
EDSGuard: Enforcing Network Security
Requirements for Energy Delivery Systems

Vu Coughlin, Carlos Rubio-Medrano and Ziming Zhao
Arizona State University

Email: {vhnguye1, crubiome, zzhao30}@asu.edu

Gail-Joon Ahn
Arizona State University and Samsung Research

Email: gahn@asu.edu

Abstract—Recently, energy delivery systems (EDS) have been
targeted by sophisticated network-based attacks tailored to dis-
rupt the proper distribution of energy among different geograph-
ical regions, resulting in non-trivial socio-economical loses and
a loss of public confidence in EDS infrastructures. Such attacks
were facilitated by the lack of native security measures regard-
ing existing network communication protocols for EDS, which
allowed attackers to deliberately manipulate the state of network
connections between control modules and field devices. In order
to address these concerns, this paper presents EDSGuard, a
state-based firewall and monitoring tool that leverages state-of-
the-art packet inspection techniques along with software-defined
networks (SDN), to intelligently implement a set of security
requirements and best practices for protecting EDS networks, as
issued by regulatory organizations within the EDS community
in the last years. In addition, EDSGuard implements a series of
first-response countermeasure strategies, which can automatically
react to anomalies and attacks, thus effectively mitigating their
consequences and impact as a result. We provide the overall
rationale behind our approach, as well as a description of our
experimental results depicting a set of attack scenarios inspired
by recent incidents affecting EDS infrastructures, which provide
evidence of the suitability of EDSGuard for being fully adopted
in practice.

I. INTRODUCTION

Recently, energy delivery systems (EDS) [1] have gone
through a modernization process that includes the introduction
of intelligent field devices and software control modules,
which communicate with each other through dedicated net-
works protocols for the purposes of automated management
and control, promoting efficiency and convenience of use.
Despite its inherent benefits, automation has also opened
the door for non-trivial attacks targeting EDS infrastructure.
Largely regarded as purely theoretical in the past, attacks on
EDS infrastructure all over the world have recently become a
reality. As an example, attackers successfully injected spurious
network commands to disrupt EDS monitoring and control
systems, thus affecting the distribution of electricity in Ukraine
[2] [3], resulting in considerable organizational and financial
loses and the erosion of the public’s confidence in EDS infras-
tructure. As a response to this challenge, different EDS-related
organizations have released a set of documents detailing
security requirements and best practices for deterring attacks
to EDS infrastructures and mitigate their consequences. As an
example, the National Institute of Standards and Technology
(NIST) [4], the International Electrochemical Commission [5],
as well as the Energy Sector Control Systems Working Group

(ESCSWG) [1] have recently published guidelines for the
protection of EDS networks. Examples include the complete
restriction of traffic between the business and the control sub-
networks of an EDS instance, in an effort to prevent malware
that may have previously infiltrated the business network from
reaching devices deployed in the field.

Also recently, software defined networks (SDN) [6] has been
widely adopted in EDS networks, due to the supported benefits
and convenience for network administration, creating a new
playground for researchers to explore new innovative defense
solutions [7]. With that in mind, there is a need for effective
implementations of the aforementioned security requirements
in the context of SDN-controlled EDS networks, which can
then allow for the prevention and detection of network-based
attacks.

In order to address this concern, this paper presents EDS-
Guard, a firewall-like tool leveraging SDN as well as Bro
[8], a well-known multi-purpose network monitor. Using these
technologies as a supporting framework, our tool implements
a set of security requirements for EDS allowing for the state
of network communications to be constantly monitored by in-
telligently combining capabilities featured by both paradigms
such that ongoing attacks can be detected and proper first-
response countermeasures can be automatically deployed as a
result. Overall, this paper makes the following contributions:

• We provide a summary of security requirements and best
practices for protecting mission-critical EDS networks as
obtained from a set of source documents, which have
been in turn produced by well-reputed organizations in
the EDS community.

• We also provide an approach for effectively implementing
such requirements leveraging state-of-the-art SDN and
packet inspection technologies, thus allowing for the
detection of ongoing attacks to EDS infrastructure as a
result.

