
Beyond User-to-User Access Control for Online

Social Networks

Mohamed Shehab1, Anna Cinzia Squicciarini2, and Gail-Joon Ahn3

1 University of North Carolina at Charlotte, NC, USA
2 The Pennsylvania State University, PA, USA

3 Arizona State University, AZ, USA
mshehab@uncc.edu, acs20@psu.edu, gahn@asu.edu

Abstract. With the development of Web 2.0 technologies, online so-
cial networks are able to provide open platforms to enable the seamless
sharing of profile data to enable public developers to interface and ex-
tend the social network services as applications (or APIs). At the same
time, these open interfaces pose serious privacy concerns as third party
applications are usually given full read access to the user profiles. Cur-
rent related research has focused on mainly user-to-user interactions in
social networks, and seems to ignore the third party applications. In
this paper, we present an access control framework to manage the third
party to user interactions. Our framework is based on enabling the user
to specify the data attributes to be shared with the application and at
the same time be able to specify the degree of specificity of the shared
attributes. We model applications as finite state machines, and use the
required user profile attributes as conditions governing the application
execution. We formulate the minimal attribute generalization problem
and we propose a solution that maps the problem to the shortest path
problem to find the minimum set of attribute generalization required to
access the application services.

1 Introduction

The recent growth of social network sites such as Facebook, del.icio.us and Mys-
pace have created many interesting and challenging problems to the research
communities. In social networks users self-organize into different communities,
and manage their own profile, as a form of self-expression. Users profiles usually
include information such as the user’s name, birthdate, address, contact infor-
mation, emails, education, interests, photos, music, videos, blogs and many other
attributes. The structure of an example social network profile is depicted in Fig-
ure 1(a). Controlling access to the user profile information is a challenging task
as it requires average internet users to act as system administrators to specify
and configure access control policies for their profiles. To control interactions
between users, the user’s world is divided into a trusted and a non-trusted set
of users, referred to as friends and strangers respectively. Furthermore, some
social networks allow users to further partition the set of friends by geographical

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 174–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Beyond User-to-User Access Control for Online Social Networks 175

location, social group, organization, or by how well they know them. Users are
provided with group based access control mechanisms that apply access rules on
the different groups of friends and strangers. Facebook [6] enables users to cre-
ate a limited profile and to select which users map to that profile. For example,
a user could share his wedding album with his family members and not with
his colleagues from work. In addition to the issues involved with enabling fine
grain access control for each user profile [5] to control data attributes viewable
by other users, a yet unexplored problem is related to users’ profile access from
entities different from other social network users.

With the development of Web 2.0 technologies [20], online social networks are
able to provide open platforms to enable the seamless sharing of profile data to
enable public developers to interface and extend the social network services as
applications (or APIs). For example, Facebook allows anyone to create software
plug-ins that can be added to user profiles to provide services based on profile
data. These features have been a great success, the most popular Facebook
applications have around 24 million users as of May 2008, and competing social
networking sites have moved to create their own imitation platforms. However,
although these open platforms enable such advanced features, they also pose
serious privacy risks. Users’ profiles in fact have a great commercial value to
marketing companies, competing networking sites, and identity thieves. Data
mining through the development platform can potentially affect more people
than screen scraping, because it exposes information that might otherwise be
hidden.

Applications that are currently added to the users’ profiles are given full
read access to all the profiles information [6,18]. The user is able to add the

Profile

Personal
Information

Birth Date Address Phone
Number

Marital
Status

Friends

Friend
F1

Friend
FN

…

Albums

Album
A1

Album
AN

…

Videos

Video
V1

Video
VN

…

Notes

Note
N1

Note
NN

…

Events

Event
E1

Event
EN

…

.

(a) Example User Profile Schema

(b) App. Addition Error Message

Fig. 1. Social Networks Profiles and Applications

176 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

application only if he/she agrees to give the application access not only to his
profile, but also to profile data of other users viewable through that user. In
other words, the user enables the application to read information on his behalf.
If the user refuses to grant full read access to the application the installation
process fails. For example, Figure 1(b), shows the error message displayed by the
Facebook platform when the user rejects to give the application full read access
to his profile data. Basically, the application access control model adopted by the
request management module is an all-or-nothing policy. As such, API developers
have access to users’ data, regardless of the actual applications’ needs, leading
to potentially serious privacy breaches. Such information flow is often hidden or
not clear to social network users, who are often not aware of the amount of data
that is actually being disclosed, since they do not really distinguish among social
network users and developers outside the social network boundaries. We believe,
in order to promote healthy development of social networks environments and
protect fundamental individuals’ privacy rights, users should be in control at
any time of their data and be well informed about their usage. Applications
should be given limited privileges to the user profile and only given access to
the smallest set of profile data required to perform their tasks. For example, a
horoscope application should be given access to only the birthday information,
while a fortune cookie application that displays a random daily quote on the
user’s profile should not be given access to any profile data.

