
DOJO: Applied Cybersecurity Education In The Browser
Connor Nelson

Arizona State University
connor.d.nelson@asu.edu

Yan Shoshitaishvili
Arizona State University

yans@asu.edu

ABSTRACT
This paper introduces DOJO, a state-of-the-art, open-source learning
platform for hands-on cybersecurity education that aims to mini-
mize barriers for both students and instructors. DOJO draws insight
and inspiration from the Capture The Flag (CTF) community, which
has pioneered the use of hands-on challenges to teach cybersecu-
rity concepts. DOJO improves upon the accessibility and usability
of existing platforms by making available a pre-configured, full-
featured learning environment immediately accessible from any
device in the browser. Students are able to write code, interact with
a shell, explore complex network configurations, debug processes
and kernel modules, and more, all from the browser. Instructors can
easily deploy DOJO to their own servers with a single docker run
command, or use our already-deployed instance to host their own
challenges or already existing challenges with a single git push
command. DOJO has been successfully used in multiple university
courses and workshops, and is available for free to the world, with
more than 10,000 students from around the world having already
benefited from using DOJO. In this paper, we discuss the infras-
tructure, design, implementation, and effectiveness of DOJO, and
compare it to related work.

CCS CONCEPTS
• Applied computing→ Education; Interactive learning envi-
ronments; • Security and privacy→ Systems security; Soft-
ware and application security.

KEYWORDS
Cybersecurity Education, Capture The Flag, Infrastructure, System
Design, Accessibility

ACM Reference Format:
Connor Nelson and Yan Shoshitaishvili. 2024. DOJO: Applied Cybersecu-
rity Education In The Browser. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2024), March 20–
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3626252.3630836

1 INTRODUCTION
In the rapidly evolving landscape of software development, con-
tainerization has been instrumental in ensuring portability and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630836

reproducibility of production, testing, and more recently, develop-
ment environments. By bundling all of the dependencies required
for a system within a single portable container, developers can
effortlessly set up an identical version of a live working system,
implement modifications, validate them, and deploy to production,
ensuring a consistent behavior across different environments.

The profound impact of this approach is not limited to pro-
duction and testing. Developers are now leveraging containerized
development environments to streamline and standardize their
workflows [16]. This paradigm offers immediate access to a fully
configured development environment, with all essential tools, from
compilers and linters to debuggers and profilers, pre-installed and
set to go. Such an environment mitigates the challenges of individu-
alized setups and fosters team consistency, especially aiding novice
developers who might be daunted by the intricate setup processes.

GitHub Codespaces, a cloud-based service, exemplifies this trend
by offering developers the capability to set up their development
environment, filled with necessary tools, on a robust machine that
can be accessed universally [15]. This not only expedites the code
development and testing process but also enables quick onboarding,
particularly useful when working with various devices or when
switching to a new one.

A parallel can be drawn in the realm of applied education, where
such containerized environments are being integrated [20, 21].
Novice learners, akin to new developers, often face challenges in set-
ting up their learning environments, which may serve as deterrents
to their educational pursuits. Addressing these barriers becomes
paramount, especially in fields like cybersecurity, where the de-
mand for trained professionals outstrips the supply due to a lack of
hands-on experience and effective training methodologies [10, 18].

Given the pressing need for effective learning environments and
drawing inspiration from the containerization wave in software
development, we introduce DOJO, a platform designed specifically to
facilitate hands-on cybersecurity education. DOJO adopts principles
from the realm of Capture The Flag competitions [11], wherein
learners are tasked with solving challenges, thereby obtaining flags
as evidence of their newfound skills. Instead of imposing the onus
of environment setup on learners, DOJO offers a pre-configured
environment, available through both browsers and SSH, allowing
students to dive into hands-on cybersecurity challenges instantly.
In contrast to existing platforms, our primary focus is to allow
students to execute every step—discovery, implementation,
and debugging—of even the most advanced and technical
challenges directly within the DOJO environment.

DOJO is freely available for use at https://pwn.college/ and is
open-source at https://github.com/pwncollege/dojo. Educators can
seamlessly launch their own version of DOJO on their own hardware
with a simple docker run or establish a private dojo on our hosted
platform using just a git push, incorporating their own challenges
or leveraging our existing ones. Over the last 5 years, DOJO has

https://doi.org/10.1145/3626252.3630836
https://doi.org/10.1145/3626252.3630836
https://doi.org/10.1145/3626252.3630836
https://pwn.college/
https://github.com/pwncollege/dojo

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Connor Nelson and Yan Shoshitaishvili

been used by more than 10,000 students from over 100 counties
and over 100 academic institutions. We know of at least 10 courses
around the world that have used DOJO as a critical component of
their curriculum. In total, DOJO has facilitated more than 1,000,000
challenge solves, and has attracted thousands of learners with no
course requirement or incentive other than the desire to learn.

