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Abstract

New forms of Internet attacks, such as SQL Slammer,
have become increasingly sophisticated. Although coded
in a simple way, the SQL Slammer worm propagated all
over the world at an extremely high speed in a short pe-
riod of time, rendering it impossible for humans to counter
it using manual intervention. In this paper, we propose
a security framework called Japonica to detect and re-
spond to unknown attacks at the early stage through the dy-
namic orchestration of prevention, detection, and response
mechanisms. We identify important requirements to sup-
port the proposed framework and corresponding system en-
tities. Also, we describe our model using Colored Petri Nets
to discover a uniform message exchange format among the
entities. One unique characteristic of Japonica is an ac-
tive response coordinator and we demonstrate its feasibility
in a proof-of-concept prototype, utilizing a honeypot as an
active entity. Our results indicate that Japonica can suc-
cessfully prevent the spread of SQL Slammer without human
intervention. We are currently extending the framework to
counter other forms of sophisticated Internet attacks.

Keywords: Japonica, Honeypots, Risk Awareness, Colored
Petri Nets.

1. Introduction

Many organizations today use firewalls and intrusion de-
tection systems (IDSs) as part of their network security de-
fenses. Apart from these two technologies which are now
commonly used, a honeypot has received much attention in
recent years. A honeypot can be thought of as a decoy com-
puter system that uses deception to lure intruders so that we
can learn their behaviors. The honeypot is usually a sys-
tem that is deliberately made vulnerable with fake services

to make it look and act like a real system. Intruders who
discover the honeypot may choose to compromise it since
it is a relatively easy task. As a result, system administra-
tors can investigate the traces left by intruders to learn about
their tools and techniques in detail.

In this paper, we describe a novel approach to use hon-
eypots as an active component to defend a local network,
instead of using it as a passive component. We attempt to
use a honeypot to complement the functionality of a net-
work IDS. By allowing the honeypot to coordinate its work
proactively with the firewall and the IDS, we can achieve
early response to network security incidents. Early response
to such incidents is very important, as Internet attacks be-
come increasingly sophisticated and fast. We believe early
response is a critical requirement. For example, the recent
SQL Slammer worm [17] is the first high-speed Internet
worm that propagated around the Internet in just ten min-
utes. SQL Slammer showed that automatic defense mech-
anisms are needed to counter future unknown threats at the
early stage, and manual human intervention is no longer
feasible [31].

Our approach of using honeypots as an active compo-
nent is inspired by an interesting natural phenomenon that is
demonstrated by how Japanese honeybees defend their bee-
hives against mass attacks by giant hornets [13, 21, 22, 27].
To understand such a strategy, we elaborate how the giant
hornets attack a hive belonging to regular honeybees (not
the Japanese bees). First, a hornet leaves its pheromone at
the hive’s entrance. The pheromone attracts other hornets,
which causes them to arrive and attack the hive together.
Since the honeybees’ stingers cannot penetrate the hornets’
armor, the result is a mass slaughter of the honeybees, where
30-40 hornets can kill 30,000 honeybees in just a few hours.

Japanese honeybees, however, employ an unusual de-
fense strategy to counter the hornet’s attack. When a hornet
marks the hive’s entrance, the honeybees guarding the en-
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trance would return to the hive. This lures the hornet into
the hive, rather than allowing them to start their attack out-
side. At the same time, over 1,000 worker honeybees would
leave their combs and form a mass just inside the hive’s en-
trance. When a hornet tries to enter the hive, the bees sur-
round it and form a ball of bodies, and as a result, they cook
the hornet to death with their thermal body heat. By killing
the first few hornets, they prevent the hornet’s pheromone
from attracting more hornets. Thus, their hive is protected
by invoking early response to the hornet’s attacks.

In the context of our research, the hornets represent in-
truders, while the bees represent our coordinated early re-
sponse strategy based on honeypot, firewall and IDS tech-
nologies. The hornet’s initial attack can be viewed as early
network reconnaissance (e.g. port scans) or the beginning
of a high-speed attack such as distributed denial-of-service
(DDoS) attacks or Internet worms. The honeybee’s thermal
defense strategy is akin to our early response approach: by
detecting and responding to such attacks at the first place,
we can prevent the attacks from growing and wreaking fur-
ther damage to the network.

Using a honeypot as an active component for early re-
sponse has significant advantages. First of all, by comple-
menting the functionality of a network IDS, there would be
no false positives since only intruders would access the hon-
eypot but not legitimate users. Secondly, by orchestrating
the honeypot to work in conjunction with an IDS and fire-
wall, we can achieve dynamic and automatic early response
against attacks. Finally, we can use the honeypot to provide
information to the IDS and firewall about attacks that are
local and specific to the organization’s environment.

In this paper, we propose a security framework called
Japonica, which uses the honeypot as an active component
to work together with prevention and detection mechanisms
such as an IDS and firewall in order to implement an orga-
nization’s network defense mechanism. By leveraging the
dynamic orchestration of the prevention, detection, and re-
sponse mechanisms in this manner, we can achieve early re-
sponse to sophisticated attacks such as SQL Slammer more
accurately.

The rest of the paper is organized as follows. Section 2
describes the relevant background and related work. Sec-
tion 3 presents the proposed Japonica framework. Section 4
details a proof-of-concept experiment utilizing a Japonica
implementation. Section 5 discusses lessons learned as well
as the strengths and limitations of Japonica. Finally, we pro-
vide the conclusion in Section 6.

2. Background and related work

In this section, we will discuss the background of honey-
pots and risk-aware defenses that are relevant to our frame-
work.

2.1. Honeypots

Despite recent interest, the concept of honeypots was ac-
tually conceived many years ago. The first extensively doc-
umented honeypot was described by Stoll in his book The
Cuckoo’s Egg [32, 33] (although it was not yet called a hon-
eypot at that time). Cheswick and Bellovin were also instru-
mental in describing how honeypots could be used to learn
about attackers [6]. The purpose of such honeypots then
was to confine or contain the intruders as long as possible
to distract them from attacking production systems.