Although this issue has been recognized by the media [16,2,4] and by social
network users, to date, no technical solution has been proposed so far. Ideally,
users’ should be able to take advantage of the available applications while still
having a stronger control on their data. The problem is not trivial, in that
it requires new access control models for APIs in social networks, as well as
extending social network applications. Applications should be designed so to be
customized, based on users’ profile preferences and second, users should have
the ability to specify the data that they are willing to reveal. Additionally, users
should be able to use data privacy mechanisms such as generalization to enjoy
the services provided through APIs without having to disclose identifying or
private information.

In this paper we address this issue, by deploying an access control mechanism
for applications in social networks. Our goal is to provide a privacy-enabled
solution that is in line with social network ethics of openness, and does not hin-
der users’ opportunities of adding useful and entertaining applications to their
profiles. Our access control mechanism is based on enabling the user to specify
the data attributes to be shared with the application and at the same time be
able to specify the degree of specificity of the shared attributes. Enabling such a
mechanism requires application to be developed to accommodate different user
preferences. We model applications as finite state machines, and use the re-
quired user profile attributes as conditions governing the application execution.
The challenge the user is faced with is what is the minimum set of attributes and
their minimum generalization levels required to acquire specific services provided
by the application. In order to address this problem we proposed the weighted

Beyond User-to-User Access Control for Online Social Networks 177

application transition system and formulated the Minimal Attribute General-
ization Problem. Furthermore, we propose a solution that maps the problem to
the shortest path problem to find the minimum set of attribute generalization
required to access the application services.

The rest of the paper is organized as follows. In Section 2, we provide back-
ground information related to Social Network APIs. In Section 3, we introduce
our developer APIs access control framework. In Section 4, we discuss how to
provide customized applications. Section 5 describes the related work. The con-
clusion and future work are discussed in Section 6.

2 Background on Social Network APIs

With the emergence of new web technologies, and with the establishment of the
Web 2.0, a large number of web sites are exposing their services by providing web
programming interfaces (APIs). For example, Google Web API [12] provides a
programming interface to query web pages through Google from user developed
applications. Several social network web sites have released APIs that allow
developers to leverage and aggregate information stored in user profiles and
provide extended social network services. The exposed APIs are basically a set
of web services that provide a limited and controlled view for the application to
interface with the social network site. The social network application architecture
includes three interacting parties namely the user, social network server, and the
third party application server. Figure 2(a), shows the different blocks used in a
the social networks architecture. Note that, the application server is able to
connect to social network through the exported web APIs. Furthermore, these
requests are filtered through the request management module which will be
discussed in detail in the next section.

For example, consider an application that recommends stores in your area that
are having sales. In this case, the application requires to retrieve your address,
age, marital status, and gender. The address information is required to be able

Policy
Base

User
Profiles

Social Network Platform

Web
APIs

Request
Management

U
se

r B
ro

w
se

r

Ap
pl

ic
at

io
n

Pl
at

fo
rm

(a) Social Network System Architecture

Social Network
Server

Request
Profile {Bob}

Request
{TESTAPP}

Request {API 1}

Reply {API 1}

Request {API n}

Reply {API n}

.

.

.

Reply
{TESTAPP}

Reply
Profile {Bob}

Application
Server

1

2

3

4

5

User
Browser

(b) Application Interactions

Fig. 2. Social Network Architecture and Application Interactions

178 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

to locate shops in your region, and the other parameters are required to provide
a more focused recommendation. Some other applications would not only require
data from your profile but would also require data from your friends’ profiles.
For example, consider an application that projects your friends on an online map
according to the address listed on their profiles. This application requires your
address and your friend list, then for each friend it would retrieve their address.

