
�������	
�������������
����������
��	��������	��������� � �

�

���
��

Xun Lu
Institute of Network Science
and Cyberspace, Tsinghua

University, China
University of Illinois, Urba-

na-Champaign, USA
xunlu2@illinois.edu

Jianwei Zhuge
Institute of Network Science
and Cyberspace, Tsinghua

University, China
zhugejw@cernet.edu.cn

Ruoyu Wang
Institute of Network Science
and Cyberspace, Tsinghua

University, China
fish.thss@gmail.com

Yinzhi Cao
Northwestern University, USA

yinzhicao2013@u.northwestern.edu

Yan Chen
Northwestern University, USA

ychen@northwestern.edu

Abstract

Due to its high popularity and rich functionalities, the
Portable Document Format (PDF) has become a ma-
jor vector for malware propagation. To detect mali-
cious PDF files, the first step is to extract and
de-obfuscate JavaScript codes from the document, for
which an effective technique is yet to be created.
However, existing static methods cannot de-obfuscate
JavaScript codes, existing dynamic methods bring
high overhead, and existing hybrid methods introduce
high false negatives.

Therefore, in this paper, we present MPScan, a scan-
ner that combines dynamic JavaScript de-obfuscation
and static malware detection. By hooking the Adobe
Reader’s native JavaScript engine, JavaScript source
code and op-code can be extracted on the fly after the
source code is parsed and then executed. We also
perform a multilevel analysis on the resulting JavaS-

cript strings and op-code to detect malware. Our
evaluation shows that regardless of obfuscation tech-
niques, MPScan can effectively de-obfuscate and de-
tect 98% malicious PDF samples.

1. Introduction

Since launched in 1993, the Portable Document
Format (PDF) has become the de facto standard for
electronic file exchange. The ubiquitous-ness of PDF
over the Internet has rendered PDF as a major vector
for malware distribution. The 2010 Symantec Security
Report[1] shows that PDF files were the most success-
ful attacking vectors to serve malicious content on the
Web. Besides being served on rogue website in a
drive-by-download attack[2], malicious PDF docu-
ments can also be served via a variety of ways with
the most notorious method being Spear Phishing[3]. By
applying some social engineering techniques in the
spam email (e.g. News stories of the latest Presidential

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.166

4888

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.166

4890

Campaign), users are solicited to open the malicious
PDF attachment and get infected.

Beside the popularity of PDF file format, the oth-
er important reason that accounts for the proliferation
of PDF malware is the complexity of rich features
allowed by Adobe Reader (the most widely used PDF
viewer), notably its support for JavaScript. JavaScript
codes embedded inside PDF files are executed in
Adobe’s own JavaScript engine. This feature boosts
the functionality of PDF document in the means of
allowing PDF to perform sophisticated tasks such as
form validation and calculation. However, it also be-
stows upon attackers the power to run arbitrary code
by exploiting vulnerabilities in the Adobe JavaScript
engine. Furthermore, most of JavaScript codes em-
bedded in malicious PDFs are extensively obfuscated
to the extent that it hinders code analysis, and thus
anti-virus applications are not able to cope with even
the most well-known PDF vulnerability.

In this paper, we present the design and imple-
mentation of MPScan (Malicious PDF Scanner), a
scanner that de-obfuscates and detects malicious Ja-
vaScript code embedded in PDF files. Through dy-
namically hooking Adobe Reader’s JavaScript Engine,
MPScan can extract de-obfuscated JavaScript source
code as well as Op-code stream (an intermediate code
generated while parsing), and then statically analyze
them for malware detection. MPScan can reliably
de-obfuscate JavaScript code because no matter how
much a piece a code is obfuscated, it has to be trans-
formed to the de-obfuscated form for execution. So as
long as the code is executed, the hook points in the JS
engine will deliver the de-obfuscated JavaScript
source code. MPScan’s multi-level detection consists
of Shellcode/Heapspray detection based on Strings in
the extracted JavaScript code as well as the Op-code
Signature Detection based on the extracted Op-codes
stream. The de-obfuscated JavaScript source code
extracted by MPScan also provides the understandable
materials for forensic analyzer. A preliminary evalua-
tion result shows that MPScan can accurately detect a

wide range of Malicious PDF, regardless of the ob-
fuscation techniques.

In summary, this paper provides the following
contributions:

� Designing a novel approach to de-obfuscate
JavaScript code embedded in PDF by hook-
ing the native JS execution engine. This ap-
proach is robust against even previously un-
known obfuscation techniques.