In this paper, we explore the architecture and ethos behind DOJO,
specifically focusing on the infrastructure itself rather than the
educational content that may be hosted within it. Our insights,
shaped by its creation and enriched by our personal interactions
with it, are further enhanced by direct feedback from students. This
offers readers an authentic look into students’ experience with
using DOJO. While our lens is primarily on applied cybersecurity
education, the insights shared may have broader relevance.

2 RELATEDWORK
There are various projects that address the challenge of providing
students with access to a learning environment that enables them
to work on hands-on challenge problems and experiment with cy-
bersecurity concepts. This section delves into the relevant existing
works and compares them with our contribution. Moreover, we
have provided a summary of the significant features of our work,
in relation to notable projects in the field, in Table 1.
Capture The Flag Projects. Capture The Flag (CTF) is a cyberse-
curity competition style in which flags (represented by secret data
stored in privileged areas of a system) must be captured (disclosed
and redeemed for credit) by participants through compromising
the security of some system. Recently, CTF has been increasingly
used in cybersecurity education [1, 6, 12, 22, 24].

Among CTF projects, picoCTF [7] is the most similar to DOJO.
It offers a challenge frontend (to view what challenges are avail-
able), backend (to run challenges), and working environment (to
work on challenges). A key difference from DOJO is that the chal-
lenge environment and working environment are separate. The
provided working environment grants users remote capabilities
when interacting with the challenge (e.g., over netcat), reducing
introspection capabilities and hampering student abilities to reason
about what is happening. Additionally, the working environment
is only accessible through a simple in-browser terminal (a solution
which DOJO once used, but has since iterated and improved on), not
SSH (advanced users may prefer), VS Code (for editing code), or a
desktop environment (for graphical interface tools). Furthermore,
the project is no longer under active open-source development,
although a public version of the infrastructure is available and
maintained, especially for the yearly picoCTF competition.

"Its cool that DOJO provides an environment for solving chal-
lenges and without it, I would have to set up my own environment
(creating a VM, installing necessary packages, fighting to getting
correct dependencies and so on). This is where picoCTF falls behind
(although its also a good website for CTF)." Student Feedback

CTFd [8] is a very popular frontend for running CTFs. However,
all though some features for running challenges are available, it
is not the primary focus of the open-source project. Furthermore,
a working environment is not provided. Root The Box [5] and
fbCTF [14] are other popular frontends. kCTF [17] is a popular
backend for running challenges on Kubernetes, but does not provide

Project Layer Openness Interaction Isolation Environment

Fr
on
ten

d
Ba
ck
en
d

W
or
kin

g E
nv
iro
nm

en
t

Op
en

So
ur
ce

Op
en

De
plo

ym
en
t

Fr
ee
To

Us
e

Do
wn

loa
d

Ne
tca

t
W
eb
sit
e

In
-E
nv
iro
nm

en
t

Iso
lat
ed

In
sta

nc
es

Dy
na
mi
c C

ha
lle
ng
es

SS
H

In
-B
ro
ws
er
Te
rm

in
al

In
-B
ro
ws
er
Co

de
Ed
ito
r

In
-B
ro
ws
er
De
sk
to
p

Pe
rsi
ste
nt
Da

ta

Ri
ch

To
oli
ng

Pr
ivi
leg

ed
Ac
ce
ss

CTFd G# - G# - - - - - - - - - -
CTFd Enterprise G# G# - - - - - - - - -
picoCTF G# - - - - -
fbCTF - - G# - - - - - - - - - - -
Root The Box - - G# - - - - - - - - - -
kCTF - - - G# - - - - - - - - -
iCTF G# G# G#G#G# G# - - - - -

OverTheWire G# - G#G# - - - - - - - -
pwnable.kr G# - - - - - - - - - - -
pwnable.tw - - - - - - - - - - - - -
archive.ooo - - - - - - - - - -

SecDevOps@Cuse - G#G# G# - G#G#G#G# - G# - - - - G# -
Alpaca - G#G# G# - G#G#G# - - - - - - - -
SecGen - G#G# G# - G#G#G# - - - - - - - -
CyTrONE G# G# G# - G#G#G#G# - G# - - - - G# -
KYPO G# - G#G#G# - - - - G# -

