach initializes

a relative stack pointer with 0 and starts analysis from the

start instruction to analyze every stack operation instruc-

tion. Stack operation instructions include PUSH, POP and

arithmetic operations on ESP, such as SUB ESP, 44. If a

PUSH or SUB on ESP is encountered, we increase relative
stack pointer by the size of data placed on stack accordingly.

On the other hand, if a POP or ADD on ESP is encountered,

we decrease relative stack pointer accordingly. If control

transfer instructions, such as CALL, are faced, we jump

164

int g int1 = 100;
int g int2 = 100;

int func1(int a){
int b1 = a + 1;
return b1;}

int func2(int a){
int b2 = func1(a) * 2;
return b2;}

int main(int argc, char *argv[]){
int bm = func2(g int1) * 3 + g int2;
return 0;}

(a) C Program

1 push ebp
2 mov ebp, esp
3 push ecx
4 mov eax, [ebp+8]
5 add eax, 1
6 mov [ebp-4], eax
7 mov eax, [ebp-4]
8 mov esp, ebp
9 pop ebp
10 retn
(b) func1 x86 program

1 push ebp
2 mov ebp, esp
3 push ecx
4 mov eax, [ebp+8]
5 push eax
6 call sub 401000
7 add esp, 4
8 shl eax, 1
9 mov [ebp-4], eax
10 mov esp, ebp
11 pop ebp
12 retn
(c) func2 x86 program

1 push ebp
2 mov ebp, esp
3 push ecx
4 mov eax, dword 403018
5 push eax
6 call sub 401020
7 add esp, 4
8 imul eax, 3
9 add eax, dword 40301c
10 mov [ebp-4], eax
11 xor eax, eax
12 mov esp, ebp
13 pop ebp
14 retn

(d) main x86 program

Figure 8: A C Program that Uses Global/Local Variables and Its x86 Program in Intel Syntax

into the callee to record the stack change recursively. The

analysis stops only when the hot instruction is passed and

relative stack pointer is zero. The instruction where the

analysis stops is identified as the end instruction.

IV. DECRYPTOR RELOCATION AND REUSE

In this section, we discuss how to relocate and reuse

decryptor identified from previous section. The relocation

process makes sure that the relocated code is in a self-

contained fashion. Since we do not assume the existence

of symbol information and relocation table, the approach we

propose is totally based on binary code itself without having

any meta-data. Binary relocation without meta-data faces the

following challenges: 1) there does not exist information

for which references should be relocated; 2) variable type

information is not available [30]. It may not be possible

to infer high level variable types from binary code; and 3)

variable size information is not available. It is not even clear

how many bytes of memory the variables hold. We address

these challenges by categorizing data reference into different

types of variables.

We categorize variables in binary into register variable,

stack variable, ancestor stack variable, and global variable.

We use a C program and its corresponding x86 assembly to

illustrate our binary relocation approach. Figure 8 (a) gives

the C program that uses global and local variables. Figures 8

(b) - (c) show the corresponding x86 program of function

func1, func2 and main. 1 We do not need to allocate

memory space for heap variables, because those variables

will be allocated at runtime by relocated code itself.

Register Variable: In a piece of disassembly code, reg-

isters are considered as register variables whose values are

stored in physical CPU registers. Register variables do not

take any memory space in runtime address space (RAS) and

therefore do not need relocation. Instruction 1 in Figure 8 (b)

is an example of register variable which is stored in EBP.

Register variables can be used to access or represent the

address of other kinds of variables. Instruction 4 in Figure 8

(b) is an example in this case. [EBP+8] denotes the variable

1Note that our analysis is based on x86 program only. C program shown
in Figure 8 is just for brevity.

at the address that is 8-byte higher than the stack frame

pointer.

Stack Variable: Stack variables are those that are allo-

cated by stack operation instructions at runtime. Instruction

3 SUB ESP, 38h in Figure 4 allocates 38h bytes for local

variables. Instruction 3 in Figure 8 (b) is another example

to allocate local variable, although it does not look like

one at a careless glance. This instruction allocates 4 bytes

for the corresponding C program integer b1. If a function

is fully relocated, its local variables are stack variables.

sub_40E712 shown in Figure 4 is an example of fully

relocated binary function, so we do not need to allocate

memory space for its local variables.