Other related work include Cohen’s deception tool kit [8]
and Spitzner’s work on a distributed network of honeypots,
which is known as a honeynet. The Honeynet project began
in 1999 and rapidly attracted attention since then [29, 30].
The first generation of honeynet technology, also called
GenI, is designed to control intruders and collect informa-
tion with basic functionality. The second generation hon-
eynet, GenII, is further implemented with the ability to cap-
ture encrypted communications of intruders at the kernel
level.

Honeypots deployed in the open network help us to study
and collect details about the behavior of intruders. How-
ever, honeypots are more suitable to be deployed in a ded-
icated network. Thus, some experts feel that honeypots
should be classified as a special kind of IDS [7], which
can help the system administrator detect attacks because it
is a machine that no legitimate user is supposed to touch.
Any probes toward the honeypot are considered suspicious
and established connections to the honeypot obviously have
malicious intent. In summary, a honeypot or honeynet is
deployed as a passive monitoring component, and not as
an active monitoring component that we are proposing in
the Japonica framework. Further discussion of the Japonica
framework is presented in Section 3.

More recent research explored the deployment of honey-
pots as shields of dedicated networks [41]. All traffic toward
that network is first directed to honeypots. A decision is
then made to either drop malicious connections or to allow
legitimate connections to proceed. However, it may not be
an ideal solution because honeypots are designed to attract
attacks and lure intruders, but they are not meant to serve as
a strong defense mechanism [30]. Deploying honeypots as
the first line of defense may be dangerous with the lack of
a strong defense. Besides, redirection is influenced by false
positives and negatives, which increases the complexity of
such a deployment.

Another relevant work is the open source project called
Honeyd [26]. Honeyd is a network daemon that can control
all unused IP addresses in a dedicated network. Low inter-
action is the disadvantage of this approach because it im-
plements fake services. It can help detect attacks but these
fake services may be easily discovered by intruders, due
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to the low interaction capability. Therefore, in the Japon-
ica framework, the honeypot is recommended to be imple-
mented with real services. Due to the complete and early
response provided in Japonica, the risk of a honeypot being
compromised and becoming a stepping stone to attack other
hosts is rapidly decreased, but it is still necessary to control
outgoing traffic from honeypot.

2.2. Risk awareness

Traditionally, security technologies such as firewalls and
IDSs perform their decision-making process in a static man-
ner. For example, a firewall would decide whether a con-
nection is legitimate or malicious, and would either allow
it or block it accordingly. Likewise, an IDS would assess
whether a traffic pattern is an intrusion or not. The result
can consist of only two values: it is a threat, or it is not.
There can be no “in betweens.”

The early notions of risk awareness can be traced back
to dynamic access control mechanisms. Thomas and
Sandhu [35, 36, 37] proposed a concept called task-based
access control. While traditional access control mecha-
nisms employ a subject-object view, Thomas and Sandhu
argued that this view is no longer sufficient for distributed
and multi-tiered applications. Their approach performs ac-
cess control at a higher level of abstraction in the form of
long-lived tasks.

Another project named Seraphim [20] is a generic, theo-
retical framework for dynamic policy specification and en-
forcement. Seraphim differs from our work, where their
work is highly generic while ours focuses on the network
domain and actively uses honeypot technology as well.

Other work on dynamic access control include Knorr’s
work on Petri net workflows; Lin, Lee, and Chang’s work
on a dynamic access control mechanism in the area of in-
formation protection systems; and two more projects in the
area of public key cryptography by Harn and Lin [12] and
Yen and Laih [42].

One of the most recent works in this area is the approach
by Teo, Ahn, and Zheng [34]. Their work focused on us-
ing dynamic and risk-aware network access management to
dynamically control access to a network. They introduced
the concepts of threat levels to represent the risk associated
with a connection, and thresholds as boundaries that would
invoke certain actions if bypassed by the threat levels. The
Japonica framework uses similar concepts to enable early
and complete response to unknown attacks.

3. The Japonica framework

In this section, we describe Japonica, a security frame-
work that achieves early response through the dynamic or-
chestration of prevention, detection, and response mecha-

nisms. The word Japonica is derived from the scientific
name of the Japanese honeybee that we discussed in the
introduction – Apis cerana japonica. We first discuss the
objectives and requirements of the Japonica framework. We
then present a detailed description of Japonica, including a
model of the framework based on Colored Petri Nets (CPN).
We also show how the framework fits into real world envi-
ronments. We begin with a discussion of Japonica’s three
primary objectives:

Objective 1: Early and complete response to un-
known attacks. The overall goal of Japonica is to actively
detect and respond to unknown attacks as early as possi-
ble. It also aims to prevent future attacks of similar kind.
Through this, an organization can recover from unknown at-
tacks quickly and be protected from future attacks. The im-
portance of this objective can be examined from the current
trend of Internet attacks [1]. The SQL Slammer worm that
spread around the Internet in just ten minutes could not be
contained by manual, human intervention. Early response is
critical [31] – however, at the same time, the response needs
to be complete so that attacks would be contained properly.
We reiterate that the attack should be addressed by preven-
tative, detection, and response measures.

Objective 2: Accurate detection of attacks. The sec-
ond objective of Japonica is to detect attacks more accu-
rately. Current network IDSs still have problems distin-
guishing between legitimate traffic and malicious traffic, es-
pecially if they exhibit similar patterns [30]. Japonica aims
to minimize incidents where legitimate traffic is mistaken
to be malicious traffic. Therefore, it is required to minimize
false positives as much as possible.

Objective 3: Scalability. In Objective 1, we mentioned
that the response to an attack must be complete. This im-
plies that the Japonica framework has to be deployed using
more than one security technology, since a single technol-
ogy by itself cannot ensure a complete response against at-
tacks. Due to the diversity of security technologies, scala-
bility is a crucial objective in the Japonica framework [2].
With the scalability of the Japonica framework, any intru-
sion detection system or firewall can be deployed within
Japonica. To achieve this objective, a uniform message ex-
change format between different components has to be de-
fined. Such a format would enable the different components
to communicate with one another.

