
On Modeling System-centric Information for Role
Engineering

Dongwan Shin and Gail-Joon Ahn
Dept. of Software and Information Systems

College of Information Technology
University of North Carolina at Charlotte

Charlotte, NC 28223, USA

{doshin, gahn}@uncc.edu

Sangrae Cho and Seunghun Jin
Dept. of Information Security System
Electronics and Telecommunications

Research Institute
Taejon, 305-350, South Korea

{sangrae, jinsh}@etri.re.kr

ABSTRACT
In this paper we present an approach to modeling system-
centric information in order to facilitate role engineering
(RE). In particular, we first discuss the general character-
istics of the information required in RE. Afterwards, we
discuss two informational flow types among authorities in-
volved in RE process, forward information flow (FIF) and
backward information flow (BIF), together with the intro-
duction of an information model which is greatly suitable
for use in the backward information flow. System-centric
information is incorporated in the information model and
UML extension mechanisms are exploited for modeling the
information. Not only can the information model provide
those different authorities with a method for both analy-
sis of resources and communication of knowledge in the RE
process, but it can also help lay a foundation for successful
implementations of RBAC.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls; K.6.5 [Management of Computing and
Information System]: Security and Protection

General Terms
Security

Keywords
Role-based access control, Role engineering, Information Flow,
Information model, Attributive permissions

1. INTRODUCTION
The concept of using roles in access control has attracted

considerable attention in computer security communities over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT03, June 2-3, 2003, Como, Italy.
Copyright 2003 ACM 0-58113-681-1/03/0006 ...$5.00.

the last few years. Thus many formalized and practical ap-
proaches to recognizing the value of their usage in access
control have been taken by both researchers and practition-
ers. The reference models have been proposed for role-based
access control (RBAC) in [14, 15], and the efforts to extend
the models, for example in the area of constraint specifica-
tion, role administration, and role delegation, have followed
in [1, 13, 20]. With those formal models as its quintessence,
RBAC has grown to be a proven solution for managing ac-
cess control in a simple, flexible, and convenient manner.
RBAC has been also implemented successfully in a variety
of systems or applications as user authorization services.
For instance, it is used in a simple web-based application
in order to provide users with different grades of services,
or it is deployed in an entire operating system as an alter-
native to the all-or-nothing superuser model. In addition
to those individual systems or applications, enterprise-wise
large-scale systems also fall in the sphere of RBAC’s influ-
ence. Enterprise users generally need to access multi-vendor
and multi-layered applications and systems of which enter-
prise resources consist. Schemes like juxtaposing enterprise-
wise roles with localized roles, which are effective only in
the individual applications or systems, have been identi-
fied with the purpose of fertilizing RBAC’s applicability into
the enterprise-wise authorization boundary [8, 18]. In those
schemes, simply put, enterprise users are authorized accord-
ing to their membership of enterprise-wise roles so as to
access multi-vendor and multi-layered enterprise-wise appli-
cations and systems.
However, there are still some important issues that need

to be addressed more in RBAC, in particular from the per-
spective of its implementation. Role engineering (RE) is one
of them. RE is an approach to defining roles and assigning
permissions to roles [2], and thus enables to identify and
build explicit objects used in access control from the im-
plicit existence of roles within an organization. Since being
a multi-disciplinary and cooperative process where different
authorities usually are involved, RE calls for both a large
amount of information to be exchanged and so many actions
to be taken by those authorities with a view to sharing their
knowledge and expertise for the process. Considering this,
RE may be costly and time-consuming. For example, as-
suming that Purchasing manager role is to be engineered,
HR department, an information security group, or a sys-
tem administrator group may need to partake in the process
by first investigating the semantics of Purchasing manager