� Designing a Multi-level malware detection
scheme to monitor for both Shellcode/
Heapspray in strings and malicious behavior
demonstrated via Op-code, thus providing a
more reliable detection.

� Combining dynamic JavaScript code
de-obfuscation with static malware detection
in an effort to balance the detection effec-
tiveness and performance overhead.

2. Background and Related Works

In this section, we summarize the main features of
PDF standard. Then we present an overview of ex-
isting works of detecting malicious PDF.

���� �����������	�����

According to PDF specification[5], each valid PDF
file has four main sections:

1. Header: One line statement containing
“%PDF” followed by the version number;

2. Body: PDF objects that make up of the
document content. Embedded files are also
included in this section;

3. Cross-reference Table: Offsets of each in-
direct PDF objects within the file.

4. Trailer: Offsets of the cross-reference table
and certain special objects.

The parsing of PDF file starts by first checking
the version number in the header section, then it re-
trieves the offsets of the Cross-reference table and
some special objects such as the catalog object from

48894891

the trailer section. The body of a PDF document is
constructed as a hierarchy of objects linked together in
a meaningful way to describe pages, form, annotations,
etc. Objects in PDF body are assigned a unique identi-
fier in the form of “1 0 obj” where the first number
indicates the object number, the second number indi-
cate the generation number and the“obj” indicate that
the identifier represent an object. This object can be
referenced by “1 0 R”, the “R” character tells the
viewer that this is an indirect reference. There are
eight basic type of objects in PDF standard: Boolean,
Integer, Strings, Names, Arrays, Dictionaries, Streams,
Null. Note that Dictionaries are collections of
key-value pairs with keys being names and values
being any type of PDF object. Streams are dictionary
objects followed by a sequence of bytes enclosed be-
tween keywords stream and endstream. These bytes
can be encoded or compressed to represent large ob-
jects.

���� �!�"
�#��������

Even though inclusion of JavaScript in PDF can
be achieved in various ways, these scripts all come
down to be the value of the /JS keyword in some ob-
ject’s dictionary. The value of /JS keyword can be a
literal string containing JavaScript codes as well as an
indirect reference pointing to another object contain-
ing the literal JavaScript codes. In the latter case, the
codes can be compressed or encrypted in a stream of
the referenced object.

Figure 1. Sample constructs of JavaScript in PDF

Before execution, JavaScript in a PDF document
has to be included in an action dictionary. Such dic-
tionary has the /S keyword that may have the value
/JavaScript and /Rendition, both of which are also

dictionaries themselves that have the keyword /JS. The
/JavaScript and /Rendition keywords can be found at
the following locations:
� The Catalog dictionary’s /AA entry may define

an additional action specified by a JavaScript ac-
tion dictionary.

� The Catalog dictionary’s /OpenAction entry may
define an action to be taken after a document is
opened.

� The document’s name entry may contain an en-
try ‘JavaScript’ that maps name strings to docu-
ment–level JavaScript action dictionaries for ex-
ecution after a document is opened.

� The document’s outline hierarchy may contain
references to JavaScript action dictionaries.

� Pages, file attachments and forms may contain
references to JavaScript action dictionaries.

Besides being embedded within PDF document,
JavaScript codes may also reside on a remote location
and can be retrieved by the /URI or /GoTokey direc-
tives.

In a survey that we conducted using the CVE da-
tabase about the techniques that attackers use to ex-
ploit vulnerabilities in PDF, almost 96% of exploita-
tions involved JavaScript to various extents. The vul-
nerabilities in Adobe Reader that are related to JavaS-
cript can be classified into two categories. The first
class of vulnerabilities arises from bugs in the imple-
mentation of the Adobe JavaScript API, and they ac-
count for 33% of all JavaScript related PDF exploita-
tions. The second class of vulnerabilities is triggered
in non-JavaScript features in PDF but it requires Ja-
vaScript to prepare the environment for exploitation
(e.g. Heapspray). Our Op-code signature matching
detection component can address the former class of
vulnerabilities, and the latter class can be handled by
our Shellcode/Heapspray detection component.
Therefore, MPScan has a broad detection range that
covers all kinds of malicious JavaScript in PDF.

48904892

��$� %�������&��'	�

A number of approaches and tools have been
proposed in recent years to de-obfuscate and detect
malicious PDF document. We will briefly introduce
the most relevant ones and compare them to our work.

