
Enabling Role-Based Delegation and Revocation on Security-Enhanced Linux

Gail-Joon Ahn t and Dhruv Gami
University of North Carolina at Charlotte

Abstract

An increasing number ofattacks experienced in existing
enterprise networks and applications have recently createda
huge demandfor security mechanisms ofoperating systems.
As a consequence, Security-EnhancedLinux (SELinux) was
proposedbyNSA andthe industries have adoptedSELinux at
afast rate. More andmore enterprises areplanning to move
their business operations to such a secure computing envi-
ronment, requiring thefeatures ofdelegation andrevocation.
In this paper we seek to address the issue ofhow to lever-
age a role-based delegation in SELinux while minimizing
the modification ofSELinux system modules. Our approach
is to utilize the flexible policy system used in SELinux that
allows for custom rules to be definedfor supporting access
control requirements. We also demonstrate thefeasibility of
ourframework through aproof-of-concept implementation.

1 Introduction

An increasing number of attacks experienced in existing
enterprise networks and applications created a huge demand
for operating systems security mechanisms. As a conse-
quence, SELinux has been proposed to provide flexible sup-
port for security policies, attempting to support various se-
curity requirements [1]. Using the flexibility of SELinux, it
is possible to configure the system to support a wide variety
of security policies such as separation policies, containment
policies, integrity policies and invocation policies [2]. Also,
SELinux provides a secure work environment by labelling
all objects in the operating systems, and performing strict
access control checks based on a flexible policy system [3].

SELinux is being adopted by the industry at a fast rate.
More and more enterprises are planning to move their busi-
ness operations to such a secure computing environment.

tAll correspondence should be addressed to: Dr. Gail-Joon Ahn, Soft-
ware and Information Systems Department, College of Computing and
Informatics, University of North Carolina at Charlotte, 9201 University
City Blvd., Charlotte, NC 28223; email:gahn 0uncc.edu. This work was
supported, in part, by funds provided by National Science Foundation
(NSF-IIS-0242393), Department of Energy CAREER Award (DE-FG02-
03ER25565) and Department of Defense (H98230-05-1-0119).

There is, however, an unfortunate mismatch between the se-
curity requirements of enterprises and the functionalities of-
fered by SELinux. The current implementations ofSELinux
do not support the concepts ofdelegation and revocation that
are critical to support large-scale enterprises with dynamic
collaborative environments. In this paper we seek to address
the issue of how to advocate the features of delegation and
revocation in SELinux while minimizing the modification
of SELinux system modules. We integrate a role-based del-
egation framework in SELinux. Our approach is to leverage
the flexible policy system used in SELinux that allows for
custom rules to be defined to provide other access control
requirements. The custom rules are developed to support
both administration-based and self-managed delegations.

The paper is organized as follows. Section 2 briefly de-
scribes related works and background information. Sec-
tion 3 overviews a role-based delegation model followed by
an architecture of our solution and a proof-of-concept proto-
type implementation in Section 4. Section 5 concludes the
paper with future directions.

2 Related Work

SELinux is built upon a robust architecture derived by
seamlessly integrating the concepts of type enforcement,
Flask architecture, and Linux security modules. In type en-
forcement [4], all objects are partitioned into equivalence
classes based on the integrity properties on objects. Each
equivalence class for objects is called an object type. The
subject space is partitioned into equivalence classes based
on their roles in the system and are called domains. The
type enforcement access matrix provides a separation ofthe
policy and enforcement mechanisms. Moreover, the rela-
tionship between a subject and its executable is tightly con-
trolled, offering protection against execution of malicious
code. The Flask architecture [5] requires some form of sep-
aration between security policies and their enforcement, en-
abling the enforcement of security polices to be transparent
to applications. Flask architecture is achieved in SELinux
by encapsulating security policy decision logic into a new
kernel component. This component makes labelling, ac-
cess and poly-instantiation decisions in response to policy-

1-4244-1521-7/07/$25.00 §2007 IEEE
865

independent requests that have been placed throughout the
kernel. This enables the kernel to enforce policy decisions
without needing access to the details of the policy. Linux
security modules (LSM) are kernel modules that mediate ac-
cess to kernel objects by placing hooks in the kernel code [6].
A hook makes a call to a function that the LSM module must
provide before an internal object is accessed by the kernel,
transferring control from the kernel to the LSM Module.
The SELinux policy is a highly flexible policy system [2]
and supports role-based access control (RBAC) [7] to a cer-
tain extent. The SELinux policies are defined in plaintext
and compiled into a kernel loadable binary format. If any
modifications are needed at run-time, the policy has to be
recompiled and re-loaded into the memory.