Social networks provide mechanisms for users to customize their profiles and
to add applications developed by external developers. The application provides
the customized services by accessing the exported APIs. Figure 2(b), depicts the
interaction stages between the user browser, social network and the third party
developer application. The interaction starts when a user requests an application
APP (Steps 1-2). The application server interacts with the social network server
by instantiating API calls (Step 3). Upon receiving the responses of the API calls,
the application server compiles and sends a response to the social network which
is forwarded to the requesting user (Steps 4-5). Note that in this model the social
network outsources the application development and execution to an external
third party application server.

3 Developer APIs Access Control Framework

Applications require to access user’s profile data to provide a service customized
to the user’s profile data. In this section we present our approach to enable
fine grain access control [5,21] for developer’s applications, to limit applications’
access only to relevant user’s profile data. We first provide some preliminary
definitions related to applications and API set, then discuss our proposed fine
grain access control framework for API based applications, and then focus on
the relevant phases that characterize our approach.

3.1 Social Network Profiles and Data Sets

For the purpose of our work, the two main components of a social network are
represented by applications and users’ profiles.

Users’ Profiles. Users’ profiles are modeled as collection of data items that are
uniquely associated to them. Each data item is defined over a finite domain of
legal values.

Definition 1. (User Profile) A user profile for user i, is characterized by an
attribute vector x = {x1, . . . , xn}, where attribute xi takes values in a domain
Di, which also includes the null value referred to by ⊥.

Profile data items in our approach can be generalized to increase privacy of users.
A common practice in privacy preservation mechanisms is to replace data records
with suppressed or more general values [24,25] in order to ensure anonymity and
prevent disclosure of sensitive data. A simple disclosure policy can simply sup-
press an attribute if certain disclosure criterion are met, in this case that is a

Beyond User-to-User Access Control for Online Social Networks 179

all or none policy. A generalization disclosure policy, is accomplished by assign-
ing a disclosed value that is more general than the original attribute value. For
example, the user can make the address information less specific by omitting
the street and city and revealing just the zip code. Figure 3, shows an example
partial value generalization hierarchy of the address attribute. We assume that
domain Di for a certain data item xi (see Definition 1) is a partially ordered set
(Di

j ,≺), where Di
j are the attribute generalizations and ≺ is the ordering oper-

ator. In the domain Di the largest element corresponds to the non-generalized
attribute value and the smallest element is the most generalized value which
is the suppressed value ⊥. The domain Di contains li generalization levels, an
attribute generalized to the hth level of generalization is denoted by Di

h, where
0 ≤ h < li. Data attribute generalized to Di

1 is more general than an attribute
generalized to Di

2, Di
2 ≺ Di

1, which implies that Di
2 discloses more information

than Di
1. Given a user profile x, by specifying generalization preferences for each

⊥

North Carolina

Mecklenburg Wake County

Charlotte

South East

Florida

Davidson Huntersville Matthews Mint Hill Pineville

South
Charlotte

North
Charlotte

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 3. A partial value generalization hierarchy of the address field

of the profile attributes the user is able to specify a different view for each appli-
cation. The user generalization preferences for an application is defined by the
attribute generalization vector UP = [h1, . . . , hn] where hi represents the gen-
eralization level Di

h permitted for profile attribute i. Different attributes have
different disclosure sensitivity, for example some users might regard their home
address more sensitive than their cell phone number. To capture attribute sen-
sitivity, for each profile attribute xi ∈ x the user assigns a sensitivity metric Φi,
which is specified for the non-generalized attribute Di

li−1. Note that the sensi-
tivity of an attribute xi generalized to level hi is proportional to Φihi. Given a
user generalization preference vector the UP = [h1, . . . , hn], the risk of attribute
disclosure is proportional to Θ(UP) =

∑n
i=1 Φihi. Note that the function Θ()

provides a mechanism to compare user generalization preferences. The general-
ization model can be applied not only to the data explicitly mentioned on the
profile in addition it can be applied to the tags and the metadata that are at-
tached to the profile data.

180 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

Applications. The building block for our model is represented by applications.
Applications are composed of a set of API’s which are functions called by the
application.