Fully Static Method:
Fully static method was used in the early era of

PDF malware analysis, and it features W.j.Li, et al.[6]
and Z.shafiq et al.[15]’s research. But since malicious
PDFs are nowadays extensively obfuscated, these ap-
proaches can hardly work. The most recent fully static
work is PjScan[4] that takes the idea a step further by
analyzing the token stream generated while the code is
executing. However, it retrieves the token stream by
hooking the SpiderMonkey[7] JS engine instead of the
native Adobe JS engine; therefore it may not be able
to deal with certain JavaScript method that existed
only in the native environment. Since we hooked the
native JavaScript engine in Adobe Reader, we have
controls of all the methods.

Fully Dynamic Method:
CWSandbox[8] is the most prominent tool in this

category. It literally launches the Adobe Reader to
load the suspected PDF document in an emulated
runtime environment, and then it detects malicious
behavior by monitoring system calls and modifications.
The problem with CWSandbox and dynamic tools in
general is that an attack can be detected only if the
vulnerable component targeted by the exploit is in-
stalled and correctly activated on the detection system.
In addition, extra overhead is incurred to revert the
sandbox environment to clean state.

Hybrid Emulated Method:
This category combines the advantages of both

dynamic and static methods, and it is gradually be-

coming the mainstream method for malicious PDF
analysis.

Major works in this category include the Hon-
eynet Project’s PDFphoneyC[9] and MDScan[10]. They
both statically parse PDF document and retrieve Ja-
vaScript code. Then they feed JavaScript codes into an
instrumented SpiderMonkey JS engine for malware
detection. The problem with their approaches is that
both their static code extraction and dynamic execu-
tion are performed in an emulated environment, which
lacks some proprietary feature in the native Adobe
environment. Thus it may lead to some undesirable
outcome such as abrupt termination of Adobe Reader.
Our work is built on idea of hooking the native JS
engine in Adobe Reader, so we can avoid such trou-
bles.

3. Design and Implementation

The overall architecture of document scanning in
MPScan is shown in Figure 2.

Generally, it consists of the dynamic JavaScript
code extraction module and the static multilevel mal-
ware detection module. The JavaScript extraction
module retrieves the JavaScript source code and
op-code from the PDF file during execution. The re-
sulting source code and op-code are used as input to
the malware detection module. The malware detection
module is further divided into the Shell-
code/Heapspray detection component that scans Ja-
vaScript Strings and the Op-code Signature Matching
component that searches in the JavaScript op-code the
signature of malicious JavaScript. If either of the two
detection components identifies the PDF as malicious,
it will be reported as malicious. We describe detailed
description of design and implementation of each
component as follow.

48914893

$��� �!�"
�#��()���
����

An accurate and effective extraction method for
JavaScript source code and op-code is the cornerstone
for the success of MPScan since it relies on the extrac-
tion results to perform the multilevel malware detec-
tion. The main challenge for JavaScripts extraction is
that they are extensively obfuscated, especially by
those techniques that take advantage of the complexi-
ties and ambiguities provided by the PDF specification.
Following are some common PDF oriented obfusca-
tion techniques:

� Because Adobe Reader tries to render mal-
formed PDF document that does not follow
PDF standard strictly, attackers have some
scope to use the subtleties to obfuscate the
structure of the PDF file, thus hindering
malware analysis.

� The rich JavaScript APIs provided by Adobe
Reader can be used to access document
specific objects, properties and methods.
Therefore, attackers can hide some portions

of JavaScript code or the data they use into
PDF objects or dictionaries that are acces-
sible through the Acrobat JavaScript API.
These missing parts can be easily retrieved
when the malicious code is executed.

� The stream object in PDF can store JavaS-
cript source code and data. Multiple layers of
different encoding method such as LZW,
FlateEncode and CCITTFax can be applied
to the stream. Therefore static decoding of
the stream is difficult.

Many existing works such as PDFHoneyC and
MDSCan take a static approach to the obfuscation
problem by constructing a PDF document parser that
searches for embedded JavaScript. However, this ap-
proach can hardly cover all PDF oriented obfuscation
techniques due to the huge amount of Acrobat JavaS-
cript API it has to simulate. And even if JavaScript
source code segments were retrieved this way, they
have to be put back in the right sequence before ana-
lyzed, which is very challenging for a static document
parser. In case that JavaScript execution requires
runtime user interaction, the static approach will have
no way to put the pieces of JavaScript back together.