3.1. Requirements

Based on the objectives we just mentioned, we now de-
scribe the requirements of Japonica that need to be in place
to support those objectives.

Requirement 1: Real-time coordination of preven-
tion, detection, and response mechanisms. The first ob-
jective stresses early and complete response to unknown at-
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tacks. In order to achieve this, all three aspects of security
need to be considered: prevention, detection, and response.
More specifically, these three mechanisms need to be coor-
dinated in real time so that attacks can be responded to early.
The framework would require input from distinct sources
from the detection mechanisms, and invoke the prevention
and response mechanisms accordingly.

Requirement 2: Generic mechanism to address a
wide range of attacks. The first objective also stresses un-
known attacks. To do so, the framework should not just
cater for attacks that conform to a specific pattern [3]. It
must be designed from the start to detect malicious patterns.

Requirement 3: Use of a mechanism that does not ex-
hibit false positives. The second objective states that false
positives should be minimized. Hence, Japonica would
need to use a security mechanism that does not exhibit a
huge number of false positives [30].

Requirement 4: Dynamic and risk-aware feedback-
based approach to detect and respond to attacks. The
ultimate goal of generating totally no false positives is ideal
and highly desirable. However, in practice, any organi-
zation’s network and environment can be very complex.
Many variables come into play when we are trying to decide
whether an event is an attack or not. Although Requirement
3 is very important, we need to be realistic about such vari-
ables. Otherwise, the framework would not be able to be
deployed effectively in real world environments.

We attempt to address this issue by requiring the con-
sideration of risk when interpreting the intent of an event.
In other words, the framework needs to risk-aware. Hav-
ing discussed this, we would immediately note that risk it-
self is not a static concept, but a dynamic one, especially
in complex real world environments with many variables
to consider. The dynamism of such environments needs to
be a critical factor in the framework. To achieve dynamic
risk assessment, one important technique that can be used
is to make it feedback-based. Such dynamic and risk-aware
mechanisms are already available [34].

Requirement 5: Uniform message exchange format.
The third objective of the Japonica framework is scalabil-
ity. As mentioned earlier, a uniform message exchange for-
mat needs to be designed to enable different components
(including new components) to communicate with one an-
other within the Japonica framework. The IETF’s Intru-
sion Detection Message Exchange Format [10] (IDMEF)
is a possible message exchange format to use; however, its
implementation is not mature enough to be part of a Japon-
ica implementation yet (although implementations certainly
exist [15, 25, 40]). Instead of using IDMEF, we attempted to
achieve the same functionality by modeling a message ex-
change format using Colored Petri Nets (CPN) for Japonica.
This model is described in Section 3.3.

Layer 1
Detection Layer

Layer 2
Analysis Layer

Network Traffic
Sensor

Compromise
Detection

Component

Threat
Evaluation

Component

Compromize
Analyzer

Layer 3
Response Layer

Response
Coordinator

Detection
Engine

Prevention
Engine

Layer 4
Execution Layer

Figure 1. The Japonica framework stack

3.2. Japonica framework description

In this section, we describe the Japonica framework
in detail. There are basically seven components in the
Japonica framework: Compromise Detection Component
(CDC), Network Traffic Sensor (NTS), Compromise Ana-
lyzer (CA), Threat Evaluation Component (TEC), Response
Coordinator (RC), Prevention Engine (PE), and Detection
Engine (DE). It is beneficial to organize the components of
the framework as a layered stack, both for clarity and mod-
ularity, which would in turn facilitate implementation. The
Japonica framework is illustrated as a layered stack in Fig-
ure 1.

Before we begin our discussion of the framework, we
would like to make a note on the writing conventions for
the rest of the paper. The Japonica components could be
represented as acronyms, as described in the previous para-
graph; however, using acronyms to describe seven different
components could make the paper difficult to read. There-
fore, we shall use their expanded forms to improve readabil-
ity throughout this paper. The exception to this convention
would be in certain sections where we discuss the Com-
promise Detection Component (CDC), a term that occurs
fairly often (sometimes several times in one sentence). In
such situations, we use the acronym CDC in place of the
Compromise Detection Component.

3.2.1. Detection Layer (Layer 1). In Japonica, the main
purpose of Layer 1, the Detection Layer, is to collect
all kinds of information related to intrusions on the host.
Therefore, the Compromise Detection Component (CDC)
and the Network Traffic Sensor belong to Layer 1.

The CDC is a module that runs on the host. Its primary
goal is to detect whether the host is compromised, and if
so, what are the specific features of the compromise. Dif-
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ferent CDCs may have different functions to detect vari-
ous kinds of intrusions. For example, one CDC may detect
whether there is any rootkit downloaded to the host, while
another may detect unusual ports that are listening on the
host. Other possible CDC functions include the detection
of any accounts that are created without authorization on
the host, or whether any critical files have been replaced
by an attacker. From this, we can see that a CDC by it-
self can perform either a simple lightweight function, or
a complex heavyweight function. However, when we run
many CDCs with different functions together on a single
host, the situation becomes increasingly complex. Due to
the complexity, it is recommended that organizations adjust
their additional CDCs according to the requirements of spe-
cific environments. For example, in the environment of a
financial institution, a CDC can be designed to detect stolen
credit card numbers.

The Network Traffic Sensor is a component that can be
easily understood. It keeps the records of suspicious net-
work traffic, including source port, destination port, source
IP, destination IP, protocol type and packet size.

3.2.2. Analysis Layer (Layer 2). The Analysis Layer ac-
cepts important information from Layer 1. The primary
goal of Layer 2, the Analysis Layer, is to analyze and deter-
mine whether the input is a malicious activity or not based
on the threat level.