Definition 2. (Application API Set). Given an application App, the application
API set App.apiset is the set of APIs called by application App, represented as
the set App.apiset = {api1, . . . , apin}.
For example, consider a horoscope application HoroAPP , illustrated in Fig-
ure 4. It calls the “user.get birthday()” and “user.get friends()” APIs. The
application API set for HoroAPP is HoroAPP.apiset = {user.get birthday(),
user.get friends()}. From the API calls the set of data set accessed by the
application can be obtained by tracing the data acquired by the called API’s.
For example, consider an API “user.get birthday()”, the profile data accessed
is {profile.birthday}. Other APIs involve the processing of several profile data
items for example, consider the API “user.get photos with friends()”, this API
returns the photos taken with friends. The API performs a join between the user
friends and the user photo album meta data, in this case the data items access
are {profile.ablums, profile.friends}. Accordingly, an application can be trans-
lated from a set of API calls to a set of data accesses. This set of accessed data
can be then presented to the user to enable the selection of what data items to
expose.

ExampleApplication(){
a = get friends(userid);
...
b = get albums(userid);
...
Query = "SELECT birthday FROM user db

WHERE uid=userid";
c = send query(Query);
...
}

Fig. 4. Example of horoscope application

3.2 The Access Control Framework

Our framework adopts the Principle of Least Privilege [23], which requires that
each principal be accorded the minimum access privileges needed to accomplish
its task. In our context, principals are the application developers, and the appli-
cation should be awarded access to the minimum set of profile data in order to
provide the requested service. To achieve this goal we present a mechanism that
enables fine grain access control on the profile data. Such a mechanism enables
the application developer to select the data items required by the application
and at the same time enables the user to opt-in or opt-out or generalize each of
the requested data items. Specifically, our framework is characterized by three
main phases: application registration, to register the application at the social
network server; user application addition, to add the application in a local pro-
file; and application adaptation, within which the application adapts according
to the provided data items. We discuss them in what follows.

Beyond User-to-User Access Control for Online Social Networks 181

Application Registration. The application developers register the applica-
tion with the social network server. The developers are required to share the
application API calls and the application business state diagram describing the
application process, the details of this requirement will be discussed in following
sections. As part of the registration process, developers need to tag the appli-
cation, by labeling each API within the application with the set of user’s data
items used by the application. The tags provided during this stage only refer to
the user’s profile data involved and do not include any external output or addi-
tional user input that may be required when executing the API. The provided
application information is used to compile an application sheet describing the
data attributes required by the application.

User Application Addition. Once the application is registered with the social
network server, it becomes available for social network users to add to their
social network profiles. Upon selecting the application, the application sheet is
presented to the user, who is prompted with the following options for each data
item required by the API: choose to opt-in, opt-out, or generalize. Intuitively, the
user opts-in for the data items he is willing to disclose to the application. If the
user opts-out for some data the application needs to adapt in order to be properly
executed without such input. In case the generalize option is chosen for certain
data item, then the user only accepts the application to employ generalized data
attribute [24,25]. The user selections are input in the user sheet, which indicates
the user access preference for the added application.

<APPSHEET>
<APP id="332198764">

<DESCRIPTION>
<NAME> Horoscope App </NAME>
<INFO> Provide daily horoscope
from www.horoscope.com </INFO>

</DESCRIPTION>
<DATA-GROUP>

<DATA ref="profile.birthday"/>
<DATA ref="profile.gender"/>
<DATA ref="profile.address"/>

</DATA-GROUP>
</APP>

</APPSHEET>

(a) Application Sheet

<USERSHEET>
<APP id="332198764">

<ALLOW>
<DATA-GROUP>

<DATA ref="profile.birthday.day"/>
<DATA ref="profile.birthday.month"/>

</DATA-GROUP>
</ALLOW>

</APP>
</USERSHEET>

(b) User Sheet

Fig. 5. Application and User Sheets

An example of XML encoding for the horoscope application is reported in
Figure 5. In Figure 5(a) we report the application sheet, where birthday, gender
and address are requested. In Figure 5(b) we report the user sheet in case the
user opted to disclose only month and year of birth.

User Application Adaptation. At this stage the user sheet is used to gener-
ate a version of the application executable using the input obtained by the pro-
file data items. This phase requires the application to differentiate provisioning

182 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

according to the permissible data items and their respective generalization levels.
We discuss in the next section how this not trivial task is achieved.