Figure 2. System architecture

48924894

In light of the limitations of the static JavaScript
extraction methods, we decided to retrieve the source
code dynamically by hooking Adobe Reader’s native
JavaScript engine. By doing so, we also save the trou-
ble of converting JavaScript source code to op-code,
since the Op-code will be generated in the engine as
the JavaScript executes and we only need output it.
Figure3 shows how JavaScript in PDF is processed.

Figure 3. Process of JavaScript in PDF
Point� in Figure3 is the starting point of parsing

where all JavaScript source code must go through be-
fore execution. Point� is used to process source
codes that are dynamically generated by methods such
as app.eval() and new function(). Hooking result of
point� and point� combined will provide the com-
plete de-obfuscated JavaScript source code.

Point� is where JavaScript strings are created
and manipulated. By hooking it, the JavaScript strings
can be directly extracted.

Point� is the execution point of op-code where
each op-code is processed in a structure similar to
switch(). By hooking it, we get the op-code flow.

Due to the fact that Adobe Acrobat is
close-sourced, we resorted to reverse-engineering
technology to locate these hooking points.

In this way, JavaScript source code, strings and

op-code are extracted on the fly while the PDF em-
bedded JavaScript executes. And the resulting source
code and op-code are in the correct execution se-
quence.

$��� ������������
����

Having obtained the JavaScript source code and
op-code, MPScan proceeds to malware detection. In
order to achieve a broader range of detection, we take
a multilevel detection scheme that detects shell-
code/heapspray strings at the source code level and
matches malicious op-code signature at the op-code
level.

3.2.1. Shellcode/Heapspray Detection

The heapspray technique is widely used in mali-
cious PDF to manipulate memory heap. Coupled with
heap overflow, the malware can transfer the flow of
control to embedded shellcode. The String data type is
often used to carry shellcode/heapspray codes because
in JavaScript it’s the only data type that will not be
garbage-collected even if it’s not referenced.

To effectively detect shellcode/heapspray, we first
divide the JavaScript strings into two groups by length.
Strings that are between 32Bytes and 64Kbytes are
checked for shellcode because 32Bytes is the shortest
length for a known functioning shellcode and shell-
codes longer than 64Kbytes are conspicuous thus not
suitable for remote transferring. Strings longer than
64Kbytes are checked for Heapspray then.

The shellcode is detected using Libemu[11], which
is a C library that detects shellcode using GetPC heu-
ristics. Heapspray is detected by calculating the en-
tropy of the strings. Since heapspray is consisted
mostly of repeated characters, its entropy should be
much lower than normal string. Zhijie Cetal[12]showed
that setting entropy threshold to 1 would yield the best
detection result. Therefore in MPScan, the entropy
threshold is 1, which means any string with entropy
less than 1 is flagged as heapspray.

48934895

As a proof of concept, we apply the Shell-
code/Heapspray detection component to
CVE-2010-3654, which exploits Flash embedded in
PDF via crafted SWF content. It used heapspray to
manipulate the heap as shown in Figure4.

Figure 4. JavaScript in CVE-2010-3654 exploit
We submit a sample PDF of this exploit to our Shell-
code/Heapspray detection component. String “var_4”
with 200MBs size goes to the heapspray check routine
and the result is positive. Thus even though this piece
of JavaScript contains no exploitation of vulnerable
Adobe JavaScript API, MPScan is still able to identify
it as malicious based on the appearance of heapspray
strings.

3.2.2. Op-code Signature Matching

Op-code is an intermediate instruction set gener-
ated by JavaScript engine for efficient execution. Be-
cause op-code is at a lower level than the source code,
it reflects the actual behavior of the malware. No mat-
ter how malicious JavaScript is constructed at the
source code level, they should have some distinctive
behavior (e.g. exploiting vulnerabilities, retrieving
files from remote locations). Therefore, the op-code
stream of malicious JavaScript should have patterns
that match malware op-code signature, which is a
strong signal for identifying malicious PDF.

Op-code detection is especially useful in situa-
tions where different JavaScript codes would trigger
the same vulnerabilities. For example, the two pieces

of JavaScript code in Figure 5 both trigger
CVE-2009-0927 that exploits the getIcon() method
through stack-based buffer overflow. At the text level
the codes look different, but they share the common
op-codes showing in Figure 6.