The concept of a threat level is very crucial in the Japon-
ica framework. The threat level determines the risk associ-
ated with an entity. The more suspicious the entity behaves,
the higher the threat level will be. The threat level is meant
to be dynamic – it will change dynamically based on the risk
that is perceived in the environment. This is how it captures
the dynamism of the environment. In the context of this re-
search, the threat level is a quantifiable measure of the risk
associated with a set of one or more CDCs. Each unique
set of possible CDCs will have its own threat level. If we
have n CDCs, the number of possible threat levels would be
2n − 1.

The next concept we need to consider is the threshold.
The threshold represents the tolerance towards suspicious
events. Unlike the threat level which is dynamic, the thresh-
old is statically defined. Once the threat level exceeds the
threshold, further actions will be taken in Layer 3.

In other words, the Compromise Analyzer communi-
cates with the CDC, Network Traffic Sensor and Threat
Evaluation Component to dynamically determine whether
there is an attack going on or not. If so, the Compromise
Analyzer will send the message with the necessary infor-
mation to the Response Coordinator. The Threat Evaluation
Component is the component that determines whether the
current threat level has exceeded the threshold according to
input from CDCs and pre-defined threat level policies.

For example, when a host is under attack from the
CodeRed II worm, a file named “root.exe” will be added
to the host [11]. At this point, one of the CDCs on that host
that is tracking file integrity will send out a message to the
Compromise Analyzer. The threat level of the downloaded
file will be set, say 5, according to the threat level policy
defined by the administrator [34]. After the host is infected,
CodeRed II will attempt to connect to other hosts using gen-
erated random IP addresses. The CDC will track all outgo-
ing network traffic, and then send a message to Compromise
Analyzer. At the moment, the current threat level will in-
crease; say from 5 to 12 according to threat level policy. Af-
ter this stage, the Compromise Analyzer would inquire the
Threat Evaluation Component to find out the current threat
level policy. Say the administrator defined the threshold to
be 10. Since the threshold has been exceeded, the Com-
promise Analyzer sends the file information and outgoing
traffic information to the Response Coordinator. The Re-
sponse Coordinator is located in the Response Layer, which
we shall discuss in the next section.

3.2.3. Response Layer (Layer 3). Layer 3 is the Response
Layer, which consists of only the Response Coordinator.
Layer 3 of Japonica is an intermediary layer, and its main
purpose is to generate response rules for Layer 4. Accord-
ing to the analysis results and information input from Layer
2, the Response Coordinator generates corresponding pre-
vention rules and detection rules and sends them to the Pre-
vention Engine and Detection Engine on hosts under attack
and also notify system administrators. Consider the previ-
ous CodeRed II example. The Response Coordinator gen-
erates the detection rules according to the file information
and outgoing traffic information from the Compromise An-
alyzer and sends the detection rules to the Detection Engine.
The Response Coordinator also generates prevention rules
and sends them to the Prevention Engine.

3.2.4. Execution Layer (Layer 4). The Prevention Engine
and Detection Engine are located in Layer 4, the Execution
Layer. The main feature of the Prevention Engine is to filter
out and block malicious threats, and the Detection Engine is
responsible for detecting any ongoing attacks based on the
detection rules generated by the Response Coordinator. The
difference between Layer 1 and the Detection Engine is that
Layer 1 is mainly host-based while the Detection Engine is
network-based and relies on pattern matching functionality.
In other words, the Prevention Engine and Detection Engine
are still using static threat detection and prevention rules.
The dynamic rule adjustments are processed in Layer 2, and
the unknown attack detection functionality is carried out in
Layer 1.

Recalling our CodeRed II example, after the Detection
Engine receives detection rules from the Response Coor-
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CPN = (Σ, P, T, A, N, C, G, E, I), where:
Σ is a fi nite set of non-empty types, also called color sets.
P is a fi nite set of places.
T is a fi nite set of transitions.
A is a fi nite set of arcs, where P ∩ T = P ∩ A =

T ∩ A = ∅
N is a node function, where N : A → P × T ∪ T × P
C is a color function, C : P → Σ
G is a guard function, G : T → expressions, such that

∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t)))
⊆ Σ]

E is an arc expression function, E : A → expressions,
such that ∀a ∈ A : [Type(E(a)) = C(p)MS∧
Type(V ar(E(a))) ⊆ Σ], where p is the place of N(a).

I is an initialization function,
I : P → closedexpressions, and
∀p ∈ P : [Type(I(p)) = C(p)MS]

Table 1. Formal definition of Colored Petri
Nets (CPN)

dinator, it will reset the engine to apply the new detec-
tion rules. The Prevention Engine will also apply new pre-
vention rules. Finally, the Prevention Engine blocks any
traffic with the same signature thus stopping the spread of
CodeRed II.

3.3. CPN-based Japonica description

We attempt to model the Japonica framework using Col-
ored Petri Nets (CPN) which is well-known as a powerful
graph theory in the system modeling area [19]. Jensen de-
fined CPN as an advanced Petri net theory in 1992 [14].
Petri nets include three basic components: places, transi-
tions and arcs [24]. The difference between CPN and Petri
nets is the idea of color sets in CPN, which can be viewed
as an abstract data type in a programming language. The
formal definitions of CPN are given in Table 1.

There are several advantages to model the Japonica
framework with CPN. First of all, a uniform message ex-
change format is well-defined when color sets are used. For
instance, the traffic record transferred from the Network
Traffic Sensor to the Compromise Analyzer is initially de-
clared with the traffic color set, which is (src, dst, src port,
dst port, protocol, packetsize, hashvalue). After the traffic
color set is set, all traffic records must follow the same dec-
laration, regardless of whether they originate from the Net-
work Traffic Sensor to the Compromise Analyzer, or from
the Compromise Analyzer to the Response Coordinator.
The remaining color set declaration of Japonica is shown

CDC i(ri,ti) pj(tj,lj)

CurrentThreatLevel (ci, j)

[ ti = tj ] ri = 0

Analyze

Figure 2. Feedback-based threat level evalua-
tion represented using Colored Petri Nets

in Appendix A. With the uniform message exchange for-
mat, the Response Coordinator can coordinate with various
Prevention Engines and Detection Engines, thus achieving
early and complete response. Another advantage is the flex-
ibility of representing feedback-based threat level concepts
and the response mechanism in the Japonica framework.
With the graphic representation of CPN, it is especially
useful to detect and solve the problem of dynamic struc-
tures. Another key advantange is the convenience of De-
sign/CPN [39], the standard CPN design tool, which allows
us to clearly and graphically demonstrate how the compo-
nents interact among themselves in the Japonica framework.