4 Customized Application Service Provisioning

The user sheet provides a mechanism for users to specify generalization pref-
erences on the profile attributes to restrict the data accessible to the applica-
tion. On the other hand, by enabling attribute generalizations the application
is faced with the problem of missing data, and might not ensure the provi-
sioning of the request service based on the provided data generalizations. To
address this issue we propose that during the application registration phase the
application developer is required to provide the process execution description of
the application. The process execution description describes the interactions be-
tween the composed APIs. A candidate process description language standard is
BPEL (Business Process Execution Language for Web Services, also WS-BPEL,
BPEL4WS) [19] which provides a rich vocabulary for expressing composition,
orchestration and coordination of web services to describe the behavior of busi-
ness processes. Figure 6, shows an example process execution diagram describing
the service invocations and service transitions required by an application that
aggregates the user’s friends’ addresses and projects them on Google Maps. Note
that the transitions are labeled with conditions on the returned API calls. The
web services composition and choreography described by BPEL can be formal-
ized based using finite state processes (FSP) [8,22,7]. In what follows we define
the application as a transition system.

Definition 3. (Application Transition System). An application transition sys-
tem is a tuple TS = (S, Σ, δ), where:

– S is a finite set of states. The set of states includes a single initial state s0

and a finite set of final states F ⊆ S.
– Σ is the alphabet of operations offered by the service and the data required

by this service.
– δ : S × Σ → S is the transition function that maps states and alphabets to

another state. The transition δ(si, α) = sj, represents that transition from
state si to state sj subject to services and data in α.

The mapping function δ is used to represent the constraints required to tran-
sition from one state to another. In this paper, we focus on constraints related
to the required profile data generalization levels requested by the application to
enable the successful transition from a state to another. For example, an ap-
plication requesting the user’s address through the service get address(), the
application will transition to a different state depending on the generalization
level of the returned address attribute. From an application perspective the user
generalization preference vector specifies the permitted attribute generalization
levels, which in turn dictates the set of permissible state transitions. The set of
final states represents the different service levels provided by the application.

Beyond User-to-User Access Control for Online Social Networks 183

<<Invoke(get_friends)>>

Get friends of user “Bob”

<<Invoke(get_address)>>

Get address for each use in

Bob’s friendlist

[R
e
s
u
lt

=
=

N
U
L
L
]

<<Invoke(geo_getXY)>>

Get map coordinates on the

map using the address

R
e
s
u
l
t
=
=
N
U
L
L

<<Invoke(update_map)>>

Update map using the (X,Y)

and the user name

<<Invoke(get_address)>>

Get address of Bob

<<Invoke(geo_getXY)>>

Get map coordinates on the

map using the address

<<Invoke(update_map)>>

Update map using the (X,Y)

and the user name

[R
e
s
u
lt

=
=

N
U
L
L
]

Fig. 6. Example Application Process

Definition 4. Given an application transition system TS = (S, Σ, δ) and a user
preference vector UP , the reduced application transition system TSUP is defined
as the tuple (SR, ΣR, δR), where:

– SR = S and ΣR = Σ.
– δR = δ for δ(si, α) = sj where the attributes α satisfies the user preference

vector UP .

The reduced application transition system includes only the state transitions
that are permitted by the user preferences. It also indicates the states that are
reachable after the user preferences are applied to the application.

We model the application transition system TS as a directed graph G =
(V, E), where the vertices V represent the states, and the edges E represent the
state transitions. The edges E are labeled with the minimum attribute general-
ization levels required to enable the state transition. For an edge e ∈ E the edge
label e.h represents the generalization level required for the state transition. For
example, in Figure 7(a) the edge (S0, S1) is labeled with h1

2 indicating that the
generalization level 2 is required for attribute x1 to enable transition from state
S0 to state S1. A user preference is said to satisfy a transition if the specified user
attribute generalization level is greater than or equal to the edge generalization
level. The reduced application transition system is computed by generating a

184 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

graph GR = (VR, ER), where VR = V and ER ⊆ E includes only the transi-
tions E that satisfy the user preferences. Figure 7(b), shows an example reduced
application transition graph for the user preference vector up = {h1

1, h
2
1, h

3
2, h

4
1}

and the original application state diagram in Figure 7(a).

Definition 5. (Application Service Path) Given an application transition in-
stance TS, the path P = {e0, . . . , en−1} is sequence of state transitions, where
the edge e0 starts at the initial state s0 and the ending edge en−1 terminating at
a final state sn ∈ F . The path generalization vector g(P) = {e1.h, . . . , en−1.h} is
defined as the set of data attribute generalization levels required to traverse this
path.

The Application Service Path represents an instance of an application execution
that starts at the start state s0 and ends at a target ending state sn.