169

in their own domain, exchanging or discussing their doc-
umented semantics of Purchasing manager, and mapping
those semantics each other. Moreover, it may be continu-
ous and iterative process in order to reflect the modification
and refinement of the semantics. Considering the number
of roles to be defined in enterprise-wise environments (en-
compassing security policies such as separation of duties,
IT resources, and manpower), it is certain that tremendous
amounts of work are required of those authorities. In this
context, RE poses challenges of a new dimension.
In order to address the problem of RE which has been

depicted previously in a somewhat general manner, both re-
searchers and practitioners have proposed several method-
ologies for RE. However, they often fail to discuss 1) RE
from the perspective of systems to be protected and 2) how
the information, which is used for the purpose of sharing
expertise or eliciting artifacts regarding organizational se-
curity policies and systems in general and for defining roles
with assigned permissions in specific, can be modeled. This
situation can be partly attributed to the fact that it is es-
sentially a requirement engineering process, and therefore it
can be specified at different levels of abstraction and vary-
ing contexts. Nevertheless, it is important to have a good
knowledge of systems since defined roles cannot function in
isolation from the systems in which they are utilized. Hence,
RE has to deal with a well-defined system-level view.
According to [12], which discusses the close relationship

between RBAC roles and business processes, the analysis of
business processes can work as a catalyst in the derivation
of RBAC roles and permissions within an organization. The
system-level view in the solution domain, which can be de-
scribed both at a much higher level of abstraction and with
less amount of information than that of objects and oper-
ations, can be very useful in RE to assist with the general
understanding of RBAC roles and permissions in conjunc-
tion with business processes. The system-level information
can also provide a good communication of technical knowl-
edge for the authorities involved in RE which need to be of-
ten competent to deal with the technical issues. This holds
true for especially those (an information security group in
the previous example) whose primary expertise is to man-
age the high-level organizational security policies which are
considered to be in the problem domain.
This paper focuses its attention into an approach to mod-

eling system-centric information in order to facilitate RE
process. In particular, it first discusses the general informa-
tional characteristics in RE and two informational flow types
among authorities involved in RE, forward information flow
(FIF) and backward information flow (BIF). Then, it in-
troduces an information model which is greatly suitable for
use in the backward information flow. System-centric infor-
mation is incorporated in the information model and UML
extension mechanisms are exploited for modeling those in-
formation. UML is a widely accepted modeling language for
software development, and we believe that it can also be a
good candidate for visually modeling non-software entities
such as information systems.
The rest of this paper is organized as follows. Section 2

discusses the various aspects of roles and RE within the con-
text of a RBAC reference model (RBAC96) [14]. The prior
research related to our work is also described in that section,
together with the discussion of three different RE models.
Section 3 discusses our approach to modeling system-centric

R

ROLES

ROLE HIERARCHY
(RH)

PERMISSION
ASSIGNMENT

(PA)

CONSTRAINTS

P

PERMISS-
IONS

Implementation
Dependent Mappings

(between System
Objects and
Operations)

Figure 1: Scope of RE in the context of RBAC96
model

information for RE. Then we discuss how to model the in-
formation in the UML language in Section 4. An example to
demonstrate how the information model can be used in RE
process is also described in the section. Section 5 discusses
our experience and future research directions and concludes.

2. ROLE ENGINEERING
Role engineering concerns capturing and analyzing vari-

ous components of RBACmodels for a later implementation.
This requires a sound understanding of RBAC models and
components. In this section we discuss RE within the scope
of RBAC96 model. Then we discuss the prior works in RE
and classify them into three RE models.