Figure 5.Different samples triggering the same

Vulnerability

Figure 6. Common op-codes of the two samples
Then we can construct a deterministic finite au-

tomaton based on these op-codes to depict and match
this exploit. And the automaton is the signature, as
demonstrated in Figure 7.

Following the automaton transitions shown in
Figure 7, malicious op-code signature can be easily
matched.

Figure 7. Signature for CVE-2009-0927 exploit

48944896

4. Experimental Evaluation

In this section we present the experimental evalu-
ation result of our prototype implementation. We have
collected 198 various kinds of malicious PDF samples
from Internet and malware repositories as well as in-
dividual sources. Combined with 9 distinctive mali-
cious PDF samples generated from the Metasploit
Framework[13], we obtained a testing set of 207 PDF
documents that covered the majority types of PDF
malware today.

*��� (���
�!���		�

First, we tested the effectiveness of MPScan using
these samples.

Table 1.MPScan detection results

Implementation Detected Undetected Detection
rate

Original
implementation

186 21 89.9%

After impleme-
nting dummy
functions for
deprecated API

203 4 98%

As shown in Table 1, among the 207 PDF sam-

ples, 186(89.9%) were correctly identified as mali-
cious. For the remaining 21 undetected malicious PDF:
3 of them try to exploit the flawed embedded Tru-
eType font handling vulnerability (CVE-2010-0195)
in Adobe Reader, which does not involve any JavaS-
cript functionality; 1 of them does nothing else but
extracting an embedded malicious PDF from within
itself; The rest are due to the deprecation of some
vulnerable Adobe JavaScript APIs in newer version of
Adobe Reader (we hooked Adobe Reader 9.5.1, but
some vulnerable API only exist in Adobe Reader ver-
sions older than 9.3.2), therefore their executions are
terminated before JavaScript extraction is finished.
After implementing dummy functions for the depre-

cated APIs, these samples are correctly classified as
being malicious, thus improving our detection rate to
98%.

To test MPScan for false positive, we obtained
500 benign PDF documents by crawling the Alexa top
50 websites. This testing set has both PDF documents
with and without JavaScript, and we have deliberately
added obfuscation to some of the samples. It turns out
that MPScan didn’t make any misjudgment.

*��� ������+��
��

We measured the time MPScan takes to process
PDF document. To get an idea about the impact that
dynamic hooking has on performance, we measured
both the processing time when the hooking is on and
that when the hooking is off. We repeated each ex-
periment five times and reported the average number.
The result from the evaluation is shown in Table 2.

Table 2. Overhead measurement results

Situation Average processing time
for 207 samples

Not hooked 0.5s

Hooked 3.9s

As we had expected the hooking of Adobe JavaS-
cript engine has incurred significant overhead. How-
ever this overhead is comparable to other works that
use static parsing instead of dynamic hooking. Given
the superior extraction result that dynamic hooking
can provide, MPScan strikes a balance between effec-
tiveness and performance. And the analysis can be
easily parallelized, which could further improve per-
formance.

*�$� �##�
������������	
������		�

In the last part of this section, we examine
MPScan’s capability to assist forensic analysis of ma-
licious PDF files. We take the challenge No.6 of the
2010 The Honeynet Project’s Forensic Challenge[14]
for example. In this challenge, contesters are asked to

48954897

analyze a PDF document extracted from PCAP file.
Some advanced tasks (worth more than 1 point) in the
challenge are listed below:

1. Determine which object stream contains ma-
licious content.

2. Find out which exploit is contained in the
PDF file, and determine which one was ac-
tually triggered.

3. Locate the payload in the PDF file.
These tasks can be quite complicated if analyzed

manually, but MPScan can handle it very well.

Figure 8. Part of deobfuscated JavaScript extract-

ed from the PDF
MPScan’s de-obfuscation module can correctly

output the de-obfuscated JavaScript, from which fo-
rensic analyzer can gain insight of the exploitation.
The exploitations and payloads are also detected by
MPScan’s multi-level detection module.

By reading the de-obfuscated JavaScript source
code and the log of MPScan’s detection module, ana-
lyzer can easily spot the vulnerable Adobe JavaScript
APIs that have been triggered. And as shown in Figure
8, the payload of the exploitation is right in the JavaS-
cript. By backtracking the flow of PDF object, foren-
sic analyzer should be able to determine which PDF
objects contain the malicious content. In this way, the
three advanced tasks can all be effortlessly solved with
the help of MPScan.