• Finally, we also present an approach for implementing
first-response counter-measure techniques for the attacks
that are detected using our approach, thus mitigating their
potential impact and consequences.

This paper is organized as follows: we start by analyzing in
greater detail the problems being considered in this paper in
Sec. II. Later, in Sec. III, we present EDSGuard, which imple-
ments our approach for solving the aforementioned problems.



We continue with a description of a series of experiments that
validate the effectiveness of our tool in Sec. IV. Finally, we
compare our approach with related work in Sec. V, and discuss
topics for future work and conclude this paper in Sec. VI.

II. PROBLEM DESCRIPTION

Recent Network-based Attacks. As discussed in Sec. I,
sophisticated attacks to EDS infrastructure are no longer
theoretical, as recent incidents have succeeded in disrupting
the distribution of energy among geographical regions [2].
As an example, the CrashOverride [3] malware strives to
automatically discover the architecture of an EDS instance,
including implemented protocols and configuration settings, in
an attempt to impersonate control hosts by distributing forged
network packets injecting unintended commands and/or data,
thus affecting the overall state of the EDS as a result. In
general, in order for such attacks to succeed, they must be able
to exploit communication flows within EDS networks that may
have not been originally intended by administrators, along with
the lack of native security measures in EDS protocols such as
Modbus [9].

Security Requirements. In order to overcome these chal-
lenges, regulatory organizations within the EDS community
have released several documents that describe security require-
ments and best practices for firewalls protecting EDS networks
[4] [5] [1] [10]. Fig. 1 presents a graphical depiction of a
subset of such requirements along with their corresponding
source documents. As an example, both the NERC CIP
Standard and the EDS Cybersecurity Procurement Language
documents require EDS networks to restrict communication
flows between devices by setting specific firewall rules based
on IP addresses and ports for source-destination pairs.

Securing SDN Networks. As it was also stated in Sec. I,
SDN is steadily making its way through full adoption in
EDS networks, With that in mind, there is a need for an
approach that can effectively implement firewall-based se-
curity requirements in the context of SDN-controlled EDS
networks, providing protection against the attacks presented
above. Concretely, the following must be supported: i) detect
and react to anomalies in network packets implementing the
Modbus protocol that can be potentially used for attacks, e.g.,
command or data injection, and, ii) enforce a well-defined
set of authorized network communication flows between EDS
devices, preventing the exploitation of unauthorized flows by
malicious agents. In addition, the set of authorized flows
must be properly enforced over time despite changes in the
configuration of EDS networks as introduced by the SDN
paradigm, which can potentially introduce unintended flows
that can become non-trivial security vulnerabilities in the
future.

Drawbacks of Existing Approaches. A naive approach
for solving the problems just mentioned would include imple-
menting the firewall-like security requirements shown in Fig. 1
by means of the manual installation of entries within the flow
tables provided by network switches implementing the SDN

Figure 1: A set of requirements for firewall applications for protecting
EDS networks, as provided by different sources within the EDS
community.

paradigm [6]. However, such a process has the following draw-
backs: i) it is error-prone as it may not support reconfigurations
that introduce unintended flows into the network, thus creating
security vulnerabilities as a result, and ii) such an approach
does not scale as the complexity grows along with the size,
e.g., number of hosts and possible communication flows, of the
EDS network. Moreover, existing firewall solutions for SDN
[11] [12] may be able to avoid such drawbacks by handling
the update of switch-based flow entries in an automated way.
However, such approaches may not be able to maintain a
consistency between policies defined at the firewall level and
the changes in the EDS network configuration at the switch
level, which can potentially introduce unintended flows that
can be later exploited by malicious agents. Finally, these
approaches provide no native support for security measures
for EDS protocols, thus opening the door for the attacks just
discussed.