3.3.1. Threat level mechanism. Based on the CPN the-
ory previously explained, Figure 2 illustrates how we can
model feedback-based threat level evaluation in the Japon-
ica framework. We use the following notation to describe
the elements and functions in Figure 2:

Let n be the number of CDCs. Place =
(CDC1, CDC2, · · · , CDCn, P, C) is a finite set of places.
Each CDCi = (ri, ti) where ti is the type of CDC and ri

is the corresponding compromise result. The threat policy
is P = {p1, p2, · · · , pn}. Each pj = (tj , lj), where tj is the
type of CDC and lj is the corresponding weight of the threat
level. The current threat level C = ci,j , 0 < ci,j < max,
where max is the user-defined maximum threat level al-
lowed, and ci,j is the threat level of CDCi according to
threat level policy pj . Lastly, Transition = (Analyze) is
the finite set of transitions.

The return value of the guard function is Boolean. The
guard function G in Figure 2 is [ti = tj ] ∩ ri �= ∅. This
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means that the function will return true only if the type of
CDC input matches the policy type and a corresponding
compromise result exists.

Function E within the Analyze transition is the threat
level evaluation function, where ci,j = E(CDCi, pj).
Therefore, the total threat level is:

n∑

i=1

ci,j =
n∑

i=1

E(CDCi, pi) (1)

As an example, in Figure 2, the CDC place could send
out a message such as (‘c:\windows\root.exe’, ‘file’) dur-
ing a CodeRed II attack. The second part of the message
indicates the CDC type, while the first part carries the loca-
tion of the file added on host.

The threat level place p stores the information about the
policies of the corresponding threat level. The Analyze
transition can be mapped to the Compromise Analyzer com-
ponent, which was described in Section 3.2.2. It determines
the current threat level according to the threat level policies
and input from various CDCs. In Figure 3, we show that if
the current threat level exceeds the threshold, the Respond
transition will generate detection rules and prevention rules.

Ti(u1,..., un)

DetectionRule (R ,(ri,ti) ,ci, j)

[ ci, j > threshold ]

Respond

CDC i(ri,ti) CurrentThreatLevel (ci, j)

PreventionRule (P ,ci, j)

Figure 3. Response Coordinator represented
using Colored Petri Nets

3.3.2. Response mechanism. Figure 3 illustrates how we
modeled the response mechanism in Japonica. We use the
following notation to describe the elements and functions in
Figure 3:

Place = {Ti, CDCi, CurrentThreatLevel,
DetectionRule, PreventionRule} is a finite set of
places. Each ith network traffic record is defined to be
Ti = (u1, u2, · · · , uj , · · · , uk, · · · , un), where uj and

Internet

Attacker

Switch

Router

Firewall

ADSL
Modem

Production
Server

Honeypot

IDS

Figure 4. Japonica in a network environment

uk are different elements of network traffic records. We
define Detection Rules = (R, ci,j , ri, li), where R ⊆ Ti.
We define Prevention Rules = (P, ci,j), where P ⊆ Ti.
Transition = (Respond) is the finite set of transitions.

The return value of the guard function is Boolean. The
guard function G in Figure 3 is ci,j ≥ threshold, where
threshold is the user-defined threat level that is allowed in
current situation.

Function N within the Respond transition is the traf-
fic elements pre-selection function for generating detec-
tion rules and prevention rules, where R = N(Ti, ti) and
P = N(Ti, ti), and ti is the type of CDCi.

Function K within the Respond transition is
the function that generates detection rules, where
K(R, (ri, ti), ci,j) produces detection rules. Likewise,
function M within the Respond transition is the function
that generates prevention rules, where M(P, ci,j) produces
prevention rules.

In Figure 3, we show that the Respond transition will
only be triggered when the current threat level exceeds the
threshold. The Respond transition is the Response Co-
ordinator in Japonica, which is used to generate detection
rules and prevention rules. Through this mechanism, differ-
ent CDCs can result in the generation of different detection
rules and prevention rules because of function N , which is
determined by the CDC type. This design also increases the
flexibility and scalability of Japonica. If more CDCs are to
be deployed at a later stage, only function N needs to be
revised.

3.4. Real-world environment

In this section, we discuss how the Japonica framework
fits into a typical network environment. Figure 4 is a com-
mon real-world network diagram, which includes a firewall,
a honeypot, a production server and an IDS. The configura-
tion of the production server and the honeypot are the same.
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The only difference is that there is no sensitive data stored
on the honeypot. In other words, the honeypot provides real
services with no real data.

In this environment, there are four different types of
CDCs implemented on the honeypot: a port-monitoring
CDC, an account-monitoring CDC, an outgoing-traffic-
monitoring sensor and a file-integrity-checking CDC. The
port-monitoring CDC sends a message to the Analyzer
when there is any new port opened. Based on attacks on the
machines we discovered and other work on backdoor de-
tection [43], a new open port is a crucial feature on a com-
promised machine. The account-monitoring CDC sends a
message out when there is any additional account created
on the honeypot. The illegal privilege increase for normal
user accounts is another important feature signaling a com-
promise [9]. Any account created on a honeypot is sus-
picious because there is not supposed to be any legitimate
user account that would be added to the honeypot. The file-
integrity-checking CDC is responsible for tracking any files
that are created or downloaded [4] to the honeypot since
there is no legitimate reason for such activities on a honey-
pot.