3 Role-based Delegation and Revocation

Ahn et al. [8] recently identified various factors that have
to be considered for formulating the mechanisms for role-
based delegation and revocation. In order to leverage those
features in SELinux, we adopt the existing models [7, 9]. To
illustrate each functional component in our approach, we use
the role hierarchy example illustrated in Figure 1 and Table 1.
To simplify the discussion of delegation, we assume a user
cannot be delegated to a role if the user is already a member
of that role. For example, project leader Deloris with role
PL1 cannot be delegated to either PCI or PLO since he has
already been an implicit member of these roles.

ROLES
USERS

Table 1. Role Membership
DIR PLI PL2 PCI
John Deloris Cathy Michael

David

PC2
Mark
Lewis

PLI delegates a junior role PCI to Lewis. A delegation
relation is one-to-many relationship on user assignments.
It consists of original user delegation (ODLGT) and dele-
gated user delegation (DDLGT). Figure 2 illustrates such
components and their relations. We assume each delegation
relation may have a duration constraint associated with it.
If the duration is not explicitly specified, we consider the
delegation as permanent unless another user revokes it. The
function Duration returns the assigned duration-restriction
constraint of a delegated user assignment. If there is no
assigned duration, it returns a maximum value.

DIVISION MANAGER (MAR)

DIRECTOR (DIR)

LEAD OFFICER 1 (PL1) LEAD OFFICER 2 (PL2)

PROJECT PROJECT
COLLABO ATOR 1 (PC1) COLLABORATOR 2 (PC2)

POLICE OFFICER (PLO)

Figure 1. Role Hierarchy

I

DLGT

Figure 2. Delegation Relation

3.1 Role Delegation

We first define a new relation called delegation relation
(DLGT). It includes sets of three elements: original user as-
signments UAO, delegated user assignment UAD, and con-
straints. The motivation behind this relation is to address the
relationships among different components involved in a del-
egation. In a user-to-user delegation, there are four compo-
nents: a delegating user, a delegating role, a delegated user,
and a delegated role. For example, (Deloris, PLI, Cathy,
PLI) means Deloris acting in role PLI delegates role PLI
to Cathy. A delegation relation is one-to-many relationship
on user assignments. The delegation relation supports role
hierarchies: a user who is authorized to delegate a role r
can also delegate a role r' that is junior to r. For example,
(Deloris, PLI, Lewis, PCI) means Deloris acting in role

Our role-based delegation has the following components
and theses components are formalized from the above dis-
cussions.

* T is a set of duration-restricted constraint.

* DLGT C UA x UA is one to many delegation relation.
A delegation relation can be represented by (u, r, u',
r') C DLGT, which means the delegating user u with
role r delegated role r' to user u'.

* ODLGT C UAO x UAD is an original user delegation
relation.

* DDLGT C UAD x UAD is a delegated user delegation
relation.

866

* DLGT = ODLGT U DDLGT.

In some cases, we may need to define whether or not
each delegation can be further delegated and for how many
times, or up to the maximum delegation depth. We introduce
two types of delegation: single-step delegation and multi-
step delegation. Single-step delegation does not allow the
delegated role to be further delegated; multi-step delegation
allows multiple delegations until it reaches the maximum
delegation depth. The maximum delegation depth is a nat-
ural number defined to impose restriction on the delegation.
Single-step delegation is a special case ofmulti-step delega-
tion with maximum delegation depth equal to one.

Also, we have an additional concept, delegation path (DP)
that is an ordered list ofuser assignment relations generated
through multi-step delegation. A delegation path always
starts from an original user assignment. We use the following
notation to represent a delegation path.

uaoo -> uad --> uadi -> uad,
Delegation paths starting with the same original user as-

signment can further construct a delegation tree. A delega-
tion tree (DT) expresses the delegation paths in a hierarchical
structure. Each node in the tree refers to a user assignment
and each edge to a delegation relation. The layer ofa user as-
signment in the tree is referred as the delegation depth. The
function Prior maps one delegated user assignment to the
delegating user assignment; function Path returns the path
of a delegated user assignment; and function Depth returns
the depth of the delegation path.

a series of weak revocations. To perform strong revocation,
the implied weak revocations are authorized based on revo-
cation policies. However, a strong revocation may have no
effect if any upward weak revocation in the role hierarchy
fails. Propagation refers to the extent of the revocation to
other delegated users. A cascading revocation directly re-
vokes a delegated user assignment in a delegation relation
and also indirectly revokes a set of subsequent propagated
user assignments. A non-cascading revocation only revokes
a delegated user assignment.