III. EDSGuard: PROACTIVE MONITORING AND
RESPONSE FOR SDN-BASED EDS NETWORKS

In order to effectively respond to the challenges just
presented, we introduce EDSGuard, an SDN-based firewall
application implementing network security requirements for
EDS. EDSGuard leverages the features offered by recent SDN
implementations, in which network packets can be forwarded
to the SDN controller [13], implementing custom-made ap-
plications for further inspection before they are allowed back
into the network. Such a feature, which has been also explored
by previous approaches in the literature [11], is then leveraged
in the context of EDS networks for: i) inspecting all packets
that enter the network, including those creating new commu-
nication flows between EDS devices and, ii) implementing
security-based packet-inspection capabilities that overcome the
current limitations of EDS protocols.

With this in mind, we now present the supporting data
structures as well as the set of first-response countermea-
sure strategies implemented by EDSGuard. Later, using such
discussion a basis, we provide an extended description on
the way EDSGuard prevents ongoing and future attacks to
SDN-controlled EDS networks, including how the security



requirements presented in Sec. II are effectively implemented
by our tool.

High-Level Firewall Policy. EDSGuard models the
firewall-like security requirements shown in Fig. 1 by im-
plementing a high-level firewall policy that contains rules
restricting the set of authorized communication flows within
an EDS network. As an example, a policy rule may restrict any
traffic from the Control to the Business subnetworks and vice
versa, thus preventing compromised hosts within the Business
network from reaching EDS devices in the field. In such a
context, network-specific information required for the specifi-
cation of high-level policies, e.g., IP Addresses and ports, may
be defined beforehand by network administrators, following
the paradigm commonly used for firewall applications in
practice. Also, auxiliary tools may be used for automated
policy creation [14]. Fig. 3 shows the schema for defining
rules within the high-level policy defined by EDSGuard.

First-response Resolution Strategies. As introduced in
Sec. I, EDSGuard implements a set of first-response strategies
that go beyond detection to proactively react and reduce the
impact and consequences of ongoing and future attacks to EDS
networks. Such strategies include:

1) Flow Rejecting. As implied by its name, this strategy
rejects the installation of new data flows in the tables
implemented by the SDN-controlled switches. As it will
be discussed later, it can be activated in cases EDSGuard
detects a violation of its high-level firewall policy.

2) Flow Removing. This strategy is intended to maintain a
consistency between the high-level firewall policy and
the flow tables implemented by the switches, in order to
prevent the existence of unintended flows that can lead
to security vulnerabilities. There are two possible cases
to apply this strategy: (1) When a high-level policy rule
is removed, e.g., as a result of a network reconfiguration,
every flow rule associated with it will be removed from
the switch tables. (2) In addition, EDSGuard supports
a priority scheme for the introduction of rules with
different levels of priority, represented by means of
a numerical ordering, as shown in Fig. 3, allowing
for rules with a high priority to take precedence at
policy evaluation time. In such a case, when a higher
priority firewall rule is added to the policy overwriting
a previously-existing lower one, every flow associated
with the lower priority rule will be removed from the
switch tables.

3) Update Rejecting. Going in the opposite direction, this
strategy rejects any changes in the flow tables that may
ultimately result in a violation of the high-level firewall
policy. Such changes may include adding, editing and
deleting table entries that may result in changes in the
communication flows available in the network.

4) Packet Blocking. Finally, this strategy blocks an anoma-
lous network packet by instructing switches to drop
it from the network, keeping log records for future
analysis.

Figure 2: EDSGuard handling an attack on an EDS network: ini-
tially, EDSGuard is installed as an SDN application (1). Later, the
master PLC initiates communication with a slave PLC by sending a
network packet (2), which is then intercepted by the ingress switch
and forwarded to EDSGuard (3). Once the aforementioned packet
reaches the egress switch, it is forwarded back to EDSGuard for
processing (4). Later, an attacker may try to inject a specially-crafted
packet impersonating the master PLC (5), which is then detected by
EDSGuard and rejected at the egress switch (6).