The outgoing-traffic-monitoring sensor records any out-
going traffic from the honeypot, since there should not be
any legitimate outgoing traffic from the honeypot. This way,
the outgoing-traffic-monitoring sensor matches the defini-
tion of the Network Traffic Sensor, which keeps records of
suspicious outgoing network traffic only. Besides, the out-
going network connection is an identical feature for hosts
that are infected by Internet worms [38].

Instead of pattern matching, we try to model the intru-
sion behaviors with various kinds of CDCs and determine
risk by dynamic threat level evaluation. This satisfies Re-
quirement 2 in Section 3.1, which states that we need a
generic mechanism to address a wide range of attacks. Be-
sides, since there is no sensitive data stored on the honeypot,
the risk allowed is higher than that of the production server.

The advantage of implementing CDCs on the honeypot
is to address Requirement 3 described in Section 3.1, which
mandates the use of a mechanism that does not exhibit false
positives. Due to the nature of the honeypot, there is no
legitimate activity on it. It is therefore much easier to de-
termine the threat level of such suspicious activities, thus
decreasing false positives dramatically.

The Network Traffic Sensor is also implemented on the
honeypot, which records all outgoing traffic from the hon-
eypot. The Compromise Analyzer and Response Coordina-
tor are also implemented on the honeypot. In such a deploy-
ment, a potential issue may be that an attacker who man-
ages to break into the honeypot would be able to modify
or compromise the CDC, Network Traffic Sensor, Compro-
mise Analyzer, and Response Coordinator. To mitigate this,
these components would have to be installed in a manner

that is unmodifiable by any unauthorized user on the hon-
eypot. For example, these components could be run from a
physical read-only medium such as a CD-ROM, or installed
and executed at the kernel level such that even a superuser
would be not able to modify them.

In Figure 4, the firewall is deployed as the Prevention En-
gine because of its traffic filtering feature, while the IDS is
deployed as the Detection Engine. The main reason that the
Compromise Analyzer and Response Coordinator are im-
plemented on a honeypot instead of on the same host of the
Detection Engine or Prevention Engine is due to overhead
issues. If the Compromise Analyzer and Response Coordi-
nator are deployed on the Detection Engine or Prevention
Engine, they might have difficulty in accomplishing real-
time detection or prevention tasks.

4. Proof-of-concept experiment

In order to examine the feasibility of the Japonica frame-
work, we carried out an experiment based on a case study
on SQL Slammer.

4.1. Fulfilling the requirements

Before we commence the discussion of our proof-of-
concept experiment, it is important to examine the criteria
in which the experiment should be tested, and how the case
study is selected.

The criteria we chose were used to validate most of the
requirements defined in Section 3.1. Since we are primar-
ily concentrating on demonstrating the feasibility of our ap-
proach rather than building a full-fledged implementation,
we decided to perform the experiment to validate the most
important requirements – in this case, the first four require-
ments. The reasons and descriptions of the criteria for each
requirement are given as follows:

Criterion to fulfill Requirement 1: Requirement 1
states that the framework implementation must coordi-
nate prevention, detection, and response mechanisms in
real time. Validating this requirement is important, since
it would fulfill the cornerstone objective of the Japonica
framework, which is early and complete response.

Criterion to fulfill Requirement 2: Requirement 2
states that the mechanism must be generic enough to ad-
dress a wide range of attacks, including unknown ones. This
is a very important requirement since it would fulfill the first
objective as well. To scale down the fulfillment of this re-
quirement, we chose to use SQL Slammer as the attack in
the experiment. SQL Slammer was chosen because it was
relatively new and had the characteristics of a previously
unknown attack. Therefore, it is suitable as the subject of
a case study to assess the ability of a Japonica implementa-
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tion to detect unknown attacks. We are currently devising
more experiments to handle more attacks in the future.

Criterion to fulfill Requirement 3: Requirement 3
states the need to use a mechanism that does not show false
positives. As described in Section 3.4, one of the compo-
nents in a real world deployment of Japonica is a honey-
pot – the honeypot in this case is the mechanism that we
would use to fulfill Requirement 3. The reason behind this
decision is that a honeypot does not have any use for legit-
imate users – its primary aim is to allow attackers to abuse
it so that the attackers patterns can be studied. Therefore,
all traffic going in and out of the honeypot can be classi-
fied as malicious traffic, thus fulfilling our requirement of a
mechanism that does not exhibit false positives. Note that
although we said all traffic can be classified as malicious,
there are a few exceptions. One such exception would be
broadcast protocols. We shall take the Address Resolution
Protocol (ARP) as an example. In order for a new host to
find out the MAC address of a given IP address, the ARP
protocol would broadcast an ARP request message to the
network. If such traffic reaches the honeypot, it would look
like incoming traffic. However, it would not be wise to clas-
sify this as malicious since it is merely a legitimate ARP
request. Therefore, the threat level policy for outgoing traf-
fic should be defined to be not as sensitive as other more
suspicious features indicating compromise, such as a down-
loaded file on the honeypot. In this way, once an automatic
attack occurs in the honeypot, such as an Internet worm, the
threat level will exceed the threshold in a short time because
it generates a huge amount of outgoing connection attempts.

Criterion to fulfill Requirement 4: Requirement 4
stated the need to use a dynamic and risk-aware feedback-
based approach to detect and respond to attacks. This
requirement is very important since the threat level con-
cept is crucial in Japonica’s framework. Without the dy-
namic feedback-based threat level determination mecha-
nism, Japonica will be no different compared to other
frameworks that use static pattern matching functionality.

Requirement 5: Requirement 5 stated that Japonica
should work using a uniform message exchange format.
While this is desired, it is not very critical when it comes to
demonstrating a proof-of-concept implementation. Further-
more, the message exchange format needs to be designed
carefully. Due to time and resource limitations, designing
and developing the message exchange format was deferred
as future work.

