
Managing Heterogeneous Network Environments Using an
Extensible Policy Framework

Lawrence Teo
University of North Carolina at Charlotte
College of Computing and Informatics

lcteo@uncc.edu

Gail-Joon Ahn †

University of North Carolina at Charlotte
College of Computing and Informatics

gahn@uncc.edu

ABSTRACT
Security policy management is critical to meet organiza-
tional needs and reduce potential risks because almost ev-
ery organization depends on computer networks and the In-
ternet for their daily operations. It is therefore important
to specify and enforce security policies effectively. How-
ever, as organizations grow, so do their networks increas-
ing the difficulty of deploying a security policy, especially
across heterogeneous systems. In this paper, we introduce
a policy framework called Chameleos-x which is designed to
enforce security policies consistently across security-aware
systems with network services–primarily operating systems,
firewalls, and intrusion detection systems. Throughout this
paper, we focus on the design and architecture of Chameleos-
x and demonstrate how our policy framework helps organi-
zations implement security policies in changing, diversity-
rich environments. We also describe our experimentation of
Chameleos-x to demonstrate the feasibility of the proposed
approach.

1. INTRODUCTION
Businesses and organizations depend heavily on computer

networks and information systems for their daily operations.
Due to this ever-increasing reliance on computer systems, it
is critical for organizations to implement a carefully-designed
security policy for their networks and information systems.

When organizations grow, so do their computer networks
and information systems. This growth tends to introduce
diversity and heterogeneity into the network, especially as
new operating systems, network devices, and security tech-
nologies are adopted. As the number and types of systems
increase, the security of the organizational networks is af-
fected in two major ways: (1) the difficulty of designing and

†All correspondence should be addressed to: Dr. Gail-Joon
Ahn, Software and Information Systems Department, Col-
lege of Computing and Informatics, University of North Car-
olina at Charlotte, 9201 University City Blvd., Charlotte,
NC 28223; email:gahn@uncc.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07, March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003.

enforcing a security policy that works consistently across
different systems is significantly multiplied; and (2) the abil-
ity to maintain the consistency of the policy in the face of
changing organizational requirements

In this paper, we argue that a practical, system-driven
approach should be used to address the problem of enforc-
ing security policies consistently in a changing, diversity-
rich environment. We propose a solution in the form of a
system-driven policy framework called Chameleos-x, which
consists of both a policy specification language and a pol-
icy enforcement architecture. The Chameleos-x framework
is specially designed to facilitate the management of consis-
tent security policies in heterogeneous environments. The
objective of Chameleos-x is to enforce security policies con-
sistently on different security-aware systems as well as op-
erating systems. In this paper, security-aware systems in-
clude operating systems, firewalls, and intrusion detection
systems (IDSs) – those are responsible for enforcing any part
of the organizational security policy. Our prior works clearly
demonstrated how we could develop a policy language to
specify access control policies across different operating sys-
tems [4, 5].

This paper is organized as follows. Section 2 presents the
objectives, design, and architecture of Chameleos-x followed
by a discussion of our experiments and results in Section 3.
Section 4 concludes the paper including our ongoing and
future work.

2. POLICY FRAMEWORK: Chameleos- x

The Chameleos-x policy framework has two major com-
ponents: a policy specification language and a policy en-
forcement architecture. As a family of languages and archi-
tectures, Chameleos-x supports different kinds of systems
– currently it works with operating systems, firewalls, and
IDSs (Figure 1). The advantages of implementing a sin-
gle language for many security-aware systems are manifold.
Having a single language would provide a common syntax
for administrators to implement various policies. There is
no need to relearn the syntax for different systems, thus
presenting a convenient way for the administrator to specify
multiple system policies. This is especially true when the
evaluation of different systems is taking place. Also, if there
are similar systems, we do not need to convert the policies
from one system to the other.

2.1 Approach
We first discuss the approach that was used to design

the Chameleos-x policy framework. We present the two key

362



Chameleos-x Family

Chameleos-os
Chameleos-
firewall

Chameleos-ids

Ext 1

Ext 2

Ext 3

Linux

OpenBSD

Windows XP

Extn

Ext 1

Ext 2

Ext 3

Linux iptables

OpenBSD pf

FreeBSD
IPFILTER

Extn

Ext 1

Ext 2

Ext 3

Snort

Prelude

Bro

Extn

General Framework

Specialized Components

Specific Extensions

Figure 1: The Chameleos-x framework.

decisions that we made in the design of the language, and
how they affected the development of our framework.