S5

S1 S2

S3 S4

Se2 Se5Se4

S0

S6

Se3

Se1

�
�

� �
�

� �
�

�

�
�

�
�
�

� �
�

� �
�

�
�
�

�

�
�

� �
�

�

�
�

� �
�

��
�

�
�
�

�

�
�

� �
�

�

(a) Application State
Diagram

S5

S1 S2

S3 S4

Se2 Se5 Se4

S0

S6

Se3

Se1

�
�

� �
�

�

�
�

�
�
�

� �
�

�

�
�

�

�
�

�
�
�

�

�
�

�

(b) Reduced State Dia-
gram, up = {h1

1, h
2
1, h

3
2, h

4
1}

S5

S1 S2

S3 S4

Se2 Se5 Se4

S0

S6

Se3

Se1

�
�

�

�
�

�
�
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�
�

�
�
�

�
�
�

�

�
�

��
�

�

(c) Weighted State Dia-
gram, wi

j = hi
j ∗ Φi

Fig. 7. Application State Diagram and User Preferences

Beyond User-to-User Access Control for Online Social Networks 185

4.1 Optimal User Application Preferences

In our framework, when trying to install an application, the user specifies an
attribute generalization preferences and a target final application state. The
challenge the user is faced with is to identify the minimal attribute generaliza-
tion preference required to enable the application to successfully terminate to
the requested final state. According to the well-known security principle of Least
Privilege [23], which requires that each principal be accorded the minimum ac-
cess privileges needed to accomplish its task, this translates to the requirement
that an application should be awarded the access to the smallest set of profile at-
tributes at the minimum generalization levels in order to provide the requested
service. Formally, the minimal attribute generalization problem is defined as
follows:

Definition 6. Minimal Attribute Generalization Problem, Given an application
transition instance TS = (S, Σ, δ), and a target final state sf ∈ F , determine the
minimal user attribute vector UP ∗ = [h∗1, . . . , h∗n] required to enable the successful
transition from the start state s0 to the final state sf .

The minimal user attribute vector is the vector that requires the minimum expo-
sure of the user attributes and enables the application to transition to the target
final state. Using the graph based application transition model, an application
service path beginning at start state and terminating at the final target state
holds the set of generalization levels required to take such a path. The minimal
attribute generalization problem translates to finding the minimal application
service path from the start state to the target final state in a weighted application
transition system defined as follows:

Definition 7. (Weighted Application Transition System). A weighted applica-
tion transition system TSW = (G, W) where:

– G is the application transition graph G = (V, E), where V is the set of ver-
tices representing the finite set of states, and E is the set of edges representing
the state transitions.

– W : E×Φ → w ∈ �+ is the edge weight function that maps the edge attribute
generalization labeling E.h and the attribute sensitivity Φ to an edge weight
w.

Given an application service path P = {e0, . . . , en−1}, the path length is defined
as follows:

Θ(UP) =
n−1∑

i=0

W (ei, Φi) =
n−1∑

i=0

Φiei.h

Given the weighted application transition system and the path length defini-
tion, the minimal attribute generalization problem simply maps to finding the
shortest path from the start state s0 to the final target state sf . The initially

186 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

specified user preferences are used as an upper limit on the user preferences and
are referred to as the upper limit user preferences UPL = [h0, . . . , hn]. Figure 8,
depicts the algorithm used to compute the minimal user attribute preferences
vector. Lines 1-9, initialize the application transition graph to generate the edges
that are not allowed by the specified user attribute generalization upper limits
buy setting the edge weights to ∞, and the weights of the permitted transitions
using the edge weight function that incorporates both the user attribute sen-
sitivity and generalization level. Lines 10-14, initialize the distance from s0 to
other vertices, where d[u] and pi[u] represent the shortest distance from s0 to u
and the predecessor of u on the shortest path respectively. Lines 15-24, computes
the shortest path from s0 to all the transition states. Lines 25-34, computes the
minimal user preferences vector required to transition from state s0 to the target
final state sf .