2.1 Scope within RBAC96 Model
The scope of RE in the context of RBAC96 model is de-

scribed in Figure 1. In the RBAC reference model, activities
in RE concern components such as roles, role hierarchies,
permissions, permission assignment, and constraints.
While the meanings of roles are different, depending upon

the context of their usage, they generally represent a set of
competency and responsibility pairs [6]. In the reference
models of RBAC [14, 15], they describe the relationship be-
tween users and permissions. Roles are used as a middle
layer in between users and permissions. Users are human
beings and permissions are a set of many-to-many relations
between objects and operations. Roles bring users and per-
missions together, representing the job functions or titles
and making it easy to apply organizational policies to the
job functions or titles. Roles also decouple users and per-
missions, thereby reducing administrative routine works.
More advanced notions of roles include their hierarchical

and constrained existence. The reference models of RBAC
discuss those aspects of roles as well. Roles can be hier-
archically structured so as to describe the lines of compe-
tencies and responsibilities within an organization. In the
hierarchical structures, senior roles generally inherit the per-
missions assigned to junior roles, and this enables the role
layer to be multi-layered, thereby further reducing the num-
ber of relations between users and permissions. Roles must
be constrained in their relations to users and permissions
as well as in the role-hierarchies. Constraints are an es-
sential construct needed for laying out higher-level access
control policies within an organization. A well-known ex-
ample of constraints is the separation of duty. For instance,
the same user cannot be a member of roles in a conflict-
ing role set such as purchasing manager role and accounts

payable manager role. The separation of duty constraint
reduces possible frauds or errors by controlling membership
in, activation of, and use of roles as well as permission as-
signment.

170

Hybrid Model

Security Administration

System Administration

Role Identification

Permission Mapping

S
ecu

rity A
d

m
inistration

S
ystem

 A
dm

inistra
tion

Iterative/Refinement

Top-down Model

Role Composition

Bottom-up Model

Permission
DerivationInformation Exchange

Figure 2: Models and information exchanges in RE

As stated in the previous section, RE is to define a valid
set of roles and role hierarchies with associated permissions,
though the level of abstraction of permissions may vary. By
valid we mean that roles and role hierarchies must be con-
strained according to organizational security policies and
also have properly designed semantics within an organiza-
tion’s RBAC environment. In order to fully leverage the
concept of using roles in access control and benefit from the
features of RBAC reference models, it is critical to consider
RE to be of paramount importance and discretion. The in-
valid definition of roles resulting from RE can lead to both
the defects in RBAC implementations and security breaches
in its enforcement, and thus it may be quite hazardous and
costly to detect and remove them at a later time.

2.2 Models and Related Works
There have been various approaches to engineering roles

with the view of the implementation and administration of
the roles1. They can be generally categorized into the fol-
lowing three models: top-down, bottom-up, and hybrid [4, 8].
Figure 2 shows the three models and describes the iterative
nature of information exchange between two authoritative
domains which are most likely to be involved in RE process,
security administration and system administration. Secu-
rity administration is in charge of organizational security
(policy) management, whereas system administration con-
cerns information system management (see Section 3.1 for
details).

2.2.1 Top-down Model
The top-down model can be generally described as an ap-

proach to deriving permissions from roles through the use of
abstract concepts such as work-patterns and business pro-
cesses [4, 12]. Looking at the model in some more detail,
work-patterns or business processes in which roles are in-

1The difference between role engineering and role adminis-
tration is often questioned, and their difference is distinct
such that the first is more likely an engineering issue of how
to analyze and define roles, whereas the second is more likely
an administrative issue such as how to manage designed and
implemented roles. Role administration is outside of the
purview of this study. For more details on role administra-
tion, see [17].

volved are analyzed and decomposed into smaller units in
a functionally independent manner through role identifica-
tion process. Afterwards, those smaller units or tasks are
mapped onto permissions in information systems for their
execution through permission mapping process. As shown
in Figure 2, role identification falls within the scope of se-
curity administration, while permission mapping is in the
range of system administration.
In [2] Coyne describes briefly how to identify roles in