{ "fw_rule": {
"ruleId": <unique number>,
"sourceIP": <source IP address>,
"destIP": <destination IP address>,
"protocol": <UDP / TCP>,
"srcPort": <between 1 and 65535>,
"dstPort": <between 1 and 65535>,
"priority": <low= 1, high= 65535>,
"action": <DENY / ALLOW>
}}

Figure 3: A high-level policy rule encoded as a JSON object.

Detection and Response to Ongoing Attacks. Leveraging
its high-level firewall policy along with the SDN packet-
inspection capabilities and the first-response strategies just
discussed above, EDSGuard provides support for detecting
and responding to ongoing attacks implementing an approach
that is graphically depicted in Fig. 4, which can be further
described as follows:

1) Violation of the High-Level Policy. EDSGuard rejects
any packets for a network flow in direct violation
of the high-level policy. Such a feature is graphically
depicted in Fig. 2: a new packet arriving at an SDN-
enabled switch, which happens to create a new data flow,
is forwarded to the SDN controller and ultimately to
EDSGuard, which then retrieves the high-level firewall
policy and checks for violations. If no violations are
found, the packet is then allowed to continue through the
network. Violating packets are then the subject of the
Flow Rejecting and the Packet Blocking first-response
strategies. Conversely, network packets not creating a



new flow are then analyzed by an inspection engine
leveraging the Bro framework for anomalies, as it is
described next.

2) Security-based Packet Inspection.
EDSGuard also implements a dedicated engine that
leverages the Bro analysis capabilities to provide in-
depth inspection of network packets depicting the Mod-
bus and the address resolution protocol (ARP) protocols.
In general, such an engine supports the following:
Communication Flow Checking. Our engine inspects
Modbus packets to verify the communication flow be-
tween EDS devices, detecting anomalies in the direction
of packets as well as in their inner contents. As an
example, referring back to Fig. 2, a slave PLC may
be only allowed to send packets to a master PLC
containing a response to a given data access request. In
a normal communication flow, a master PLC initiates
the session to the slave PLC. However, if a slave PLC
starts communication to its master or other slave PLC(s),
then this is considered as an anomaly and an alert will
be raised.
DoS Prevention. Following a similar scheme, our engine
can also prevent denial of service (DoS) attacks by
employing the capabilities offered by Bro for detecting
unusual amounts of traffic originating from/to a given
device within the network, raising an alert when such
amounts exceed a predefined threshold.
ARP Packet Inspection. Our engine also inspects packets
implementing the ARP protocol, following an approach
inspired by the one presented by Udd et al. [15]. Such
a feature is implementing by keeping an ARP whitelist,
consisting of pairs of matching IP address and Media
Access Control (MAC) addresses. Then, the engine
leverages the Bro ARP analysis capabilities [16] to
generate alerts whenever there exists an anomaly in
an ARP packet under inspection. As an example, a
dedicated attack may try to inject ARP packets such that
a communication flow between a compromised host and
an EDS field device is created, thus opening the door for
potential attacks. When the alert is generated, our engine
compares the faulting pair against the aforementioned
whitelist to determine its originating source within the
network.
Finally, alerts raised by our engine are ultimately for-
warded to EDSGuard, which then applies the Packet
Blocking first-response strategy, as shown in Fig. 4.

Prevention of Potential Security Vulnerabilities. In addi-
tion, EDSGuard can also prevent future security vulnerabilities
that arise from reconfigurations of the EDS network, e.g., the
introduction of new communication flows between devices as
a response to physical changes/emergencies within the EDS
infrastructure. For such a purpose, EDSGuard implements an
strategy comparing the requested changes against the high-
level firewall policy and the flow table entries implemented
at the switch level, following an approach inspired by the

Figure 4: The EDSGuard violation and anomaly detection mechanism
to deter ongoing attacks to EDS networks. Incoming packets are
compared against the high-level policy and the packet-level inspection
engine implemented by means of the Bro framework. Faulting packets
are preventing from generating new communication flows and are
ultimately dropped from the network.

techniques proposed in [11].
1) High-Level Policy Consistency. EDSGuard maintains the

consistency between the high-level firewall policy and
the flow tables implemented by SDN switches by trans-
lating the policy rules into entries for the flow tables.
Then, each time a new network flow is introduced as
a result of a reconfiguration, consistency with the high-
level policy is checked, dropping new flows that happen
to violate a rule in such a policy and preventing any
modifications to the flow table entries, thus preventing
the introduction of potential security vulnerabilities. This
functionality is ultimately achieved by means of the
Flow Removing first-response strategy.