TryHackMe G# - G# G#G#G# - G#G# - G# - G#G#
TryHackMe Premium - - G#G#G# - G#G# - -
HackTheBox G# - G# G#G# - - - G# - - G#G#G#G#
HackTheBox VIP - - G#G# - - - -
RET2 Wargames - G# - - - - - - G# - G# -

DOJO G#G#G#

 = provides property;G# = partially provides property; - = does not provide property;

Table 1: Features of Cybersecurity Education Projects. The
projects are grouped into, in order, CTFPlatforms,Wargames,
CyberRange Projects, and Commercial Training Platforms,
as described in Section 2.

a frontend. iCTF [33] allows users to run an attack-defense CTF,
in which participants exploit each other participant’s vulnerable
services, and likewise defend against attack.
Wargame Platforms. Wargames are collections of sometimes-
educational challenges available for participants to tackle. OverThe-
Wire [35] and pwnable.kr [27] offers participants the ability to
access a number of challenges through SSH. pwnable.tw [28] and
archive.ooo [25] only allow remote interactions (e.g., over netcat),
and do not provide a working environment. While the former two
offer some visibility into the challenge environment, the latter two
are modeled strictly from the perspective an external actor. An
understanding of the environment is only made possible through
this remote interaction, and file downloads of the underlying pro-
grams. In the case of all four of these projects, and in contrast to
DOJO, introspection and tooling are not a focus: a local working
environment is necessary.
Cyber Range Projects. Cyber Ranges are designed as environ-
ments for exploiting software in a manner that more closely mirrors
real-world scenarios. They often target known vulnerabilities in
actual software, making them a more realistic training ground com-
pared to the more game-like nature of CTFs.

KYPO [34] most closely aligns with DOJO as it combines the
challenge and work environments. Students move from an initial
scenario accessible via SSH or an in-browser desktop to larger
challenge environments. However, KYPO only supports features
required by the challenges themselves, and excludes critical de-
bugging and troubleshooting functionality. This design reflects the
constraints of real-world situations, but hampers the ability for
confused students to fix their understanding. In contrast, DOJO opti-
mizes for transparency and debuggability within the challenge envi-
ronment, giving students critical tools to maximize understanding.
Additionally, KYPO’s infrastructure is resource-intensive: catering

DOJO: Applied Cybersecurity Education In The Browser SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

to a large student cohort is challenging because KYPO relies on
individual virtual machines for every student instead of DOJO’s
more efficient container approach [26]. For scale, the KYPO project
recommends that students run virtual machines locally, forgoing
the benefits of a turnkey, centralized environment.

CyTrONE [3] is a challenge hosting backend, but it lacks a central-
ized working environment and even a challenge frontend (instead,
it uses the Moodle Learning Management System [23]). SecDe-
vOps@Cuse [31] places some emphasis on including security tools
in its working environment, but does so without a challenge fron-
tend. Projects like Alpaca [13] and SecGen [30] craft challenge
environments dynamically from vulnerability datasets, but do not
focus on students’ working environments.
Commercial Training Platforms. TryHackMe [32] has both a
challenge environment, and a working environment. Challenge
environments vary dramatically from challenge to challenge. For
some challenges, the challenge environment serves as the working
environment. However, in cases where the challenge environment
is either remote (e.g., some service is only accessible over the net-
work), or tooling is insufficient within the local challenge environ-
ment, an additional dedicated working environment is provided.
Within the working environment, students have access to a stan-
dardized set of tools and privileged access to further customize the
environment. The dedicated working environment may only be
accessed from an in-browser desktop. HackTheBox [4] has separate
challenge environments and working environments. The working
environment contains a standardized set of tools, with the ability to
persist a student’s working data across challenges, and privileged
access to further customize the environment. However, the working
environment is not the challenge environment. It is an environment
from which students can work on the challenge, with the same
effective capabilities that local working environments have. This
prevents full challenge introspection and debugging, as enabled by
DOJO. RET2 Wargames [29] has a tightly integrated challenge and
working environment. Students work in a web environment which
simulates standard tools in order to solve the challenge. However,
arbitrary tools are not available, and because tools are simulated,
the transferability of learned knowledge beyond the simulated en-
vironment may be hampered.

3 DOJO DESIGN
Our priority in designing DOJO was to maximize the ease of chal-
lenge access for students, and of challenge deployment for instruc-
tors. In doing so, we leveraged a number of existing technologies,
focusing on smooth integration. DOJO takes inspiration from devel-
opments in cybersecurity competition, specifically from Capture
The Flag competitions [11], and expands them to accomplish our
goal of democratizing cybersecurity education access.