RBAC in a top-down manner. Taken as a whole, his ap-
proach uses system users’ activities as a high-level of ab-
straction to identify candidate roles and remove duplicate
candidate roles. Then permissions can be identified as a
minimal set of access rights on the systems required to per-
form the roles. Finally, constraints definition follows before
role hierarchies are built. Though introducing the concept
of RE to the point, his approach lacks many technical details
of RE process, only to be depicted in a highly conceptual
manner.
In [12] Roeckle et al. discuss a process-oriented approach

to finding roles in a top-down manner. The concept of role-
finding is described for the purpose of deducting roles from
business needs or functions. Their approach deals with an
RBAC metamodel (we will discuss this in more detail in Sec-
tion 4.1) to describe the notion of roles and their relation
to users and access rights. Three different layers are dis-
cussed in conjunction with the metamodel: process layer,
role layer, and access rights layer. Simply put, business pro-
cesses are initially analyzed in the process layer. Then roles
are derived from the business processes in the role layer and
access rights on systems are assigned to the roles in the ac-
cess rights layer. While their metamodel is well defined and
structured, their procedural approach to finding roles lacks
supporting some important issues such as how to handle role
information update.

2.2.2 Bottom-up Model
In the bottom-up model, permissions are generally work-

ing as a building block so as to be aggregated into roles.
Like the top-down model, this model often uses abstract
concepts such as scenarios and business functions in order
to both derive and group permissions [9]. In addition, cer-
tain attributes of target objects and operations can be used

171

for that purpose as well. More specifically speaking, permis-
sions (object and operation pairs) are derived from existing
information systems and grouped on the basis of the cer-
tain attributes of permissions. The attributes can be drawn
from objects, applications, and systems where those permis-
sions are involved. For example, the owner information or
ACLs in file objects can be security-relevant attributes and
used for grouping permissions as a functional building block
of roles. This is usually done through permission deriva-
tion process which falls within the scope of system admin-
istration. Afterwards, those permissions are aggregated to
roles through role composition process which falls within the
scope of security administration.
In [19] Thomsen et al. propose an RBAC framework for

network enterprises, in which permissions are derived from
objects and their methods and roles are derived from the
permissions. All these procedures are enabled by an intro-
duction of seven abstract layers for security management:
object, object handles, application constraints, application
keys, enterprise keys, key chains, and enterprise constraints.
The first four layers belong to application developers, who
can use their in-depth knowledge of the applications in order
to create generic security components. The last three lay-
ers are under the control of system administrators, who can
use the generic security components as the security build-
ing blocks in order to customize the security policy for their
organization. They developed NAPOLEON tool, which im-
plements the portion of the framework used by the applica-
tion developer. Subsequently, Epstein and Sandhu propose
an approach to leveraging UML language for RE and dis-
cuss an exemplary UML modeling case which is based upon
the framework proposed by Thomsen et al. [3]. Their ap-
proach is straightforward in representing the RBAC frame-
work. However, their approach needs to be improved to
address how UML can be used for modeling the process side
of RE.
In [9] Neumann and Strembeck present a more concrete

approach to engineering roles, which can be derived from
business processes, than in [12]. Their approach has two
distinct differences in defining an RBAC model from the
latter; scenarios are used in their approach as a semantic
unit for deriving permissions, and in a bottom-up way, per-
missions obtained from scenarios are aggregated into roles.
Their approach can be summarized as follows; usage sce-
narios are initially identified and modeled, and then permis-
sions are obtained from them. Afterwards, constraints are
identified before each of the previously identified scenarios
is examined and refined, if necessary. They use the concept
of tasks and work profiles for the purpose of grouping the
scenarios. Finally, the definition of a concrete RBAC model
follows. To use scenarios to capture and elicit system’s be-
haviors and users’ needs in requirement engineering phase
is a well-known technique exploited in software engineering
communities. Scenarios could be expressed, documented,
and handled more unambiguously if it is equipped with the
syntax and sematics of standards such as the UML language.

2.2.3 Hybrid Model
The hybrid model can be described as a mixed approach

of top-down and bottom-up models so as to engineer RBAC
roles. For example, the role identification process and the
permission derivation process in Figure 2 can be conducted
in parallel for a later role definition.