Algorithm: generate minimal preference
Input: Application transition graph G = (V, E),
User upperlimit preferences UPL = [h0, . . . , hn], User target state st

Output: User Minimal Attribute Preferences UP∗

1. VR ← V
2. ER ← E
3. //Generating the reduced graph
4. for each e ∈ ER

5. for each h ∈ UPL
6. if h ≺ e.h
7. e.w =∞
8. else
9. e.w = Φe.a ∗ e.h
10. //Initialize distance from s0
11. for each v ∈ VR

12. d[v] =∞
13. pi[v] = {}
14. d[s0] = 0
15. //Computing Shortest Path from s0
16. S = {}
17. Q← VR //Priority Queue on d[u]
18. while Q is not Empty
19. u = ExtractMin(Q)
20. S ← S ∪ {u}
21. for each v ∈ adjacent(u)
22. if d[v] > d[u] + w(u, v)
23. d[v] = d[u] + w[u, v]
24. pi[v] = u
25. //Tracing Minimal User Preferences from s0 to st

26. UP∗ = {}
27. if d[st] ==∞
28. return UP∗

29. u = st

30. do
31. UP∗ = (pi[u], u).h ∪ UP∗

32. u = pi[u]
33. while pi[u] 	= s0
34. return UP∗

Fig. 8. User Minimal Attribute Preferences Algorithm

Beyond User-to-User Access Control for Online Social Networks 187

5 Related Work

Security and privacy in Social Networks, and more generally in Web 2.0 are
emerging as important and crucial research topics [15,1,14,10]. Several pilot
studies conducted in the past few years have identified the need for solutions
to address the problem of information leakage networks, based on interpersonal
relationships and very flexible social interactions. Some social networking sites,
such as FaceBook (http://www.facebook.com), have started to develop some
forms of control, however the level of assurance are still limited. For example,
FaceBook allows a user to join various networks (e.g., home university, home
city) and control what information is released to each network. Further, a user
can specify if a particular person should be “limited” from seeing particular
material or blocked entirely from seeing any material. However, there is limited
control over the amount of data API’s can access related to user’s data.

An interesting research proposal has been presented in [11], where a social-
networking based access control scheme suitable for online sharing is presented.
In the proposed approach authors consider identities as key pairs, and social re-
lationship on the basis of social attestations. Access control lists are employed to
define the access lists of users. A more sophisticated model has been proposed in
[3]. The authors presented a rule-based access control mechanism for social net-
works. Such an approach is based on enforcement of complex policies expressed
as constraints on the type, depth, and trust level of existing relationships. The
authors also propose using certificates for granting relationships authenticity,
and the client-side enforcement of access control according to a rule-based ap-
proach, where a subject requesting to access an object must demonstrate that it
has the rights of doing that. However, both in both projects [11,3], the authors
do not consider the issue of API’s in their models, and they do not propose a
method to control API’s access to profile’s personal data.

An ongoing research project is represented by PLOG [13]. The goal of PLOG
is to facilitate access control that is automatic, expressive and convenient. The
authors are interested in exploring content based access control to be applied in
SN sites. We believe this is an interesting direction that we plan on investigating
as extension of Private Box. Another interesting work related to ours is [9]. The
authors present an integrated approach for content sharing supporting a light-
weight access control mechanism. HomeViews facilitates ad hoc, peer-to-peer
sharing of data between unmanaged home computers. Sharing and protection
are accomplished without centralized management, global accounts, user authen-
tication, or coordination of any kind. This contribution, although very promising
does not specifically focus on SNs and thus the proposed solution, although in-
line with our selective approach to user’s data is complementary to ours.

Some related work has also been conducted with specific focus on trust rela-
tionships in social networks. An important contribution on this topic has been
proposed by [10]. The work introduces a definition of trust suitable for use in
web-based social networks with a discussion of the properties that will influence
its use in computation. The authors designed an approach for inferring trust re-
lationships between individuals that are not directly connected in the network.

188 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

Specifically, they present TrustMail, a prototype email client that uses varia-
tions on these algorithms to score email messages in the user’s inbox based on
the user’s participation and ratings in a trust network.

Our idea of transitional states was partly inspired by [17]. The authors propose
a conversation-based access control model that enables service providers to retain
some control on the disclosure of their access control policies while giving clients
some guarantees on the termination of their interactions. Similarly to ours, the
authors represent web service possible conversations as finite transition systems,
in which final states in this context. Many have identified [14] the need of a new
access control paradigm specific for so represent those in which the interaction
with the client can be (but not necessarily) ended. We adopt a similar approach
in that we represent possible applications as state machines, and we provide a
labeling technique to enable the comparison of the possible application paths.

6 Conclusions

In this paper we have presented an access control framework for social networks
developer applications that enables users to specify profile attribute preferences
and requires applications to be designed so to be customized based on users’
profile preferences. Our framework provided a privacy-enabled solution that is
in line with social network ethics of openness, and does not hinder users’ op-
portunities of adding useful and entertaining applications to their profiles. We
modeled the applications as finite state machine with transition labeling indicat-
ing the generalization level required to enable application state transitions. We
defined the reduced application transition system that only includes the state
transitions possible with a given user generalization vector. Then we incorpo-
rated the user sensitivity metric to generate the weighted applications transition
system.