Suppose the revocation in Figure 3 needs a weak non-
cascading approach, for John to revoke Cathy from role
PLI, it is important to note that only Cathy's membership
of role PL1 is changed; other role memberships of Cathy
and all the delegated user assignments propagated by Cathy
are still valid. If the revoked node is not a leaf node, non-
cascading revocation may leave a "hole" in the delegation
tree. A solution might be the revoking user takes over
the delegating user's responsibility. In this example, John
takes over the delegating user's responsibility from Cathy,
and changes all delegation relations: (Cathy, PLI, u, r) C
DLGT to (John, DIR, u, r) C DLGT. In this case, John
takes over Cathy's delegating responsibility for Mark and
Lewis.

(John, DIR) (ohn, DIR)

.hy Cathy, P (Dvid,P WNDRI~yDIR CC~thy, PLI (~ dWPC2 ~ CCthyl :DIR)

(Mak, PCI) L PC1 '

(David, PC2

Mark, PC Lwis, PC

3.2 Role Revocation
Figure 3. Weak Non-cascading Revocation

Several different semantics are possible for user revo-
cation. Hagstrom and others [10] categorized revocations
into three dimensions in the context of owner-based ap-
proach: global and local (propagation), strong and weak
(dominance), and deletion or negative (resilience). Barka
and Sandhu [11] further identified user grant-dependent
and grant-independent revocation (grant-dependency). We
articulate user revocation in the following dimensions:
grant-dependency, propagation, and dominance. Grant-
dependency refers to the legitimacy of a user who can re-
voke a delegated role. Grant-dependent revocation means
only the delegating user can revoke the delegated user from
the delegated role membership. Grant-independent revoca-
tion means any original user ofthe delegating role can revoke
the user from the delegated role. Dominance refers to the
effect of a revocation on implicit/explicit role memberships
of a user. A strong revocation of a user from a role requires
that the user be removed not only from the explicit mem-
bership but also from the implicit memberships of the dele-
gated role. A weak revocation only removes the user from
the delegated role (explicit membership) and leaves other
roles intact. Strong revocation is theoretically equivalent to

4 Enabling Role-based
SELinux

Delegation in

4.1 RoMan Framework

In this section, we propose a system framework called Ro-
Man (Role Manger) to enhance SELinux's capabilities sup-
porting the delegation functionalities outlined in Section 3.
RoMan includes a set of system commands and a rule trans-
lator with a web based user interface. It takes a request from
a user and converts the request to SELinux rules to grant an
appropriate access. It takes care of role administration, role
hierarchy, delegation & revocation, logging, and auditing.
As shown in Figure 4, RoMan is a system component built
upon SELinux. The shaded part in SELinux Policy repre-
sents the policy modifications conducted by RoMan. Nor-
mally RoMan generates and updates the policies to achieve
the delegation rulesets.

867

The proposed system framework consists of four subsys-
tems as follows 1:

* User Interface subsystem: is a web-based user inter-
face, which provides an easy way to take user input
for managing a role based environment. This subsys-
tem provides validation of data input by the user before
handing it over to the Information Repository subsys-
tem.

* System Commands subsystem: is a set of system
level programs written to interact with the Informa-
tion Repository. These commands include addrole,
adduser, getroles, getjuniors, delegate
and revoke. By passing proper parameters to these
commands, the information repository is updated ac-
cordingly.

* Information Repository subsystem: is a repository
specifically to maintain information that is needed to
manage roles, users, delegations and revocations. Cur-
rent SELinux does not provide a mechanism to store
and utilize such information.

* Translation subsystem: is a subsystem that forms
the bridge between the above-mentioned subsystems
and the existing SELinux subsystems. The translator
picks up information from the repository and generates
a SELinux policy needed for the expected functionality.

The interactions among the subsystems are shown in Fig-
ure 5. The user (admin or system user) specifies delegation,
revocation or role management requests. System commands
are invoked with this information (1-2). The user interface
is a simple web application that provides basic validation
on data input. The user then invokes the translator to con-
vert information into SELinux policy (3-4). The translation
subsystem follows a systematic translation of the crude in-
formation stored in the repository into a set of SELinux rules
that together perform the expected task. After the translation
is complete, the policy is recompiled and reloaded into the
kernel, thereby effectively enforcing the policy in the sys-
tem instantaneously (5-6). Our implementation of RoMan
provides a mechanism for a user to delegate or revoke roles
(access level determined by a simple password based authen-
tication). The back-end module is a set of system commands
that update the information repository. Once the repository
is updated, the translator is invoked to build necessary rules.