In [4], Epstein and Sandhu propose a conceptual frame-
work where roles can be defined in either a top-down or a
bottom-up manner. They extend RBAC reference models
by introducing three additional layers in between roles and
permissions. They use the concepts of jobs, work-patterns,
and tasks, to represent those respective layers and facilitate
role-permission assignment into smaller and better steps.
Top-down and bottom-up models are discussed in conjunc-
tion with the notions of focus and bucket, respectively. How-
ever, their work addresses RE in a conceptual manner with-
out discussing how those concepts are specified, constructed,
or concretized.
In [8], Kern et al. propose a life cycle model of roles, in-

terwoven with RE and role administration processes. The
life cycle model is based on an iterative-incremental process.
Four stages of the life cycle of roles are identified: role anal-
ysis, role design, role management, and role maintenance.
Role analysis is the activity of identifying roles as they oc-
cur within the target domain. Role design involves mapping
roles onto the system-dependent syntax and semantics as
well as designing roles for administration. Role management
is the routine role administration such as creation or dele-
tion of a user or a permission and changes in the role model.
Role maintenance activities are composed of changes in the
mapping of organizational structures to role and changes in
the definition of user-role and role-permission relationships.
There seems to be no point in deciding which model is

more effective or efficient in RE, because each of them has
its own advantages and pitfalls depending upon the vary-
ing contexts. In general, we agree with the remark from
the authors in [8] that a top-down model is likely to ignore
the existing permissions, while a (pure) bottom-up model, a
model without using any abstract concept to group permis-
sions in our context, is not likely to consider business func-
tions within an organization. In addition, since RE may be
the costliest component of RBAC implementation according
to a recent study by NIST [5], curtailing the expenses should
be a factor in deciding which model to use.

3. UNDERSTANDING SYSTEM-CENTRIC
INFORMATION IN RE

In this section we describe our understanding of system-
centric information in the context of RE and discuss how it
can be used in RE. First, we describe the general charac-
teristics of the information to be elicited for RE, along with
the identification of two authoritative boundaries involved
in RE. Afterwards, we introduce the two different informa-
tion flow types between the authoritative boundaries. Then,
we discuss the detailed description of how to leverage the
system-centric information as a method for both analysis
and communication. The design of the information model
will be discussed in Section 4.

3.1 Informational Characteristics
Each process to gather, analyze, model, and validate in-

formation in RE must be gone through in a complete and
accurate manner. This helps prevent possible defects that
normally propagate to RBAC design and implementation at
a later time. In this section, we identify and describe the
general characteristics of the information elicited for RE. We
believe that it is necessary to be cognizant of them before
discussing system-centric information in detail.

172

System Administration

FIF

Security Administration

Organizational
Security Policy
Interpretation

Organizational
Structural

Hierarchy Analysis

Capture and
Define Roles

System
Security Policy

Analysis

BIF
Domain and

System Structure
Analysis

Permissions
and System

artifacts

Business Process
Analysis

Figure 3: Information flow types in role engineering

The general characteristics of the information in RE can
be described as follows.

• Different Origins - The information required for RE,
for example, organizational security policies, business
process analysis, and system analysis, usually comes
from different sources.

• Distinct Concerns - The information elicited for RE
usually has its own wish-lists in the definition of valid
roles. For instance, organizational security policies
may concern constraints applied to the roles, while sys-
tem artifacts may concern permissions on correspond-
ing information systems associated with the roles.

• Need for Interpretation - The information elicited for
REmay need its interpretation for the interplay among
different authorities involved. For example, organiza-
tion security policies need to be interpreted in order
to be applied to specific information systems.

• Easily Excessive - The information elicited for RE may
exceed a manually manageable size easily, leading to
a need for automation or semi-automation methodolo-
gies in its management. For example, permissions de-
rived from business process analysis could easily go
beyond manual management in quantity.