2) Switch-based Flow Table Consistency. Conversely, every
time the flow table entries at switches are reconfigured,
EDSGuard inspects the high-level policy and rejects any
changes that may introduce flows not authorized by
such a policy, thus effectively implementing the Update
Rejecting first-response strategy.

Implementing Security Requirements. Finally, we lever-
age the features offered by EDSGuard to implement the secu-
rity requirements shown in Fig. 1 as follows: for requirements
restricting network traffic between hosts in the network, e.g.,
the rules restricting traffic between specific IP addresses and
TCP/UDP ports, and the rules restricting access between EDS
sub-networks and the Internet, we can deploy a set of rules
for the high-level policy implemented by our approach. In
addition, information about the EDS network architecture can
be used to populate the ARP whitelist implemented by our
Bro-based packet-inspection engine, thus providing extended



monitoring capabilities for effectively enforcing the traffic
restrictions just discussed. Moreover, the security requirement
defining the need for network traffic to be terminated within
a demilitarized zone (DMZ) can be implemented by installing
two high-level firewall rules allow the communication between
the different subnetworks and the DMZ in separate ways,
preventing the direct connection between the former two as
devised by the other security requirement discussed before.
Finally, the security requirement defining the need for a base
deny-all firewall rule can be implemented by means of a
default rule for the high-level firewall policy implemented by
EDSGuard.

IV. EXPERIMENTAL EVALUATION

In order to provide evidence of the suitability of EDSGuard
for being deployed in practice, we have created a simulation
testbed that resembles existing EDS infrastructures commonly
found in practice. In addition, we have equipped our testbed
with a communications network that implements the SDN
paradigm for administration and control. Using this testbed,
we then performed a series of experiments depicting case
scenarios based on real-life attacks that have been recently
reported. For each experiment, we present its motivation,
rationale, and the way our EDSGuard approach can effective
handle it.

Experimental Testbed. As an initial step towards providing
a realistic testbed for our approach, we resorted to a simulation
infrastructure that follows the architectural directives depicted
in the National Institute of Standards and Technology (NIST)
publication 800-82 revision 2 [4]. Such an architecture, graph-
ically depicted in Fig. 5, comprises several hosts organized
into three different sub-networks: the Control sub-network,
the Business network, and demilitarized zone (DMZ). We
performed our experiments on a 48-core server that uses both
OpenStack [17] and Mininet [18] Also, SDN functionality
was implemented by means of the OpenDaylight (ODL)
controller [13] and Openvswitch [19]. Our SDN controller,
as well as the rest of our simulated EDS infrastructure, were
instantiated inside dedicated virtual machines running in our
cloud, allowing for all the network communication between
them, e.g., by means of the Modbus protocol, to be actively
collected for experimental purposes. We also implemented our
own simulation software for the EDS field devices depicted
in Fig. 5. Finally, we deployed EDSGuard by assuming an
initial high-level policy firewall implementing the security
requirements discussed in Sec. III taking into account the
architecture depicted in Fig. 5. As an example, paraphrasing
Fig. 1, communications between the Business and the Control
sub-networks were forbidden by creating rules comprising
devices located on each sub-network.