Ancestor Stack Variable: Ancestor stack variables are

those that are stack variables originally, but their residing

functions will not be fully relocated. This happens when

the start instruction is located after the entry point of this

function. We call them ancestor stack variables, because

they are originally allocated at runtime as well by ancestor

callers of relocated code identified in our static analysis.

sub_40C7F3 shown in Figure 3 is an example of partially

relocated procedure. The code before Instruction 1 and its

ancestor callers are not relocated in new runtime address

space. Therefore, those instructions which are responsible

for allocating local variables are stripped from the relocated

code. Instruction 1 LEA EAX, [EBP-400h] accesses

such a variable. We allocate global space in .data section

for ancestor stack variables.

We further illustrate the difference between stack variable

and ancestor stack variable by an example code shown in

Figure 8. In this code, two global variables are defined.

main calls func2 that calls func1. As shown in Figure 9,

g_int1 and g_int2 reside in global data section. bm, b2
and b1 reside in corresponding activation record (AR) of

main, func2 and func1. If Instruction 4 in Figure 8 (d) is

recognized as the start instruction, allocation for bm which is

a stack variable in original runtime address space (RAS old)

is missed. In this case, bm is an ancestor stack variable.

Therefore, in new runtime address space (RAS new), bm is

allocated in global data section instead. If Instruction 4 in

Figure 8 (c) is identified as the start instruction, both bm and

165

>%� <�� >%� ;
�

��������� �

������!

�

����������"

����������#
�����)

����� ���*

�����*

������

����� ���)

��������� �

��������������

�����)

����� ���*

�����*
����� ���)
������

(a) Start Ins = Figure 8-(b)-4
>%� <�� >%� ;
�

��������� �

������!

�

����������"

����������#
�����)

����� ���*

�����*

������

����� ���)

��������� �

��������������

����������"����������#
�����)

����� ���*

�����*
����� ���)
������

(b) Start Ins = Figure 8-(c)-4
>%� <�� >%� ;
�

��������� �

������!

�

����������"

����������#
�����)

����� ���*

�����*

������

����� ���)

��������� �

��������������

����������"

����������#
�����)

����� ���*

�����*

����� ���)
������

(c) Start Ins = Figure 8-(d)-4

Figure 9: Relocation with Different Start Instruction

b2 are moved to global data section in RAS new as shown

in Figure 9 (b). Figure 9 (c) shows variable relocation, if

Instruction 4 in Figure 8 (b) is identified as the start of

relocation.

We treat global variables the similar way as does ancestor

stack variables. Reserved .data section space is allocated

for global variables. In addition, the values of initialized

global variables are copied to RAS new. Instruction 10

PUSH 00421634h in Figure 3 is an example of access

global variable. The value FrgReebeZbqr of variable at

00421634h is copied to its relocated variable in RAS new.

In order to reuse the relocated code, we wrap the relocated

code body in an assembly block and place this block in

a C function with a prototype int runCodes(void).

After code relocation, ASES calls runCodes() to give the

control to the relocated code.

V. EVALUATION

To evaluate the effectiveness of our approach, we tested

Virut.d [7] with ASES. Virut.d is a polymorphic,

memory-resident Windows 32-bit malware, which has entry

point obscuring capabilities. Upon running, Virut.d in-

jects winlogon.exe and infects files on local and shared

drives. Virut.d has good camouflage by using process

injection, but it does not adopt any rootkit techniques.

Virut.d contains an IRC-based backdoor which provides

unauthorized access to infected computers. The snapshot of

the interface of ASES is given in Figure 10. Analysts run

ASES by clicking the specific plugin button in IDA Pro, and

ASES yields the results in output window.

We conduct experiments on a machine with Intel Core2

Duo CPU 3.16 GHz 3.25 GB RAM running Windows XP

Professional SP3 and IDA Pro 5.6.0.931. We use Windows

API GetTickCount to measure the performance of our

prototype. Without ASES, IDA Pro identified 135 APIs im-

ported from seven different DLLs by reading Virut.d’s PE

header. Table I (a) shows these seven DLLs and one function

from each DLL. These DLLs are typical dynamic link library

files loaded by Windows applications, which handle memory

management, input/output operations, interrupts, windows

user interface, process status helper, web pages and network

Figure 10: ASES Snapshot as an IDA Pro Plugin

behaviors. Although this DLL information can imply some

behaviors of this executable, this revealed information is

limited because they are almost loaded by every Windows

program nowadays.