With respect to the authorities involved in RE, we identify
two conceptual boundaries for our purpose, security admin-
istration and system administration2, which are relevant to
two pivotal goals in RE, role definition and permission as-
signment, respectively. Our basic assumption for this is that
there is no single authority, for example a role engineering
group, that is competent to manage and perform all the
information and activity required for RE. However, if there
is, those boundaries might also be considered to be divisions
with distinct expertise under the authority. Figure 3 depicts
those boundaries.

3.1.1 Security Administration
The main goal of this boundary pertains to the definition

of valid roles within an organizational RBAC environment.
Different authorities (or departments) depending upon the
organizational structures can be included in this security
administration boundary. Three analysis activities are iden-
tified in order to accomplish the goal: analysis (and inter-
pretation, if necessary) of organizational security policies,
2Note that we used the two boundaries in discussing RE
models in the previous section for the sake of consistency in
this paper.

analysis of organizational structural hierarchy, and analysis
of business process.

• Organizational security policy analysis - This activ-
ity pertains to the analysis of security policies in or-
der to obtain the organization access control policies
since access control policies are normally in accordance
with security policies. The interpretation of security
policies can be considered as a method to apply those
policies to specific information systems residing in the
system administration boundary.

• Organizational structural hierarchy analysis - This anal-
ysis is related to the investigation into the organiza-
tional structure hierarchy in order to obtain the infor-
mation which can contribute to possible formulation
of preliminary role hierarchies.

• Business process analysis - This analysis in the secu-
rity administration boundary is related to the investi-
gation into business processes in order to derive roles.
For instance, we have discussed a top-down RE model
where this analysis is leveraged in order to derive roles
[12]. Note that this analysis can also be applied in the
system administration boundary for a different pur-
pose.

3.1.2 System Administration
The main goal of this boundary concerns facilitating per-

mission identification and assignment. In much the same
way as the security administration boundary, this boundary
can include different authorities (or departments) partak-
ing in RE process depending upon organizational structures.
The goal is carried out by three supportive activities: analy-
sis of system security policies, analysis of domain and system
structures, and analysis of business process.

• System security policy analysis - This activity pertains
to the analysis of the system security policies effective
in the existing information systems within an organi-
zation. For instance, these security policies could be
DAC, MAC, RBAC, and so on.

• Domain and system structure analysis - This involves
the analysis of both domain structure which are com-
posed of information systems and system structure
which can be functionally decomposed into small sub-
systems. The domain can be analyzed according to
either organization units or to network addresses such
as DNS.

173

• Business process analysis - This analysis in the system
administration boundary pertains to the investigation
into business processes with the view of permission
derivation. For instance, we have discussed a bottom-
up RE model where this analysis is leveraged to derive
permissions [9].

3.2 Informational Flows
In RE, the information is circulated from one boundary to

another for sharing expertise and knowledge under certain
purposes such as role definition and permission assignment.
We identify two different informational flow types: forward
information flow and backward information flow. Figure 3
describes the two informational flows.

Forward Information Flow (FIF) In this flow type, the
information gathered, analyzed, and validated as a
RBAC requirement in the security administration flows
into the system administration for the purpose of per-
mission assignment, which can be viewed as a pro-
cess where the high-level security policies (RBAC) ex-
pressed as valid role definitions are manifested into cor-
responding information systems. Hence, in this flow
type, the information can be modeled and used to for-
malize and communicate the needs of the security ad-
ministration to the system administration boundary.

Backward Information Flow (BIF) In this flow type,
information gathered, analyzed, and validated as a
RBAC requirement in the system administration is
sent back to the security administration for role defini-
tion; the information such as system artifacts or per-
missions is used to help define the high-level security
policies (valid roles). The information can be modeled
and used to formalize and communicate the expertise
of the system administration to the security adminis-
tration boundary.