3.1 Challenge Environments
DOJO heavily extends the CTFd framework, which is popular for
facilitating simple one-off “Jeopardy-style” CTFs [8]. CTFdmanages
user accounts, tracks flag submissions, and provides a basic web
interface which lists the challenges and displays a scoreboard. DOJO
builds upon CTFd to provide a long-term comprehensive environ-
ment for students.

DOJO

Challenge Environment

/

/flag
/challenge VM

/home

Challenge Environment

/

/flag
/challenge VM

/home

Challenge Environment

/

/flag
/challenge VM

/homeDatabase

Challenge Environment
Working Environment

/

Workspace

/flag
/challenge

<workspace-socket>

VM

/home

Persistent
Storage

CTFd

Web
Proxy

SSHWeb
Interface

Figure 1: The overall design of DOJO. Student environments
are isolated in containers, managed by a series of other com-
ponents. For coursework that requires it, DOJO can run nested
virtual machines (for example, with vulnerable kernel con-
figurations).

In standard CTFs, participants are given a downloadable chal-
lenge program or instructions for how to communicate with a
remote running challenge (for example, nc <IP> <PORT>). We
have expanded upon this by providing students with a dedicated
containerized environment for each challenge, which they can start
when they are ready to work on it. Once started, the container con-
tains the challenge and any other necessary files in its filesystem.

Inspired by CTFs, DOJO stores a /flag file in each container,
which students access by solving the challenge and then submit
to DOJO to count the solve. The /flag file is only accessible to
challenge programs, which have SUID permissions to enable this
access. DOJO ensures that no other files are SUID, reducing the risk
of inadvertent flag retrieval due to environment misconfiguration.
This method highlights the advantages of a centralized educational
platform over local setups where students might have unrestricted
access. Further, it immediately conveys to students when they have
completed the challenge.

"DOJO removes a lot of the frustration involved with “it compiles
on my machine, but not the grader’s”." Student Feedback

3.2 Working Environments

Extensive Tooling. Students work on challenges in the same en-
vironment that hosts the challenge. These containers come pre-
configured with essential security tools. Currently the default DOJO
challenge environment comes with ipython, tmux, strace, gdb,
pwntools, pwndbg, gef, radare2, ghidra, wireshark, nmap, scapy,
requests, curl, and many other tools. The goal is to allow students

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Connor Nelson and Yan Shoshitaishvili

Figure 2: DOJO’s browser-based workspace. Left: VS Code, text editor alongside a terminal. Right: GUI reverse engineering tool.

to execute every step of the challenge—discovery, implementation,
and debugging—directly within the DOJO environment.

"Hacking very often comes down to the most nitty gritty of
details, and often you need specific tooling to save time. Giving
someone a set environment where all of those details are controlled,
and where they know they have all the tools they need, is a godsend
for learning." Student Feedback

This setup ensures consistent environments for students and
allows new tools to be added (for example, to support new types
of challenges) by modifying the Dockerfile of the challenge en-
vironment, which makes the change immediately available to all
students. This spares students from potential frustration in tool-
ing setup and eliminates time instructors might spend assisting
students with installation problems.

Privileged Mode. DOJO also offers a privileged mode when starting
the challenge. In this mode, students work in an environment simi-
lar to the standard mode, but with additional sudo privileges and a
placeholder flag. With this root access, students can fully analyze
and debug a challenge program, which is otherwise not possible in
some circumstances. For example, if challenge behavior is strictly
dependent on being able to access the flag (for example, to encrypt
it), then any debugging of that challenge must be done with flag ac-
cess capabilities. This mode enables this without otherwise leaking
the actual solution flag until the student re-runs their final solution
in the standard mode, ensuring the integrity of the challenge.

Persistent Home Directory. In order to improve usability when
switching between challenges and challenge modes, DOJO persists
the student’s home directory across all challenge environments.
This persistance is essential as it allows students to store previous
solutions (for reference and expansion), as well as custom scripts
and tools. Critically, the home directory is mountedwith the nosuid
option, which prevents students from smuggling a root-owned SUID
binary across different environments.

"I really like the infrastructure, and I much appreciate that you
have permanent storage! Even though I have most things set up
locally, I still work in DOJO most of the time." Student Feedback

3.3 Environment Access
SSH. Students may access their challenge environment after start-
ing a challenge in one of three ways. The first way is through SSH.
Students may upload a public key within the DOJO web-interface,
allowing them to SSH into DOJO and transfer files with scp.

"The fact that I can SSH into DOJO during lunch breaks makes
this platform stand out to me." Student Feedback

VS Code. The second way is through an Visual Studio Code run-
ning in the DOJO and exposed through the student’s web browser [9],
as seen in Figure 2. VS Code provides a powerful text editor, com-
mand line terminal, file explorer (including file upload and down-
load), and a plugin interface with many community-created plugins.