Adversarial Models. Following the approach described in
Sec. III, an adversary attempting to disrupt an EDS network
implementing our proposed EDSGuard tool must bypass two
layers of security. First, he/she must overcome the SDN-based
firewall that mediates data flows between hosts in the network.
Second, an adversary that is able to bypass such a firewall,

Figure 5: A simulated EDS infrastructure for experimental purposes
based on a description from NIST [4]: the Business and Control sub-
networks are separated by means of a demilitarized zone (DMZ). Our
EDSGuard tool is implemented as an SDN application running on
top of an SDN controller.

and has been able to install a specialized malware inside
the network, must then bypass the protection offered by our
packet-inspection engine leveraging the Bro framework. In this
context, a compromised host attack occurs when an adversary
is able to install dedicated malware inside an EDS field device,
which, besides disrupting the device’s functionality, tries to
spread itself to other devices within its reach. When a master
PLC is compromised, it can generate messages to slave PLCs,
potentially causing them to malfunction, affecting the overall
EDS infrastructure as a result. Conversely, a network-base
attack occurs when an adversary is able to compromise an EDS
device for the purposes of eavesdropping in the network to
collect sensitive information. Additionally, since no encryption
is used to secure network packets implementing the Modbus
protocol [20], an adversary can also modify them as they go
through the network and effectively perform a man-in-the-
middle attack.

Case Scenario 1: Flow Rejection. Following the adver-
sarial models just described, our first experiment modeled an
scenario in which an attacker tries to infiltrate an EDS network
by first attempting to install a new data flow on a given SDN-
enabled switch, thus ultimately establishing communications
with a target EDS device or control host. Following the exper-
imental testbed described in Fig. 5, we crafted an automated
script that targets the switch located inside the Control network
from a host physically located inside the Business network,
thus depicting an scenario in which an attacker has been able
to compromise a host in such a network in the first place
and then attempts to communicate with EDS devices located



(a) Case Scenarios 1, 3, 4. (b) Case Scenarios 2, 5.

Figure 6: Performance Evaluation for Different Case Scenarios.

in the Control network. Our EDSGuard tool prevented this
attack scenario by detecting the requested change on the flow
tables of the aforementioned switch and cross-checking it
with its high-level policy, thus concluding that the installation
of such a data flow causes a policy violation. As a result,
the flow rejection resolution strategy was invoked, ultimately
instructing the SDN controller to reject any changes to existing
flow tables at the switch level.

The experimental results for all the case scenarios included
in this Section are shown in Fig 6 (a) and Fig. 6 (b).
In our experiments, we measured the runtime performance
of EDSGuard by using the iPerf [21] tool to calculate
the latency that EDSGuard introduced into the network. We
also varied the number of rules contained within the high-
level policy implemented by our approach. Finally, in the
experimental results for the case scenario 1 just described,
increasing the number of such rules (and hence the number
of flow table rules managed by the SDN switches), causes
the overall network bandwidth to decrease within manageable
means, as shown in Fig. 6 (a).

Case Scenario 2: Flow Removing. In a subsequent ex-
periment, we explored an scenario in which an attacker
tries to remove an existing flow rule located inside a SDN-
enabled switch, thus effectively disrupting the communication
between EDS devices, which may ultimately affect the proper
distribution of energy, as control hosts may incorrectly assume
the targeted field devices are malfunctioning due to the lack
of data communications with them. Referring back to Fig. 5,
such an attack was materialized by targeting the switch inside
the Control network, which may then prevent a given EDS
field device, e.g., the PLC located at 192.168.0.3, from com-
municating with its corresponding HMI control host located
at 192.168.0.1. As in our previous scenario, such a change
was rejected by EDSGuard as it was regarded as a high-level
policy violation, and the flow removal resolution strategy was
ultimately used. In the experimental results shown in Fig. 6
(b), the number of high-level firewall rules that are related
to the targeted flow rule has a direct impact in the overall

network latency, since EDSGuard needs to process all of them
to ensure the attempted removal of the flow rule will not cause
any security violations.