4.2. Experimental environment

Since we chose to deal with a highly virulent Internet
worm that could potentially be let out into the wild, we were
very careful when we set up the environment for our exper-
iment. To ensure that the worm does not go loose, it needs

to be isolated. At the same time, the limited environment
needs to be able to demonstrate the fulfillment of the re-
quirements we outlined above.

To deploy such an environment, we set up a virtual, iso-
lated network using virtual machines running on VMware.
A diagram of the environment is shown in Figure 5. It can
be viewed as a simulated subset environment of Figure 4.

Firewall
(Linux)

IDS
(Snort/ Linux)

Honeypot
(Win2000 with

MS-SQL)

Attacker

Figure 5. Virtual, isolated environment for our
experiments

The components were set up as follows. The Prevention
Engine was implemented as a firewall running on the Linux
operating system. The Detection Engine was implemented
using Snort, a popular open source IDS, which was also
run on the Linux platform. The firewall and IDS were cho-
sen as the Prevention Engine and Detection Engine respec-
tively due to straightforward reasons: the firewall blocks
malicious traffic, hence it prevents attacks from being suc-
cessfully carried out; the IDS detects attacks, hence its suit-
ability as a Detection Engine.

Apart from the Prevention Engine, the firewall also runs
the Network Traffic Sensor, Compromise Analyzer, Threat
Evaluation Component, and the Response Coordinator. The
firewall was selected to run these components because of its
location. It is the first point of entry into the network, and
therefore it would be well-positioned to capture all traffic
and analyze them accordingly before generating a response.

The honeypot was deployed using Windows 2000 with a
vulnerable version of SQL Server. SQL Server was inten-
tionally left vulnerable to enable the SQL Slammer worm to
compromise it. The honeypot ran one single CDC process,
where its sole purpose was to capture outgoing traffic and
send it to the Compromise Analyzer running on the firewall.

4.3. Experiment and results

Before we describe how the experiment was conducted,
it would be beneficial to highlight a few technical charac-
teristics of the SQL Slammer worm.
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The SQL Slammer worm is an extremely high-speed
worm (it was reported to have performed at a rate of 55
million scans per second after three minutes [17]). A typi-
cal SQL Slammer scan involves the transmission of a UDP
packet with a specially crafted 376-byte data payload to a
random destination IP address on port 1434 (one of the ports
that SQL Server listens on). The payload would compro-
mise the SQL Server process at the target IP address via a
buffer overflow attack in its data payload. An SQL Slam-
mer attack typically sends this UDP packet to random IP
addresses generated at high speed. Once another host is
compromised, it too would send the same packet to gener-
ated random IP addresses. When many hosts are compro-
mised this way, network resources are used up heavily, thus
slowing down the network.

We will now present our experiment. The experiment
was carried out by specially directing the SQL Slammer
worm from the attacker’s machine to the honeypot. In
the experiment, the honeypot was successfully compro-
mised since it was running an unpatched SQL Server. The
honeypot then started sending the crafted UDP packets to
randomly-generated IP addresses.

When this happened, our CDC detected the outgoing
traffic and forwarded it to the Compromise Analyzer on the
firewall. The Compromise Analyzer would identify that the
attack consisted of many packets with the same character-
istics: the UDP protocol, port 1434, and the 376-byte data
payload size. As a result of the frequency of the attack,
the Threat Evaluation Component would increase the threat
level of this attack quickly. In the experiment, we did not
set the Threat Evaluation Component to be very sensitive
to attacks because outgoing traffic may include broadcast
traffic as we mentioned in Section 4.1.

However, due to the nature of SQL Slammer, once the
honeypot was infected, thousands of outgoing packets were
sent out to infect other hosts, thus resulting in the threat
level rapidly increasing over the threshold. The Compro-
mise Analyzer would send these characteristics and the
threat level to the Response Coordinator. The Response Co-
ordinator then generated the firewall rule and IDS signature
to counter and detect the attack respectively. The firewall
and IDS then automatically reloaded themselves to reflect
the new rules. Once this was done, SQL Slammer was suc-
cessfully stopped from propagating out of the network, and
the IDS would generate alerts based on the new signature.
Figure 6 summarizes the steps in our experiments.

The duration of our experiment was just 28 seconds. In
that short duration, SQL Slammer generated 217,483 pack-
ets at a rate of approximately 4,400 scans per second. We
show the generated Snort signature and the Snort alert in
Figures 7 and 8 respectively. The destination IP address in
Figure 7 was intentionally masked for the purposes of this
paper.

Firewall
(Linux)

IDS
(Snort/ Linux)

Honeypot
(Win2000 with

MS-SQL)

Attacker

(1)

(2)

(3)(4)

(5)

(6)

(1) SQL Slammer launched.
(2) Honeypot is infected:

- CDC detects outgoing traffic.
- CA inquires TEC and determines it has exceeded threshold.
- RC generates DE rules and PE rules.

(3) RC sends DE rules to IDS.
(4) RC sends PE rules to firewall .
(5) IDS restarts and applies new signatures.
(6) Firewall restarts and applies new rules.

Figure 6. Detecting and responding to the
SQL Slammer attack using Japonica

# Tue Apr 29 14:59:26 EDT 2003
alert udp $EXTERNAL_NET any -> any 1434
(msg:"unknown worm propagation attempt";
dsize:376; classtype:misc-attack;
sid:1000001; rev:1;)

Figure 7. Generated Snort signature

4.4. Rule generation algorithm

We conclude this section with a brief discussion of
the rule generation algorithm (the algorithm that generates
Snort signatures). At this point, we are currently refining the
rule generation algorithm to produce signatures that would
capture a wider range of attacks. A lot of challenges still
remain to integrate the rule generation algorithm so that it
will work with different honeypots, firewalls, and intrusion
detection systems. To be effective, the algorithm needs to
intelligently examine various properties of network packets
for anomalies.