"One of the biggest reasons I use VS Code to interact is because
my device becomes slow if I run a VM." Student Feedback

In-Browser Desktop Environment. The third way is through
an In-Browser Desktop Environment, as can be seen in Figure 2.
This provides students with the ability to run arbitrary graphical
user interface programs (which is relevant in advanced security
curricula, such as Software Reverse Engineering) from within the
browser. This method makes it possible for students to learn entirely
through a student’s browser, enabling full DOJO access not only
from laptops, but also tablets or other mobile devices, entirely
removing software or hardware barriers to entry from the student’s
perspective. Education is as simple as starting a challenge, and then
immediately having access to a full computing environment, all
from within the browser.

"I can’t stress enough how helpful DOJO was. Being able to access
DOJO from anywhere (home, work, etc.) meant I could pick up where
I left off." Student Feedback

3.4 Challenge Virtualization
While docker works for a large number of challenge use-cases, it
may not always provide enough capabilities for some challenges.
For example, a standard unprivileged container cannot arbitrarily
manage networking resources, hampering education in network
security. DOJO has two answers to these limitations.
User Namespaces. DOJO supports nested namespace virtualiza-
tion, enabling challenges to create arbitrary networking topologies,

DOJO: Applied Cybersecurity Education In The Browser SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

process isolation, and permission models (among other namespace
features). This requires DOJO to modify docker’s seccomp filter
to allow relevant system calls (e.g., unshare) and to create a user
namespace to grant necessary Linux capabilities to the challenge
without compromising the security of the overall DOJO system.

While this is intended to be secure according to the namespace se-
curity model, unprivileged user namespaces have previously caused
serious kernel vulnerabilities. As the implementation of this Linux
subsystem continues to mature, more vendors have been willing to
trust this configuration, and it seems likely that these features may
be supported by default in a future version of docker.
Virtual Machines. Nested namespace virtualization does not sup-
port all challenge use-cases. Namespaced processes operate within
a single shared kernel, which cannot securely support challenges
including, for example, vulnerable Linux kernel modules. Further-
more, some scenarios might demand the operation of an entirely
different kernel—for example, to run varying versions of Linux,
or even a completely different OS like Windows or MacOS. To
overcome these limitations, DOJO supports both virtualization and
system emulation within the user container.

Critically, our virtual machine implementation transparently
shares the container’s file system. This means that all files are au-
tomatically shared between the container and virtual machine, and
that modifications in one environment are immediately reflected in
the other. This includes the persistent home directory (see Section
3.2). This feature eliminates hurdles of transferring solution and
debug code into traditionally-minimal environments running in vul-
nerable kernels, which has traditionally frustrated students tackling
such problems. To our knowledge, DOJO is the first cybersecurity
environment with this capability.

DOJO uses QEMU [2], with kvm providing near-native virtualization
performance, 9p supporting the transparent filesystem mapping,
and SLIRP mapping networking between the virtual machine and
container. Connecting to the virtual machine happens transparently
over SSH. Debugging mode automatically connects to the QEMU gdb
stub and loads debug symbols from the virtualized kernel.

"For the kernel challenges, the DOJO infrastructure was very
helpful. I could probably have figured out how set up QEMU and
stuff locally, but it would have taken time and effort and I don’t
think I would have gotten to it from never having tried anything
kernel before." Student Feedback

3.5 Instructor Capabilities

Environment Sharing. One unique capability is bidirectional in-
formation sharing. Instructors can broadcast their desktop environ-
ment (described in Section 3.3) to students, allowing them to view
what the instructor is doing live during lectures and demonstra-
tions. In the other direction, instructors have access to interacting
with students’ desktop environments (viewing and controlling) or
alternatively access their environment through SSH. Through this,
an instructor can understand directly how a student is approaching
a problem, both real-time and after-the-fact by examining their
solution scripts. This capability makes it much easier for instruc-
tors to remotely assist students with complex problems, which can
be especially useful in a hybrid or online course. Of course, this

instructor access is not a surprise to students: students are informed
of these capabilities at the beginning of the course.
Anti-Cheat. DOJO offers several generic anti-cheat mechanisms.
To thwart the sharing of flags, challenge flags are cryptographically
generated for each challenge and user. This allows DOJO to verify
that a flag is correct for a specific user and challenge, and to auto-
matically detect flag sharing between students. To complicate the
sharing of solutions among students, rather than giving all students
the exact same challenges, instructors can specify multiple slight
variations of the same challenge, with each student being randomly
assigned one variation. This requires students to develop a solution
which specifically solves their challenge.
Automatic Grading. In order to enable instructors to run courses
with large numbers of students, DOJO supports automatic grading.
The DOJO exports detailed statistics on student progress through
challenges that instructors can use both for determining grades
and to understand how long students spend working on each chal-
lenge. Coupled with the ability to view student desktops, and access
student files, this allows instructors to easily understand how the
class is progressing, to identify students who are struggling, and to
identify students who are cheating.