4.2 Implementation Details

There are six system commands that we developed in Ro-
Man as shown in Table 2. These commands interacts with

1 In addition, we need two existing subsystems in SELinux such as policy
subsystem and enforcement subsystem.

Figure 4. Role of RoMan

Figure 5. System Flow

six system files in the information repository as illustrated
in Table 3. The /etc/roles and /etc/users files are
used to maintain a list of roles and users in the system, re-
spectively. The roles and users contained herein are the ones
added via the RoMan interface and do not include the built-
in system roles and users in SELinux. The /etc/rolehr
file contains information about the hierarchical relationship
of roles. By specifying the immediate seniors and imme-
diate juniors (comma separated lists), a hierarchy tree can
be constructed for each role. This information is a core
component of RoMan because role hierarchy is needed for
proper permission inheritance and delegation ofroles 2. US-
ing /etc/rolehr, we can find all seniors and juniors for
a role by respectively chasing the parents and children. For
example, for the DIR role of Figure 1 we can construct the
seniors and juniors list as follows.

Role Seniors Juniors
DIR MAR PLi, PL2

We say a user is an explicit member of a role if the user
is explicitly designated-or through a delegation-as a mem-
ber of the role. A user is an implicit member of a role
if the user is an explicit member of some senior role. A

2Permissions ofajunior role are inherited to its senior roles. Also, a role
cannot be delegated to a user whose original role is senior to the delegating
role.

868

Table 2. System Commands
|Command [Purpose

addrole Create a new role to the system
usage: addrole <rolename> <seniors> <juniors>

getroles List roles currently present in the system
usage: getroles //no parameters needed

adduser Create a new user to the system and assign an original role to the user
usage: adduser <username> <password> <original role>

getjuniors List all juniors to a specific role from the role hierarchy
usage: getjuniors <rolename>

delegate Delegate a role from a user being a member of a specific role to another user
usage: delegate <dlg'ing user> <dlg'ing role> <dlg'ed user> <dlg'ed role>

revoke Revoke an existing delegated role from a delegated user
usage: revoke <dlg'ing user> <dlg'ing role> <dlg'ed user> <dlg'ed role>

Table 3. Information Repository
Object | File Name] Purpose

ROLES /etc/roles Contain a list of roles in the system
HIERARCHY /etc/rolehr Maintain the hierarchical structure of roles
USERS /etc/users Contain a list of users
EXPLICIT /etc/explicit Contain a list of roles and users assigned explicitly to those roles
DELEGATIONS /etc/delegations Maintain all delegation relations
LOG /var/log/roman_log Contain a log of all actions, delegations, and revocations

user can simultaneously be an explicit and implicit mem-
ber of the same role. For example, Alice can be an explicit
member of PLO and PL1, in which case she is also an im-
plicit member ofPLO (by virtue ofmembership in PL1). To
simulate this, we maintain information about explicit mem-
bership in /etc /explicit including original roles and
delegated roles that the user is member of. Similarly, the
/etc/delegations maintains all delegation activities
based on the delegation relation. For instance, the delega-
tion examples addressed in Section 3.1 would look like:

dlg'ing_user | dlg'ing role T dlg'ed user | dlg'ed role |
Deloris PLI Cathy PLI
Deloris PLI Lewis PCI

This file is used for logging and auditing purposes as well.
Additional information such as duration of delegation and
allowable delegation depth can be stored in this file to further
extend our system.

One of important modules is the translation subsystem
that picks up the current state of the information repository
and translates the information therein into SELinux policy
rules. Instead ofcomparing previous states and current states
to validate changes of the policy, it was found to be more

efficient if a new rule is developed for being inserted to the
policy modules whenever needed. A base policy would not
be changed but the role management rules then need to be
inserted in the relevant places by translating each file of the
repository. The translation has five steps as follows:

1. Initialization: The translation is initialized by get-
ting rid of the existing policy files and creating a new
workspace for the policy to be generated based on the
new data in the information repository. The base policy
is then loaded into the workspace and made available
for rules pertaining to role based access control man-
aged by RoMan.