Now, we describe the results ASES discovered from this

malware:

Hot Instruction Identification. At the very first step of

static analysis, ASES detected 94 suspicious function invo-

cations, then narrowed down the number of hot instructions

to 82. These invocations scattered from address 406BC3h
to 40D688h, which imply that code in this section may be

responsible for initialization.

Start/End Instruction Identification. ASES identified

start/end instructions for all 82 hot instructions. We no-

ticed that, for most cases, the code distance from the start

instruction to the end instruction is the same. We suspect

the malware author reused some source code, therefore the

compiler generated the same binary code. However, we did

observe several cases, in which the code distance from the

start instruction to the end instruction is larger than normal.

We manually checked these cases for the evaluation purpose

and verified that ASES identified the correct instruction.

Binary Relocation. ASES relocated five variables includ-

ing ancestor stack variables and global variables between

166

(a) An Incomplete List of API in PE Header

Stub Address Name Dll
0041A0B8h GetProcAddress kernel32.dll
0041A1C4h GetModuleFileNameExA psapi.dll
0041A1CCh ShellExecuteA shell32.dll
0041A1E4h FindWindowA user32.dll
0041A1F4h GetFileVersionInfoSizeA version.dll
0041A204h InternetGetConnectedStateEx wininet.dll
0041A218h socket ws2 32.dll
0041A220h connect ws2 32.dll

(b) An Incomplete List of identified API in customized IAT

Encrypted String Name Dll
PerngrZhgrkN CreateMutexA kernel32.dll
VagreargPenpxHeyN InternetCrackUrlA wininet.dll
UggcBcraErdhrfqN HttpOpenRequestA wininet.dll
FUPunatrAbgvsl SHChangeNotify shell32.dll

HEYQbjaybnqGbSvyrN URLDownloadToFileA urlmon.dll
ErtBcraXrlRkN RegOpenKeyExA advapi32.dll
QafSyhfuErfbyirePnpur DnsFlushResolverCache dnsapi.dll
JArgNqqPbaarpgvba2N WNetAddConnection2A mpr.dll

Table I: Case Study with Malware Virut.d

each start and end instruction pair. We manually checked

the correctness of this step for the evaluation purpose, and

we found the smallest variable is 4 bytes, while the largest is

around 30 bytes. ASES relocated five functions as well. Note

that if a function is called more than once, ASES relocates it

for each invocation. This redundancy can be removed, if the

information of relocated functions are stored. ASES gives

control to relocated code after static analysis and binary

relocation. In our experiments, this step was very effective

and fast.

Experimental Results: ASES identified 82 API names

which were encrypted in this malware. These APIs can be

categorized into two types: 1) the DLL is loaded implic-

itly, but the API was not found in the import table. The

first four APIs recovered in Table I (b) are in this case.

The implicit load of kernel32.dll, wininet.dll,

and shell32.dll were identified by IDA Pro. However,

invocations to CreateMutexA, InternetCrackUrlA,

HttpOpenRequestA, and SHChangeNotify were not

disclosed. The disclosure of these APIs made clear that

this malware has some http operations, which is useful to

profile the behavior of this malware; 2) neither the DLL

is loaded explicitly, nor the API. The rest of four APIs in

Table I (b) are in this latter case. urlmon.dll contains

functions used by Microsoft OLE, which allows an operation

for embedding and linking to documents and other objects.

advapi32.dll is a part of an advanced API service

libraries supporting numerous APIs including many registry

calls. dnsapi.dll is a module that contains functions

used by the DNS Client API. mpr.dll contains func-

tions used to handle communication between the Windows

operating system and the installed network providers. Not

only these DLLs look unfamiliar to security layman, we

also identified some APIs which are undocumented, such

as DnsFlushResolverCache, used to flush the DNS

cache. Disclosure of these unfamiliar and undocumented

DLLs and API helps outline the malware even further in

a fine-grained manner.