3.3 Usages of System-centric Information
As stated earlier, the analysis of business processes gener-

ally gives an impetus to deriving RBAC roles (or permis-
sions depending upon which RE model to use), and the
knowledge of systems is quite inevitable to provide the clear
understanding of both business processes and RBAC roles.
The system-centric information, which can be expressed at
a much higher level of abstraction than objects and opera-
tions, lends itself to two distinct uses as follows.

1. As a method of analysis - A system can be viewed
as a single representation of a variety of IT resources.
System-centric information provides a groundwork for
analyzing IT resources into functionally independent
components for the system administration boundary.
Its semantics can be more expressive with different
types of attributes such as services or states. The
analysis has a direct bearing on RBAC permissions
derivation or management.

2. As a method of communication - A system can be
viewed as a simpler representation decoupling the busi-
ness processes and RBAC permissions derived from
them. Hence, system-centric information, abstracting
out the details of object and operation pairs, can pro-
vide a groundwork for a good communication of the

technical knowledge, at the right level of abstraction,
in order to introduce the technical competence to the
security administration boundary. The technical com-
petence often leads to role definition in a more concrete
manner.

Note that our approach to using the system-centric infor-
mation does not mean that we completely ignore the notion
of objects and operations in the system. Instead, we con-
sider it to be essential in the process of system analysis, since
object and operation pairs from the system are grouped into
and represented as permissions. We reiterate that consider-
ing RE’s multi-disciplinary nature, the concept of system is
more appropriate for the method of analysis and communi-
cation in RE than that of object and operation.

4. MODELING SYSTEM-CENTRIC INFOR-
MATION IN RE

An information model which reflects system-level knowl-
edge should accompany well-organized definition and analy-
sis of the significant aspects in systems. This lays a founda-
tion for facilitating the later design and implementation of
RBAC. In this section we discuss how to model the system-
centric information. We design the information model in
such a way that it is particularly appropriate for use in BIF,
thereby enhancing consistency in communication of system
artifacts and diminishing possible conflicts or misinterpre-
tations between security and system administration bound-
aries. We use the UML modeling language to convey the
syntax and semantics of information systems. We believe
that this will benefit in two aspects. Firstly, it can be easy-
to-use and reusable. The reusability can be achieved by
inheritance. Secondly, we can leverage the existing UML-
enabled software tools for modeling system-related knowl-
edge.

4.1 Metamodel
Simplified metamodels are discussed briefly in [12, 16] in

order to describe how to implement RBAC in the corre-
sponding organizational environments. Hence, though slightly
different in naming, those metamodels generally represent
the core concepts in RBAC, and metamodel types such as
Role and Access Right as well as their relationship are de-
fined according to the core concepts.
In Figure 4, a metamodel is shown as an example. Note

that we have taken only a part from the metamodel in [12]
as the example. The example illustrates four metamodel

Role Subrole

Job Position Job Function

Figure 4: An example of a meta-model for role en-
gineering in the context of security administration -
Sourced from [12]

174

System DomainIs grouped by

Permission

Is derived by

Figure 5: A meta-model for role engineering in the
context of system administration

types which formalize the conceptual semantics of roles and
their hierarchy. In the example, the relation between Role

and Subrole pertains to role hierarchy, while the relation
among Role and Job Position or Job Function shows the
semantics of roles, which we discussed earlier. In our con-
text, this exemplary metamodel is considered to be more
suitable for use in the security administration boundary.
Figure 5 shows a metamodel reflecting the concepts of sys-

tem, domain, and permission. In the metamodel, we intro-
duce three new metamodel types, System, Domain, Permission
as well as relations between these types. In short, these
types are used to formalize the conceptual representation
of information systems and permission derivation from the
systems in the context of RE. The relation between System

and Permission pertains to the permission derivation. The
relation between System and Domain represents a contain-
ment of systems into a domain for the purpose of certain
goals such as managing networks or delimiting security. In
the following sections, we discuss these metamodel types in
more detail by instantiating them into a model.