5. Conclusion and Future works

As PDF format becomes a major vector for mal-

ware propagation, effective tool that specifically tai-
lored to de-obfuscate and detect malicious JavaScript
embedded in PDF document has to be developed as a
counter measure. We present MPScan, a dedicated
PDF scanner that combined dynamic JavaScript
source code de-obfuscation and extraction with static
multilevel malware detection.

By hooking the Adobe Reader’s native JavaScript
engine, MPScan is robust against any kind of obfusca-
tion including those that take advantage of the ambi-
guities and complexities of the PDF specification.
Based on the accurate results provided by the JavaS-
cript de-obfuscation module, the detection module will
perform multilevel malware detection that covers a
wide range of malicious PDF exploitation. The evalu-
ation results have justified the effectiveness and high
accuracy of MPScan. In addition, as we have demon-
strated, MPScan can be well applied to assist forensic
analysis.

For future work, we plan to add emulation func-
tionality of user interaction to MPScan, so those Ja-
vaScript embedded PDF files that have to be triggered
by user input can be automatically analyzed. Also we
look forward to expanding the detection module of
MPScan by adding yet another level of static detection,
which is based on the AST node features in hope to
expand detection coverage. Finally, we anticipate
writing dummy functions for all deprecated Adobe
JavaScript APIs, so more PDF documents can be cor-
rectly analyzed.

6. Acknowledgement

We thank Libo Chen and Yonggan Hou for
providing highly valuable advices. We also thank
anonymous reviewers for their comments. This work
is partially supported by the National Natural Science
Foundation Project (61003127), and the Huawei
Company.

48964898

7. References

[1] Symantec. The Rise of PDF Malware

http://www.symantec.com/connect/node/1473691

,accessed June 2012

[2] M.Egele, P. Wurzinger, C. Kruegel, and E. Kir-

da.Defendingbrowsers against drive-by down-

load:Mitigating heap-spraying code injection at-

tacks. InProceedings of the 6th international con-

ference onDetection of Intrusions and Malware,

&VulnerabilityAssessment (DIMVA),2009

[3] http://searchsecurity.techtarget.com/definition/spe

ar-phishing, accessed June 2012

[4] PavelLaskov and NedimŠrndić. 2011. Static de-

tection of malicious JavaScript-bearing PDF

documents. In Proceedings of the 27th Annual

Computer Security Applications Conference

(ACSAC '11). ACM, New York, NY, USA,

373-382

[5] Adobe Information Incorporated . PDF Reference,

6th edition. http://www.adobe.com/devnet/pdf/

pdf_reference.html, accessed June 2012

[6] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki,

andA. Keromytis. A study of malcode-bearing

documents. InDetection of Intrusions and Mal-

ware & VulnerabilityAssessment (DIMVA),

pages 231–250, 2007.

[7] MDN.SpiderMonkey.

http://www.mozilla.org/js/spidermonkey/,

accessed June 2012

[8] C. Willems, T. Holz, and F. Freiling. CWSand-

box: Towardsautomated dynamic binary analysis.

IEEE Security andPrivacy, 5(2):32–39, 2007

[9] PhoneyChttp://code.google.com/p/phoneyc/

[10] Z. Tzermias, G. Sykiotakis, M. Polychronakis,

andE. Markatos. Combining static and dynamic

analysis for thedetection of malicious documents.

In European Workshop onSystem Security (Eu-

roSec), 2011.

[11] P. Baecher and M. Koetter .libemu– X86 shell-

code emulation . http://libemu.carnivore.it/, ac-

cessed June 2012

[12] Zhijie Chen, Chengyu Song, Xinhui Han,

JianweiZhuge, Detecting Heap-spray in Drive-by

Download Attacks Using Opcode Dynamic In-

strumentation,In Proceedings of The 2nd Confer-

ence on Vulnerability Analysis and Risk Assess-

ment(VARA’2009)

[13] Metasploit Framework http://metasploit.com/,

accessed June 2012

[14] The Honeynet Project’s Forensic Challenge

http://www.honeynet.org/challenges/2010_6_mali

cious_pdf,accessed June 2012

[15] Z. Shafiq, S. Khayam, and M. Farooq. Embedded

malware detection using markov n-grams. In De-

tection of Intrusions and Malware & Vulnerabil-

ity Assessment (DIMVA), pages 88–107, 2008.

48974899