Performance: In normal cases, IDA Pro takes less than

one minute to process executables in our pre-processing

phase. To reveal 82 external API names from Virut.d,

ASES only took 672 milliseconds after pre-processing, sup-

porting reasonable real-time responsiveness. Static analysis

phase and binary relocation phase take around 45% of the

process, respectively, and code execution takes around 10%

of the entire process.

VI. RELATED WORK

Binary code reuse is the most related research effort to

our work. Lin et al. [20] proposed reuse-oriented trojan that

extracts interfaces in benign programs and adds malicious

functionalities on top of them. The idea is to reuse binary

code and transform it into code with malicious purpose.

Caballero et al. [10] performed the first systematic study of

automatic binary code reuse and implemented BCR, which

can extract binary functions and wrap it with a C interface.

Kolbitsch et al. [18] developed INSPECTOR almost at the

same time as BCR was introduced. Their approach was able

to extract an entire functionality from binary.

Another work related to ours is dependency checking for

binary code. Weiser first proposed program slicing [34] to

check statement dependency of source code in high-level

language. Most programming slicing techniques [32] focus

on slicing high-level language programs where variables

information and transfer of control is clear. Akgul et al.
presented how to perform dynamic slicing on assembly [8].

Sharif et al. presented abstract variable binding to reverse en-

gineer emulators [29]. They used absolute memory addresses

as variables, analyzed data flows among entire trace to

determine variable binding, and used forward and backward

slicing to identify dependent abstract variables.

There also exist some attempts to recover variable value

for binary in a static way. Value-set analysis [9] recovers

variable-like entities statically from executables and infers

information about the content of these variables at every

program point. However, it cannot infer the actual value

of any variable but gives a possible value set. Symbolic

execution [27] allows analysts to reason program behaviors

by building a logic formula which represents a program

execution. It may help reveal some valuable information in

binary, but cannot directly infer the actual value neither.

VII. CONCLUSION AND REMARKS

In this paper, we classified malware-related data in terms

of origin and form, and addressed the significance of internal

ciphertext data for malware forensics. We have presented

167

a novel approach to automatically extract secrets from

malware executables without any human involvement. The

proposed approach consists of three major tasks to identify

secret-related code in binary, relocate and reuse it without

symbol information. We also developed a prototype system,

ASES, to extract external API information from malware

binaries. Our evaluation results on real world malware

showed that ASES could identify sensitive data effectively

and recover plaintext from executable systematically.

Although packing is beyond the scope of our approach,

the techniques we proposed in this paper are general and

can also be realized on top of dynamic malware analysis

platforms, such as BitBlaze [30] and Anubis [1], which have

the ability to unpack malware. Even though our techniques

to identify and relocate binary code ensures that only de-

cryptor is extracted from malware and executed in another

address space, we could enhance the security of the host

process with software-based fault isolation (SFI) [22], one-

way isolation [31] and other similar techniques.

For our future work, we plan to address the challenges

of other models of secret protection in malware along with

rigorous testing of our approach with other types of malware.

ACKNOWLEDGMENT

This work was partially supported by the grants

from National Science Foundation (NSF-IIS-0900970 and

NSF-CNS-0831360) and Department of Energy (DE-

SC0004308).

REFERENCES

[1] Anubis. http://anubis.iseclab.org.
[2] Dumpbin. http://msdn.microsoft.com/en-

us/library/c1h23y6c(v=VS.100).aspx.
[3] IDA Pro Disassembler. http://www.datarescue.com/idabase.
[4] Kraken encryption algorithm. http://mnin.blogspot.com/2008/04/kraken-

encryption-algorithm.html.
[5] Kraken is finally cracked. http://blog.threatexpert.com/2008/04/kraken-

is-finally-cracked.html.
[6] VMProtect. http://www.vmprotect.ru.
[7] Win32 Virut. http://www.satujiwa.com/2010/07/definition-and-how-

to-remove-virus-win32virut-virut.
[8] T. Akgul, V. Mooney III, and S. Pande. A fast assembly level reverse

execution method via dynamic slicing. In Proc. of International
Conference on Software Engineering, pages 522–531. IEEE, 2004.

[9] G. Balakrishnan and T. Reps. Wysinwyx: What you see is not what
you execute. ACM Transactions on Programming Languages and
Systems (TOPLAS), 32(6):1–84, 2010.