Case Scenario 3: Packet Anomaly. In another experiment,
we simulated an scenario in which an attacker triggers a DoS
attack on an EDS field device, thus effectively disrupting its
normal functionality with similar consequences as the ones
discussed before. Resorting back to Fig. 5, this experiment
involved an attacker leveraging an already-compromised host
within the Business network (10.0.0.1) to overflow communi-
cations with an EDS field device located within the Control
network (192.168.0.2). EDSGuard was able to successfully
detect such an anomaly by means of its packet-inspection
engine, which in turn leverages the Bro monitoring framework
for analyzing abnormal traffic flows, as presented in Sec. III.
As a result of the alerts being raised, EDSGuard was able to
apply the packet blocking resolution strategy, thus preventing
the target EDS device from receiving any undesired traffic at
all. As expected, in the experiments related to this case sce-
nario, the use of the packet-inspection engine causes additional
overhead on the network, as shown in Fig. 6 (a).

Case Scenario 4: Packet Integrity. One downside of
the SDN controller is that once the network topology is
established and the flow rules are installed, the controller does
not have knowledge of what is happening within a network.
As a result, a man-in-the-middle attack can be successfully
performed. In Figs. 5, an adversary can be located at PLC1

listening to the conversation between HMI and PLC2. In this
experiment, EDSGuard was able to successfully detect such
an attack by utilizing the ARP list mentioned in Section III.
When our packet-inspection engine detects that the packet
does not match the ARP list, an alert is raised. Then, a
firewall rule is constructed based on this alert to prevent
further communication between the attacker (192.168.0.2) and
its victims (192.168.0.1 and 192.168.0.3). Similar to case 3,
the introduction of our packet-inspection engine has a direct
effect in the overall performance of the network, as shown in
Fig. 6 (a).



Case Scenario 5: Legit Infrastructure Changes. Finally,
we explored an scenario in which a new data flow between
two EDS field devices was established by EDS operators as
a response to physical events that demanded a design of the
strategy for energy distribution. Our experiment then involved
the two PLCs shown in Fig. 5 being able to communicate with
each other as it is also depicted in Figs. 2. As a response,
our EDSGuard deployed the update-rejecting strategy as the
aforementioned operation was deemed as a violation of the
high-level firewall policy. Such a resolution strategy may
indeed prevent EDS operators from inadvertently introducing
data flows that may become security vulnerabilities in the
future, forcing them to carefully revise the high-level firewall
policy implemented by EDSGuard before any changes in the
network can be deployed. Finally, as with the previous case
scenario 2, the number of relevant rules contained within the
high-level policy has a direct effect on the overall network
latency, as shown in Fig. 6 (b).

V. RELATED WORK

Over the past few years, SDN has gained enormous popular-
ity by allowing enterprises to logically separate the control and
data planes of a network device, thus making data networks
more cost-effectively as a result. In such a context, firewall-like
applications for SDN [22] [12] resemble traditional firewalls
as they operate on a centralized approach for the monitor-
ing of the network, implementing a centralized policy for
administering allowed or denied data flows between devices.
In a similar fashion, Bro has been leveraged in the literature
to provide monitoring techniques for SDN networks [23], in
an effort to enhance the capabilities exhibited by traditional
firewalls by detecting anomalies based on packet-inspection
techniques. While serving as an initial inspiration for our
EDSGuard approach, the aforementioned approaches provide
no native support for implementing security requirements for
EDS networks, e.g., the implementation of traffic restrictions
between different EDS control hosts. In addition, they lack any
capabilities for implementing countermeasure techniques once
a given network anomaly has been detected. As discussed in
Sec. III, EDSGuard provides support for implementing first-
response countermeasures to ongoing attacks, thus reducing
the response time to incidents, and potentially damages to the
overall EDS infrastructure as a result.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented EDSGuard, a dedicated tool
that implements a set of well-defined security requirements for
preventing, detecting and reacting to network-based attacks
to EDS infrastructures. In addition, we have shown how
EDSGuard can effectively handle a set of case scenarios
based on real-life attacks. As of today, we are actively
working towards providing an enhanced experimental testbed,
which includes additional case scenarios as well as extended
simulations of EDS infrastructure, such that we can obtain
additional evidence of the suitability of our approach for being
successfully deployed in practice.