Furthermore, we formalized the Minimal Attribute Generalization Problem
and presented the Weighted Application Transition System which incorporates
the user attribute sensitivity metric to generated a weighted graph representing
the application state transitions. Using the weighted graph we transformed the
Minimal Attribute Generalization Problem to the shortest path problem and
provided an algorithm that generates the optimal user generalizations vector
that will enable the transition to a target final state.

References

1. Acquisti, A., Gross, R.: Imagined communities: Awareness, information sharing,
and privacy on the facebook. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS,
vol. 4258, pp. 36–58. Springer, Heidelberg (2006)

2. CNET Blog. Exclusive: The next facebook privacy scandal (2008),
http://news.cnet.com/8301-13739 3-9854409-46.html

3. Carminati, B., Ferrari, E., Perego, A.: Rule-based access control for social networks.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops (2). LNCS,
vol. 4278, pp. 1734–1744. Springer, Heidelberg (2006)

http://news.cnet.com/8301-13739_3-9854409-46.html

Beyond User-to-User Access Control for Online Social Networks 189

4. Wahington Chronicle. Study raises new privacy concerns about facebook (2008),
http://chronicle.com/free/2008/02/1489n.htm

5. Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P.: A fine-grained access
control system for XML documents. ACM Transactions on Information and System
Security 5(2), 169–202 (2002)

6. Facebook (2007), http://www.facebook.com
7. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Ltsa-ws: A tool for model-based

verification of web service compositions and choreography, pp. 771–774 (May 2006)
8. Foster, H., Uchitel, S., Magee, J., Kramer, J., Hu, M.: Using a rigorous approach

for engineering web service compositions: a case study, vol. 1, pp. 217–224 (July
2005)

9. Geambasu, R., Balazinska, M., Gribble, S.D., Levy, H.M.: Homeviews: peer-to-peer
middleware for personal data sharing applications. In: SIGMOD Conference, pp.
235–246 (2007)

10. Golbeck, J., Hendler, J.A.: Inferring binary trust relationships in web-based social
networks. ACM Trans. Internet Techn. 6(4), 497–529 (2006)

11. Gollu, K.K., Saroiu, S., Wolman, A.: A social networking-based access control
scheme for personal content. In: Proc. 21st ACM Symposium on Operating Systems
Principles (SOSP 2007) (2007); Work in progress

12. Google Code. Google’s Developer Network, http://code.google.com/
13. Hart, M., Johnson, R., Stent, A.: More content - less control: Access control in the

Web 2.0. Web 2.0 Security & Privacy (2003)
14. Hogben, G.: Security issues and recommendations for online social networks.

ENISA Position Paper N.1 (2007)
15. IEEE. W2SP 2008: Web 2.0 Security and Privacy (2008)
16. Irvine, M.: Social networking applications can pose security risks. Associated Press

(April 2008)
17. Mecella, M., Ouzzani, M., Paci, F., Bertino, E.: Access control enforcement for

conversation-based web services. In: WWW Conference, pp. 257–266 (2006)
18. MySpace (2007), http://www.myspace.com
19. OASIS. OASIS WSBPEL TC Webpage,

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

20. O’Reilly, T.: What Is Web 2.0. O’Reilly Network, pp. 169–202 (September 2005)
21. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-

niques for fine-grained access control. In: SIGMOD 2004: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pp. 551–562.
ACM, New York (2004)

22. Salaun, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra, pp. 43–51 (June 2005)

23. Saltzer, J., Schroeder, M.: The Protection of Information in Computer Systems.
Proceedings of the IEEE 63(9), 1278–1308 (1975)

24. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclos-
ing information (abstract). In: PODS ’98: Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, p. 188.
ACM, New York (1998)

25. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

http://chronicle.com/free/2008/02/1489n.htm
http://www.facebook.com
http://code.google.com/
http://www.myspace.com
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

	Beyond User-to-User Access Control for Online Social Networks
	Introduction
	Background on Social Network APIs
	Developer APIs Access Control Framework
	Social Network Profiles and Data Sets
	The Access Control Framework

	Customized Application Service Provisioning
	Optimal User Application Preferences

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