4 DISCUSSION
We have run courses (and portions of courses) at our university us-
ing DOJO for several years, through various stages of feature refine-
ments, in various courses (ranging from introductory to advanced).
In this section, we discuss our observations and experiences, in the
hope that they are useful for future educators.
Deploying DOJO. DOJO is designed to be modified and deployed
to support the greater educational community. The infrastructure
is contained within a single docker container that uses a single
directory on the host for all data storage and facilitates all DOJO
communication over ports 22, 80, and 443 for SSH, HTTP, and HTTPS.
Once the image is built, and container started, it automatically
deploys all dependencies, generates a valid HTTPS certificate, loads
the database with instructor-provided challenges, and generates
persistent user home directories. Everything happens automatically.
Each component is isolated for easy customization, and core logic
is engineered so that others may make changes as they see fit.

Turnkey deployment has enabled DOJO’s use by our colleagues
to facilitate several courses at our institution and has been used by
several educators around the world.
Supported Challenge Types. We have used DOJO to host chal-
lenges covering topics ranging from basic Linux usage and shell
scripting to network security, web security, cryptography, reverse
engineering, memory corruption, kernel security, and even microar-
chitecture speculative execution attacks. One challenge type that
we found inconvenient to support by DOJO are things involving
inter-student interactions, such as group-based GPG code-signing
exercises. This is a current focus of DOJO improvement for us.
An Open Deployment. As an alternative to running their own
DOJO instance, instructors can create a private dojo inside our run-
ning DOJO instance with an arbitrary set of challenges. This enables
instructors to run security classes, using our cutting-edge infras-
tructure, with no computing resources and nearly no setup. We

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Connor Nelson and Yan Shoshitaishvili

know of eight universities in five countries that use our centrally-
hosted DOJO to power their actual cybersecurity courses, and the
infrastructure has become a standard way for student clubs to teach
their members about cybersecurity. This seamless usage of DOJO
speaks to its potential impact in the field of cybersecurity education.
Rapid Learning Launch. DOJO has facilitated accelerated cyber-
security workshops in settings where students only had access to
low-resource and non-privileged laptops. Having access to an envi-
ronment in which everything could be done in the cloud proved to
be invaluable for this experience. Students were able to show up
and immediately dive straight into the challenges without wasting
already-limited time to get basic tooling installed, or troubleshoot-
ing installation errors, or requiring exemptions to security policies.
Additionally, the ability to share DOJO screens through the browser
facilitated demonstrations without requiring access to a projector.
Scaling and Compute Requirements. DOJO’s use of containers
(rather than full VMs) for most challenges allows for optimal usage
of resources [19]. We currently run the central instance of the DOJO
infrastructure on a server, generously provided on a long-term
basis by our institution, with 40 cores, 256 GB of memory, and 8 TB
of storage. In our experience, this has been sufficient to run DOJO
for over 10,000 registered users, with ample computing resources
still available. In fact, we have observed DOJO accommodating 250
concurrent students without noticeable performance impact on
individual users. The important insight for understanding how so
many users can concurrently utilize the system is that most time is
spent idle, as students contemplate ideas, in lightweight containers.
Impact of Feature Improvements. Over the years, we have ob-
served the impact of improvements to DOJO on the reduction of
hurdles and frustration for students (especially novice ones).

One example is the workspace, which evolved significantly over
the course of five years. This started out as a netcat-based interface
without persistent storage or a GUI, resulting in significant load
for students to configure local analysis environments. Our next
iteration provided an SSH-based environment and persistent home
directories, but the high student count at our institution resulted
in a high instructor load even helping students configure their SSH
clients and helping them install GUI-requiring security tools locally.
Next, we deployed a fork of Google Chrome’s in-browser terminal
to eliminate the requirement for students to set up SSH, but still
faced student and instructor frustrations with local installation of
GUI-requiring security tools and SCP clients for file transfer. In the
next iteration, we addressed the SCP issue by upgrading the terminal
to a DOJO-hosted version of VS Code, which supports file transfer.
Finally, we added the in-browser, VNC-based desktop to provide
centralized access to GUI security tools. Each of these advancements
reduced the amount of student frustration (and may help explain a
decrease in our security course drop rate) and instructor support
load for student tooling setup, the latter now reduced to near zero.