ACKNOWLEDGMENTS AND DISCLAIMER

This material is based upon work supported by the Depart-
ment of Energy under Award Number DE-OE0000780 and
by a grant from the Center for Cybersecurity and Digital
Forensics at Arizona State University. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of United States Government or any agency thereof.

REFERENCES

[1] Energy Sector Control Systems Working Group (ESCSWG),
“Cybersecurity Procurement Language for Energy Delivery Systems,”
April 2014. [Online]. Available: https://www.energy.gov/oe/downloads/
cybersecurity-procurement-language-energy-delivery-april-2014

[2] D. E. Whitehead, K. Owens, D. Gammel, and J. Smith, “Ukraine cyber-
induced power outage: Analysis and practical mitigation strategies,” in
70th Annual Conf. for Protective Relay Engineers. IEEE, 2017.

[3] Dragos, Inc., “CRASHOVERRIDE: Analysis of the Threat to Electric
Grid Operations,” https://dragos.com/blog/crashoverride/, Dragos, Inc.,
Tech. Rep., 06 2017.

[4] NIST, “NIST Special Publication 800-82 Revision 2 Guide to Industrial
Control Systems (ICS) Security,” May 2015. [Online]. Available: http:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf

[5] International Electrochemical Commission, “IEC TC57 WG15:
IEC 63251 Security Standards for the Power System
Information Infrastructure,” June 2012. [Online]. Available:
http://www.iec.ch/smartgrid/standards/

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in Conf. on
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’07). ACM, 2007, pp. 1–12.

[7] D. Jin, Z. Li, C. Hannon, C. Chen, J. Wang, M. Shahidehpour, and C. W.
Lee, “Toward a cyber resilient and secure microgrid using software-
defined networking,” IEEE Transactions on Smart Grid, vol. 8, no. 5,
pp. 2494–2504, Sept 2017.

[8] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[9] “Modbus.” [Online]. Available: https://goo.gl/L1w8Jy
[10] NERC, “CIP Standards,” 2017. [Online]. Available: www.nerc.com/pa/

Stand/Pages/CIPStandards.aspx
[11] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: building

robust firewalls for software-defined networks,” in Third Workshop on
Hot Topics in Software Defined Networking. ACM, 2014, pp. 97–102.

[12] S. Zerkane, D. Espes, P. Le Parc, and F. Cuppens, “Software defined
networking reactive stateful firewall,” in ICT Systems Security and
Privacy Protection. Springer, 2016, pp. 119–132.

[13] “Opendaylight.” [Online]. Available: https://www.opendaylight.org/
[14] E. Saboori, S. Parsazad, and Y. Sanatkhani, “Automatic firewall rules

generator for anomaly detection systems with apriori algorithm,” in
2010 3rd International Conference on Advanced Computer Theory and
Engineering(ICACTE), vol. 6, Aug 2010, pp. V6–57–V6–60.

[15] R. Udd, M. Asplund, S. Nadjm-Tehrani, M. Kazemtabrizi, and M. Ek-
stedt, “Exploiting Bro for Intrusion Detection in a SCADA System,” in
Int. Workshop on Cyber-Physical System Sec. (CPSS ’16). ACM, 2016,
pp. 44–51.

[16] P. Erickson, “http://mailman.icsi.berkeley.edu/pipermail/bro/2011-
november/004415.html.”

[17] “Openstack.” [Online]. Available: https://www.openstack.org/
[18] “Mininet.” [Online]. Available: http://mininet.org/
[19] “Openvswitch.” [Online]. Available: http://www.openvswitch.org/
[20] A. Swales et al., “Open modbus/tcp specification,” Schneider Electric,

vol. 29, 1999.
[21] “iPerf.” [Online]. Available: https://iperf.fr/
[22] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a reliable SDN

firewall,” in Presented as part of the Open Networking Summit 2014
(ONS 2014). Santa Clara, CA: USENIX, 2014.

[23] R. Koning, N. Buraglio, C. de Laat, and P. Grosso, “Coreflow: Enriching
bro security events using network traffic monitoring data,” Future
Generation Computer Systems, vol. 79, pp. 235 – 242, 2018.