Firstly, we have to decide whether to develop an exten-
sion of an existing similar policy framework or develop a new
framework altogether. Unlike other frameworks, a key differ-
entiator in the Chameleos-x is that it integrates with a risk-
based network management architecture [6], thus it uses a
different paradigm compared to other frameworks. This dif-
ference alone warrants the necessity to design a new frame-
work. Another benefit of creating the framework afresh is
that it helps us design all the components in our policy
framework while achieving completeness and consistency of
our approach.

Secondly, some have suggested that the bottom-up ap-
proach results in an inflexible framework that is too specific
to the underlying systems; for Chameleos-x, however, we
believe that developing for actual systems (the bottom-up
approach) would be more beneficial. We must reiterate that
Chameleos-x is designed to be used in the real world and
is not merely a theoretical exercise. In that vein, the lan-
guage component in Chameleos-x is comparable to program-
ming languages like C and C++. Like Chameleos-x, those
programming languages were designed using the bottom-up
evolutionary approach. Though their design may not be
very elegant, they are proven to be flexible, where they have
been used to implement many kinds of solutions. Thus, they
enjoyed widespread use in industry for decades.

These decisions led us to adopt an evolutionary design
model for Chameleos-x. Using this evolutionary model, we
believe we are able to support the specific features of each
system more effectively.

2.2 Language and Architecture
The Chameleos-x policy framework includes a language

component that is used for policy specification. It is in-
tended to cover many notions that are used to specify poli-
cies, including basic access control concepts. We have de-
veloped the basic grammar of the Chameleos-x language in
Extended BNF (EBNF). Due to space limitations, we omit
the EBNF grammar specification in this paper.

The three major components of the Chameleos-x archi-
tecture are the Management Console, Translator, and En-
forcement Monitor. The Management Console is a central

Chameleos-x

Enforcement
Monitor

Chameleos-x

Translator

Host (Security-Aware System)

1

2

3

4

5

6

Management
Console

Chameleos-x

policies

System
policy 1

System
policy 2

System
policyn

Execution
Program

Figure 2: The Chameleos-x architecture.

management interface operated by the evaluator. It is used
to “push” Chameleos-x policies to various hosts that are run-
ning the Chameleos-x Enforcement Monitor. The Manage-
ment Console also specifies which operation mode should be
used in each session. The Chameleos-x Enforcement Mon-
itor is a daemon that runs continually in the background
on systems that are part of the Chameleos-x framework
(that is, the servers, firewalls, and IDSs). Its responsibil-
ity is to receive the Chameleos-x policy from the Manage-
ment Console, and apply it on its host system. To do so,
the Chameleos-x policy would have to be translated. This
translation process is done by the Chameleos-x Translator,
which is used to convert the Chameleos-x policy into one
or more system-specific policies. The Translator resides to-
gether with the Chameleos-x Enforcement Monitor (it could
either be part of the Monitor, or a separate entity that is
invoked by the Monitor). Each Chameleos-x variant would
have its own Translator. For instance, if we are working
with the Snort IDS, the Chameleos-ids Translator will con-
vert the Chameleos-ids policy into a Snort configuration file.

The layout of the components in the Chameleos-x archi-
tecture is shown in Figure 2. The detailed procedures be-
tween components are described as a workflow as follows
(the numbers in Figure 2 relates to this description):

1. The evaluator composes one or more Chameleos-x poli-
cies and uses the Management Console to send them
to the Chameleos-x Enforcement Monitor on a host.

2. The Enforcement Monitor receives the policies.

3. The Chameleos-x Enforcement Monitor invokes the
Translator to translate the policies it just received into
system-specific policies.

4. The Translator performs the translation process. For
instance, a Chameleos-firewall policy could be trans-
lated into a Linux iptables ruleset, while a Chameleos-
ids policy could be translated into a Snort configura-
tion file. The translation could result in one or more
system policies, depending on the requirements of the
specific systems.

5. After the translation is done, the Enforcement Monitor
invokes the execution program (say, Snort in the case
of Chameleos-ids).

363



6. The execution program loads and applies the trans-
lated policies on the host.

3. EXPERIMENTS AND RESULTS
Our experiments were designed with two objectives: (1)

to test the translation process of each Chameleos-x variant,
and (2) to test the enforcement/execution process of each
Chameleos-x variant. To perform these experiments, we first
designed and implemented a test network consisting of six
machines, each of which plays a single role: a firewall, an
IDS, a server, a “legit” machine that generates good traffic,
an “attacker” machine that generates bad traffic, and the
management console. Chameleos-x Enforcement Monitors
were installed on the firewall, IDS, and server. The manage-
ment console’s responsibility is to push Chameleos-x policies
to the Monitors. The Monitor is in charge of translating the
Chameleos-x policy from the management console into the
correct system policy for its host.