2. Creating New Roles: In RoMan's information reposi-
tory, role names are stored in ROLES. Since the base
policy does not include a notion of role definition, we
first need to create role definition rules into the policy.
The rules are:

/src/policy/domains/user.te:
full user role(newrole) allow
system_r newrole_r;
allow sysadm_r newrole_r;

869

/src/policy/macros/user_macros.te
define('in_user_role','
role newrole_r types $1; ')

3. Constructing Role Hierarchy: Role hierarchy is stored
in HIERARCHY which is an element of the informa-
tion repository. The rules for defining role hierarchy in
SELinux policy look like:

/src/policy/rbac
dominance {role senior_r

{role junior_r;}}
allow senior_r junior_r;

For example, a role hierarchy of Figure 1 can be con-
structed by the following policy rules.

/src/policy/rbac
dominance {role MAR_r{role DIR_r;}}
allow MAR_r DIR_r;

dominance {role DIR_r{role PLl_r;}}
dominance {role DIR_r{role PL2_r;}}
allow DIR_r PLl_r;
allow DIR_r PL2_r;

4. Assigning Users to Roles: In the information reposi-
tory, the user-role assignment is stored in EXPLICIT.
The first field is a user that the roles are associated
with. Separated by a colon, the next field is the orig-
inal role that the user is member of. The last field
contains a list of roles that are delegated to the user.
The syntax for assigning roles to users in informa-
tion repository is username original role
delegated roles. From this information, the fol-
lowing policy is used to translate all entries in EX-
PLICIT.

src/policy/users
user username roles {original_role};

5. Performing Delegation: DELEGATIONS object in the
repository contains delegating user, delegating role,
delegated user, and delegated role. Based on this for-
mat, we need to define rules to allow the delegated user
to be member of a delegating user's role and to inherit
its permissions. In our system, SELinux policy for this
relation is:

user delegated_user
roles {delegated_role};

5 Conclusions

We have addressed the need for an implementation of
role-based delegation in SELinux. We also articulated a way
to further enhance the flexibility of SELinux supporting del-
egation features addressed in [8]. We also demonstrated fea-
sibility ofthe proposed approach through a proof-of-concept
prototype implementation ofa system component called Ro-
Man. In the future, more functionalities of delegation and
revocation for RoMan will be investigated. A future exper-
iment also includes the work of porting the current RoMan
code into m4 macros.

References

[1] P. Loscocco and S. Smalley. Meeting critical security objec-
tives with security-enhanced Linux. In Proceedings of the
2001 Ottawa Linux Symposium, 2001.

[2] P. Loscocco and S. Smalley. Integrating flexible support for se-
curity policies into the Linux operating system. In Proceedings
ofthe FREENIX Track ofthe 2001 USENIXAnnual Technical
Conference, 2001.

[3] Bill McCarty. SELinux O'Reilly, October 2004, ISBN: 0-
596-00716-7

[4] W.E. Boebert and W.Y. Kain. A Practical Alternative to
Hierarchical Integrity Policies. In Proceedings of the 8th
National Computer Security Conference, Gaithersburg, MD,
p.18, 1985.

[5] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Ander-
sen, and J. Lepreau. The Flask Security Architecture: System
Support for Diverse Security Policies. In Proceedings ofThe
Eighth USENIX Security Symposium, 123-139, August 1999.

[6] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-
Hartman. Linux Security Modules: General Security Support
for the Linux Kernel. In Proc. 11th USENIXSecurity Sympo-
sium, San Francisco, CA, Aug 2002.

[7] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-based access control models. IEEE
Computer, 29(2):38-47, February 1996.

[8] Gail-J. Ahn, Longhua Zhang, Dongwan Shin and Bill Chu.
Authorization Management for Role-based Collaboration. In
IEEE International Conference on System, Man and Cyber-
netic (SMC2003), pages 4128-4214, Washington, DC, Octo-
ber 2003.

[9] L. Zhang, Gail-J. Ahn and B. Chu. A Rule-Based Framework
for Role-Based Delegation and Revocation. ACM Transac-
tions on Information andSystem Security, Vol.6, No.3, August
2003.

[10] A. Hagstrom, S. Jajodia, F. P. Presicce, and D. Wijesekera.
Revocations - a classification. In Proc. 14th IEEE Computer
Security Foundations Workshop, pages 44-58, Nova Scotia,
Canada, June 2001.

[11] E. Barkaand R. Sandhu. Framework forrole-based delegation
model. In Proceedings of23rd National Information Systems
Security Conference, pages 101-114, Baltimore, MD, October
16-19 2000.

870