[10] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary
code extraction and interface identification for security applications.
In Proceedings of the 17th Annual Network and Distributed System
Security Symposium (NDSS). Citeseer, 2010.

[11] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering. In Proceedings of the 16th ACM conference on Computer
and Communications Security (CCS), pages 621–634. ACM, 2009.

[12] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis.
In Proceedings of the 14th ACM conference on Computer and
communications security, pages 317–329. ACM, 2007.

[13] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario. Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware. In Proc. of International Conference on Dependable
Systems and Networks, pages 177–186. IEEE, 2008.

[14] K. Coogan, S. Debray, T. Kaochar, and G. Townsend. Automatic static
unpacking of malware binaries. In Proc. of Working Conference on
Reverse Engineering (WCRE), pages 167–176. IEEE, 2009.

[15] A. Danielescu. Anti-debugging and anti-emulation techniques. Code-
Breakers Journal, 5(1), 2008.

[16] J. Franklin, M. Luk, J. McCune, A. Seshadri, A. Perrig, and L. van
Doorn. Remote detection of virtual machine monitors with fuzzy
benchmarking. ACM Operating Systems Review, 42(3):83–92, 2008.

[17] F. Guo, P. Ferrie, and T. Chiueh. A study of the packer problem
and its solutions. In Proceedings of the Recent Advances in Intrusion
Detection (RAID), pages 98–115. Springer, 2008.

[18] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries.
In Proceedings of the 31th IEEE Symposium on Security and Privacy
(S&P), pages 29–44. IEEE, 2010.

[19] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly
of obfuscated binaries. In Proceedings of the 13th Usenix Security
Symposium, pages 255–270. USENIX, 2004.

[20] Z. Lin, X. Zhang, and D. Xu. Reuse-oriented camouflaging trojan:
Vulnerability detection and attack construction. In Dependable Sys-
tems and Networks (DSN), 2010 IEEE/IFIP International Conference
on, pages 281–290. IEEE, 2010.

[21] R. Lyda and J. Hamrock. Using entropy analysis to find encrypted
and packed malware. Security & Privacy, IEEE, 5(2):40–45, 2007.

[22] S. McCamant and G. Morrisett. Evaluating sfi for a cisc architec-
ture. In Proceedings of the 15th conference on USENIX Security
Symposium-Volume 15. USENIX Association, 2006.

[23] Microsoft. Microsoft Portable Executable and Common Object File
Format Specification Revision 8.2. MSDN Library, 2010.

[24] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In Proceedings of the 12th Annual Network and Distributed
System Security Symposium (NDSS). Citeseer, 2005.

[25] A. Orebaugh, G. Ramirez, and J. Burke. Wireshark and Ethereal
network protocol analyzer toolkit. Syngress Media Inc, 2007.

[26] P. Porras, H. Saidi, and V. Yegneswaran. A foray into conficker’s logic
and rendezvous points. In Proceedings of the 2st Usenix Workshop
on Large-Scale Exploits and Emergent Threats (LEET), pages 1–9.
USENIX Association, 2009.

[27] E. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Proc. of IEEE Symposium on
Security and Privacy (S&P), pages 317–331. IEEE, 2010.

[28] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable
code revisited. In Proceedings of the 9th Working Conference on
Reverse Engineering (WCRE), pages 45–54. IEEE, 2003.

[29] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic reverse
engineering of malware emulators. In Proc. of IEEE Symposium on
Security and Privacy (S&P), pages 94–109. IEEE, 2009.

[30] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A
new approach to computer security via binary analysis. In Proc. of
International Conference on Information Systems Security, 2008.

[31] W. Sun, Z. Liang, R. Sekar, and V. Venkatakrishnan. One-way isola-
tion: An effective approach for realizing safe execution environments.
In Proceedings of the 12th Annual Network and Distributed System
Security Symposium (NDSS), pages 265–278. Citeseer, 2005.

[32] F. Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages (JPL), 3, 1995.

[33] G. Vigna and C. Kruegel. Host-based intrusion detection. Handbook
of Information Security. John Wiley and Sons, 2005.

[34] M. Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE), pages 439–449. IEEE,
1981.

168