To fulfill the two experimental objectives, we use two
“configuration suites” for testing each variant. A config-
uration suite would consist of a specific firewall, IDS, and
server operating system and associated servers (such as the
HTTP and FTP servers). Additionally, in order to make the
experiment more accurate, we would have to make sure each
suite is heterogeneous and different from the other. Config-
uration Suite 1 consists of a firewall running OpenBSD with
the pf firewalling subsystem, an IDS running Snort, and a
Linux server that is geared to run Apache and vsftpd as its
web and FTP servers respectively. Configuration Suite 2
comprises a Linux firewall with iptables, the Snort IDS, and
a FreeBSD server configured to run thttpd and ftpd. We
also used a management console (running NetBSD) with
the IP address 172.16.0.2 to push Chameleos-x policies to
the machines in each suite.

The translated policies showed consistent behavior in both
Configuration Suites 1 and 2, even though the same origi-
nal Chameleos-x policies were used without changes in each
suite. In addition, the translated policies implemented cer-
tain features using the specific facilities offered by each tar-
get system. For example, groups were defined differently in
pf and iptables, but the end behavior was consistent.

These favorable results show that a practical and system-
driven policy framework can be used to perform effective
evaluation of a network in a flexible and extensible man-
ner. It also firmly indicates that our policy framework could
successfully integrate a simple but powerful declarative lan-
guage with an enforcement architecture. The results also
demonstrate that Chameleos-x, with its system- and platform-
independent nature, is indeed capable of facilitating security
policy management for heterogeneous environments, as rep-
resented by the consistent behavior exhibited by the multiple
kinds of systems in Configuration Suites 1 and 2. These ob-
jectives were achieved by designing the framework discussed
in Section 2.

4. CONCLUSION
We have presented the design of Chameleos-x, a practical

and system-driven policy framework that can be used to fa-
cilitate the management of security policies in heterogeneous
environments effectively. The core strength of Chameleos-
x is its ability to specify and enforce security policies con-
sistently across a diverse range of security-aware systems,

such as operating systems, firewalls, and intrusion detec-
tion systems. Chameleos-x is also designed to assist system
and network developers in the configuration and evaluation
of these systems for conformance to security policies. Our
experiments confirmed that the Chameleos-x policy frame-
work is sufficiently flexible and extensible to deploy security
policies effectively across multiple security-aware systems.

We strongly believe Chameleos-x would be very beneficial
to organizations, especially those with large and heteroge-
neous information networks. Based on the promising results
obtained through these experiments, we would work on new
components for the Chameleos-x policy framework. Most
of these new components would be part of the Chameleos-
x Translator. These components include a syntax checker,
analyzer, and reverse translator. The syntax checker would
serve as the foundation for all syntax checking requirements
in the other components. The analyzer would be used to
analyze a Chameleos-x policy for conflicts and ambiguities.
The analyzer would have to take constraints [1] and conflict
resolution techniques [2] into account, especially for complex
systems like SELinux [3]. The reverse translator ’s role is to
translate a system-specific policy into a Chameleos-x policy.

Acknowledgements
This work was supported, in part, by funds provided by Na-
tional Science Foundation (NSF-IIS-0242393) and Depart-
ment of Energy Early Career Principal Investigator Award
(DE-FG02-03ER25565).

5. REFERENCES
[1] Trent Jaeger. On the increasing importance of

constraints. In Proceedings of the 4th ACM Workshop
on Role-Based Access Control, pages 33–42, Fairfax,
VA, October 1999.

[2] Trent Jaeger, Antony Edwards, and Xiaolan Zhang.
Managing access control policies using access control
spaces. In Proceedings of the 7th ACM Symposium on
Access Control Models and Technologies, pages 3–12,
Monterey, CA, June 2002.

[3] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang.
Resolving constraint conflicts. In Proceedings of the 9th
ACM Symposium on Access Control Models and
Technologies (SACMAT 2004), IBM T.J. Watson
Research Center, Yorktown Heights, NY, June 2004.

[4] Lawrence Teo and Gail-Joon Ahn. Towards the
specification of access control policies on multiple
operating systems. In Proceedings of the 5th IEEE
Workshop on Information Assurance, pages 210–217,
United States Military Academy, West Point, NY, June
2004.

[5] Lawrence Teo and Gail-Joon Ahn. Supporting access
control policies across multiple operating systems. In
Proceedings of the 43rd ACM Southeast Conference,
volume 2, pages 288–293, Kennesaw, GA, March 2005.

[6] Lawrence Teo, Gail-Joon Ahn, and Yuliang Zheng.
Dynamic and risk-aware network access management.
In Proceedings of the 8th ACM Symposium on Access
Control Models and Technologies (SACMAT 2003),
pages 217–230, Como, Italy, June 2003.

364