DOJO improvements have been even more keenly felt in the ker-
nel security space, which is described in Section 3.4. The initial
DOJO VM support followed the typical model of kernel security
challenges in CTFs: a minimal VM with a vulnerable kernel and an
embedded userspace. We used this model for two years of kernel se-
curity education, and found that students were actively discouraged
from tackling this material because of the difficulty of challenge

Figure 3: Survey Responses to 5-point Likert scale questions
from 200 students about their experience with DOJO.

interaction in this model, rather than the difficulty of the chal-
lenges themselves. When we implemented the sharing of the host
filesystem between the challenge container and the vulnerable VM,
student frustration with interaction issues dropped to near-zero.

5 EVALUATION
We conducted an IRB-exempt (minimal harm) survey to evaluate
the impact of the latest version of DOJO on student learning ex-
perience. We received 200 responses from DOJO users around the
world (including, but not limited to, students at our institution).
Feedback excerpts are replicated throughout the paper, and results
of the quantitative portion of the survey are summarized in Figure 3,
clearly showing that students overwhelmingly prefer the DOJO over
even their own local environments.

We also analyzed the data according to gender. Of gender re-
porting respondents, 89% identified as Male, 9% as Female, and
2% as other responses. DOJO is more overwhelmingly preferred by
non-Male students than by Male students. While 70.5% of Male
students prefer using the DOJO, 94.4% of Female students and 100%
of non-binary/other students do so. Similarly, a higher portion of
non-Male students (55.6% of Female students and 75% of Other stu-
dents, compared to 41% of Male students) had more concerns with
the technical challenge of provisioning their own environments. In
a field struggling with gender inclusivity, we feel that any leveling
of the playing field is important, and hope that the DOJO can be a
part of the puzzle of increasing the gender balance in Cybersecurity.

6 CONCLUSION
We developed DOJO, a state-of-the-art, open-source learning plat-
form for hands-on cybersecurity education that aims to minimize
barriers for both students and instructors. We described its features,
delved into technical implementation details, discussed implications
and our experience, and presented a survey of student experiences.
DOJO has been successfully used in multiple university courses and
workshops, is open source, and is available for free to the world.
More than 10,000 students from around the world have already ben-
efited from using DOJO, and we hope that this is just the beginning.
Acknowledgments. This work would not have been possible with-
out the vibrant enthusiasm of the pwn.college community, and
the generous support of the Department of Defense; thank you.

DOJO: Applied Cybersecurity Education In The Browser SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

REFERENCES
[1] Masooda Bashir, April Lambert, Jian Ming Colin Wee, and Boyi Guo. 2015. An

Examination of the Vocational and Psychological Characteristics of Cybersecu-
rity Competition Participants. In 2015 USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 15).

[2] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In USENIX
annual technical conference, FREENIX Track, Vol. 41. Califor-nia, USA, 10–5555.

[3] Razvan Beuran, Dat Tang, Cuong Pham, Ken-ichi Chinen, Yasuo Tan, and Yoichi
Shinoda. 2018. Integrated framework for hands-on cybersecurity training:
CyTrONE. Computers & Security 78 (2018), 43–59.

[4] Hack The Box. 2023. https://www.hackthebox.com/.
[5] Root The Box. 2023. https://github.com/moloch--/RootTheBox.
[6] Martin Carlisle, Michael Chiaramonte, and David Caswell. 2015. Using CTFs for

an Undergraduate Cyber Education. In 2015 USENIX Summit on Gaming, Games,
and Gamification in Security Education (3GSE 15).

[7] Peter Chapman, Jonathan Burket, and David Brumley. 2014. PicoCTF: A Game-
Based Computer Security Competition for High School Students. In 2014 USENIX
Summit on Gaming, Games, and Gamification in Security Education (3GSE 14).

[8] Kevin Chung. 2017. Live Lesson: Lowering the Barriers to Capture The Flag
Administration and Participation. In 2017 USENIX Workshop on Advances in
Security Education (ASE 17).

[9] VS Code. 2023. https://code.visualstudio.com/.
[10] William Crumpler and James A Lewis. 2019. The cybersecurity workforce gap.

JSTOR.
[11] CTFtime. 2023. https://ctftime.org/.
[12] Michael H Dunn and Laurence DMerkle. 2018. Assessing the Impact of a National

Cybersecurity Competition on Students’ Career Interests. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education. 62–67.

[13] Joshua Eckroth, Kim Chen, Heyley Gatewood, and Brandon Belna. 2019. Alpaca:
Building Dynamic Cyber Ranges with Procedurally-Generated Vulnerability
Lattices. In Proceedings of the 2019 ACM Southeast Conference. 78–85.