In our experiment, the Response Coordinator used the
rule generation algorithm in a cohesive manner within our
experimental environment. In other environments, the al-
gorithm would have to work with other forms of data.
For example, in the financial services sector, the algorithm
and Japonica components would have to process context-
specific data such as credit card information and account
information. This is clearly not a trivial exercise. We also
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[**] [1:1000001:1] unknown worm
propagation attempt [**]
[Classification: Misc Attack] [Priority:
2]
04/29-14:59:26.384613 172.16.21.130:2081
-> xxx.xxx.xxx.xxx:1434
UDP TTL:128 TOS:0x0 ID:33421 IpLen:20
DgmLen:404 Len: 376

Figure 8. Snort alert generated based on the
new signature

need to address other factors, such as interoperability with
non-security systems and deployment of a Japonica imple-
mentation on different platforms.

5. Discussion and future work

So far, we have demonstrated the ability of Japonica to
detect unknown attacks such as SQL Slammer. In order to
smoothly deploy the Japonica framework, however, a few
issues still need to be resolved. These issues are discussed
in this section.

First of all, the possible false negatives are always
a crucial problem for honeypot-centric defense mecha-
nisms [30]. As Spitzner mentioned [30], it is still possible
that skillful individual attackers may directly attack produc-
tion servers instead of the honeypot, and we believe this
to be the main reason why other honeypot-related defense
mechanisms deploy honeypots as a front-line shield [41].
This would force all incoming traffic to go through the hon-
eypot first. Therefore, we do not suggest honeypots as a re-
placement of current network defense mechanisms; rather,
we deploy honeypot as a complementary defense mecha-
nism. In the Japonica framework, a distributed IDS [28] or
distributed firewall [5] can be deployed as another CDC as
well, which can rapidly decrease the possible false nega-
tives. Furthermore, in the case of automated attacks such as
Internet worms, the chances for the production server and
honeypot to be attacked are equal.

In future experiments and Japonica implementations, we
would have to ensure that a honeypot that is infected by a
worm would not help to propagate the worm inside the in-
ternal network. Also, since the firewall rule is generated
after the worm has infected the honeypot, there is a pos-
sibility that the honeypot may send outgoing worm traffic
onto the Internet before the rule is enabled on the firewall.
This latency issue is not unique to Japonica; it is present in
current intrusion prevention systems as well [16, 23]. To
address these issues, data control techniques would have to

be used as a safeguard between the honeypot and the rest
of the network. One practical implementation would be to
use a Layer 2 filtering bridge that could be deployed be-
tween the honeypot and the rest of the network. Having
no IP address, the bridge would be transparent and “invisi-
ble” to attackers, but it would still be able to filter and block
traffic. We could use such a mechanism to allow malicious
traffic to enter the honeypot but only a restricted set of traf-
fic to exit it. Various potential schemes could be used, such
as the ability to allow only traffic packets that conform to
a specific criteria to be returned. Clearly, Japonica control
traffic would have to be allowed to leave the honeypot. By
implementing such data control mechanisms, the likelihood
of an infected honeypot helping to spread a worm or any
other form of self-propagating code would be significantly
reduced.

Another concern about the Japonica framework is the
difficulty of transforming unstructured forensic data on the
honeypots into structured data for the purpose of generat-
ing prevention rules and detection rules. We have designed
four different kinds of CDCs for this purpose; however, it
still requires a lot of effort to further refine the design of the
CDCs in order to detect unknown attacks based on behav-
iors instead of pattern matching. Most of the work related
to this direction is still ad-hoc and no complete survey has
yet to emerge. However, due to the scalability of Japonica,
it will be straightforward to add another different CDC into
the framework. This would make any design enhancements
easier and more flexible.

Communications between each component is also an is-
sue. In order to achieve an early and complete defense, a
secure communication channel and protocol among com-
ponents must be developed. The traffic generated by the
protocol would also have to be masked from attackers.

Despite the above issues about Japonica, it is obvious
that honeypot-centric defense mechanisms can dramatically
reduce the analysis load due to the huge amount of log files
on the production server. Besides, the cooperation among
different network areas in which the Japonica framework is
deployed would help to facilitate the task of improving the
risk-aware response mechanism. For example, say depart-
ments A and B both deploy the Japonica framework. The
CDCs of department A could provide input to the Threat
Evaluation Component in department B, only with smaller
weights. In this way, a distributed Japonica framework can
be implemented and early response can be achieved more
thoroughly.

Containing worms and other future unknown attacks is a
very difficult endeavor, and many technological challenges
still remain [18]. We are working to address such issues
within the Japonica framework. Our current strategy is to
build a complete Japonica framework implementation and
carry out more experiments involving unknown attacks.
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6. Conclusion

We have proposed a security framework called Japonica
to detect and respond to unknown attacks at the early stage
through the dynamic orchestration of prevention, detection,
and response mechanisms. We identified important require-
ments to support the proposed framework and correspond-
ing system entities. Also, we described our model using
Colored Petri Nets to discover a uniform message exchange
format among the entities. Our results indicated that Japon-
ica could successfully prevent the spread of SQL Slammer
without human intervention. We believe that our framework
can counter other forms of sophisticated Internet attacks and
we are currently investigating how we can extend our ap-
proach to support such attacks.
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Appendix A

The CPN color set for the Japonica framework is defined as
follows. A discussion of the traffic color set and the Japon-
ica CPN model was presented in Section 3.3.

color realrange = int with 1..100;
color threatlevel = realrange;
color result = string;
color resulttype = string;
color CDC = product resulttype * result;
color payloadhash = string;
color src = string;
color dst = string;
color srcport = int;
color dstport = int;
color protocoltype = with tcp|udp|icmp;
color packetsize = int;
color traffic = product src * dst * srcport

* dstport * protocoltype *
packetsize * payloadhash;

color opr = string;
color weight = realrange;
color threshold = int;
color threatpolicy = product resulttype *

opr * weight;
color msg = string;
color resultset = product result *

resulttype;
color preventionrule = product traffic *

msg;
color detectionrule = product traffic *

msg * threatlevel;
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