[14] Facebook. 2023. https://github.com/facebookarchive/fbctf .
[15] GitHub. 2021. GitHub Feature: Codespaces. https://github.com/features/

codespaces/
[16] GitHub. 2021. GitHub’s Engineering Team has moved to Codespaces. https:

//github.blog/2021-08-11-githubs-engineering-team-moved-codespaces/
[17] Google. 2023. https://github.com/google/kctf .
[18] ISACA. 2022. State of Cybersecurity 2022: Global Update on Workforce Efforts,

Resources and Cyberoperations. Technical Report. ISACA.

[19] Stylianos Karagiannis, Emmanouil Magkos, Christoforos Ntantogian, and Luís L
Ribeiro. 2020. Sandboxing the Cyberspace for Cybersecurity Education and
Learning. In European Symposium on Research in Computer Security. Springer,
181–196.

[20] David J Malan. 2022. Standardizing Students’ Programming Environments
with Docker Containers: Using Visual Studio Code in the Cloud with GitHub
Codespaces. In Proceedings of the 27th ACM Conference on on Innovation and
Technology in Computer Science Education Vol. 2. 599–600.

[21] David J Malan, Jonathan Carter, Rongxin Liu, and Carter Zenke. 2022. Providing
Students with Standardized, Cloud-Based Programming Environments at Term’s
Start (for Free). In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 2. 1183–1183.

[22] Jelena Mirkovic and Peter AH Peterson. 2014. Class Capture-the-Flag Exercises.
In 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14).

[23] Moodle. 2023. https://moodle.com/.
[24] Mike O’Leary. 2017. Innovative Pedagogical Approaches to a Capstone Lab-

oratory Course in Cyber Operations. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. 429–434.

[25] Order Of The Overflow. 2023. https://archive.ooo/.
[26] KYPO Project. 2022. https://gitlab.ics.muni.cz/groups/muni-kypo-crp/-/epics/25.
[27] pwnable.kr. 2023. https://pwnable.kr/.
[28] pwnable.tw. 2023. https://pwnable.tw/.
[29] ret2. 2023. https://wargames.ret2.systems/.
[30] Z Cliffe Schreuders, Thomas Shaw, Mohammad Shan-A-Khuda, Gajendra

Ravichandran, Jason Keighley, and Mihai Ordean. 2017. Security Scenario Gener-
ator (SecGen): A Framework for Generating Randomly Vulnerable Rich-scenario
VMs for Learning Computer Security and Hosting CTF Events. In 2017 USENIX
Workshop on Advances in Security Education (ASE 17).

[31] SecDevOps@Cuse. 2023. https://github.com/secdevops-cuse/CyberRange.
[32] TryHackMe. 2023. https://tryhackme.com/.
[33] Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta, Adam Doupe, Yanick Fratan-

tonio, Luca Invernizzi, Dhilung Kirat, and Yan Shoshitaishvili. 2014. Ten Years
of iCTF: The Good, The Bad, and The Ugly. In 2014 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE 14).

[34] Jan Vykopal, Radek Ošlejšek, Pavel Čeleda, Martin Vizvary, and Daniel Tovarňák.
2017. KYPO Cyber Range: Design and Use Cases. In Proceedings of the 12th
International Conference on Software Technologies - Volume 1: ICSOFT. SciTePress,
310–321.

[35] Over The Wire. 2023. https://overthewire.org/wargames/.

https://www.hackthebox.com/
https://github.com/moloch--/RootTheBox
https://code.visualstudio.com/
https://ctftime.org/
https://github.com/facebookarchive/fbctf
https://github.com/features/codespaces/
https://github.com/features/codespaces/
https://github.blog/2021-08-11-githubs-engineering-team-moved-codespaces/
https://github.blog/2021-08-11-githubs-engineering-team-moved-codespaces/
https://github.com/google/kctf
https://moodle.com/
https://archive.ooo/
https://gitlab.ics.muni.cz/groups/muni-kypo-crp/-/epics/25
https://pwnable.kr/
https://pwnable.tw/
https://wargames.ret2.systems/
https://github.com/secdevops-cuse/CyberRange
https://tryhackme.com/
https://overthewire.org/wargames/

	Abstract
	1 Introduction
	2 Related Work
	3 Dojo Design
	3.1 Challenge Environments
	3.2 Working Environments
	3.3 Environment Access
	3.4 Challenge Virtualization
	3.5 Instructor Capabilities

	4 Discussion
	5 Evaluation
	6 Conclusion
	References