4.2 Domain Modeling
As shown in Figure 6, we introduce <<domain>> stereo-

type in order to visualize, specify, construct, and docu-
ment the concept of domain where security and manage-
ment policies can be applied to information systems in a
consistent manner. The semantics of <<domain>> stereo-
type can be both physical and logical due to the flexibil-
ity enabled by inheritance relation. Thus, systems can be
grouped by both the concept of organizational units or phys-
ical network addresses such as DNS. Organizational units
can be modeled by means of the UML standard profile for
business modeling [10]. This profile defines a stereotype,
named <<Organization Unit>>, which represents organi-
zation units of an enterprise. However, we prefer to us-
ing <<domain>> stereotype, since it has more appropriate in
terms of semantics and terminology. The relation between
<<domain>> and <<system>> is many-to-many association.
That is, a domain can consist of zero or more systems. The
relation between <<domain>> and other <<domain>> is one-
to-many aggregation. For example, a higher domain may
have multiple subordinate domains. This relationship can
be viewed as a hierarchical, tree-like structure, not unlike
a computer file system structure. Two classes are prede-
fined according to domain hierarchical structure: Higher

and Subordinate classes.

4.3 System Modeling
To visualize, specify, construct, and document the concept

of system, we introduce <<system>> stereotype. The stereo-

type of <<system>> represents a functional building block of
an information system. Figure 6 illustrates the stereotype.
The relation between <<system>> and <<rb.permission>>

is many-to-many association. That is, a system can have
multiple permissions derived from it, and multiple systems
can have one common permission derived from them. The
<<system>> has to belong to one or more <<domain>>. Note
that we use the hierarchical domain structure in order for
<<domain>> to share a common <<system>>. The <<system>>
itself may have many-to-many aggregation relation. For
example, an information system can have multiple subsys-
tems, and a subsystem can be aggregated into multiple sys-
tems. Four classes are predefined according to functional-
ity: Collective, Process, Entity and Utility classes. As
for the predefined classes, we borrow the concept of classi-
fying information systems according to their functionality
from Herzum and Sims [7]. They propose that information
systems can be classified into the following three different
types.

Process System This represents business activities in the
domain. Examples are Invoice manager and Order
Manager.

Entity System This represents the business concepts on
which business processes operate. These include both
data and repository objects. Examples are invoice,
order and products.

Utility System This is used by both process system and
entity system.

4.4 Permission Modeling
We introduce <<rb.permission>> stereotype in order to

visualize, specify, construct, and document the concept of
permission in RBAC. As stated earlier, the relation between
<<rb.permission>> and <<system>> is many-to-many asso-
ciation. Thus its instance must be associated with one or
more instance of <<system>>. <<rb.permission>> itself has
many-to-many association relationship. This accounts for
the abstract permission and the primitive permission. For
instance, an abstract permission can have multiple primi-
tive (basic) permission, and a primitive (basic) permission
can be aggregated into multiple abstract permissions. Two
classes are predefined according to its granularity: Abstract
and Primitive classes, as shown in Figure 6.

4.5 An Example
We describe an example where our information model can

be used for the purpose of demonstrating the feasibility
of our approach. We employ the information model in a
business process driven framework proposed in [11]. In the
framework, simply put, the analysis of business processes
defines service components of an application system, called
the hospital-based laboratory information system (HLIS).
The service components are grouped by information do-
mains. For instance, the patient information domain may
comprise patient insurance and patient demographic infor-
mation. Furthermore, specific objects and operations are
derived from the service components. Though the sequential
steps for the framework are described briefly, there is little
description in conjunction with RE process. Using the infor-
mation model, we illustrate how to capture and describe the
system-centric information for RE under the organizational
setting in [11].

175

Stereotype: rb.permission

<<rb.permission>>

Abstract

<<rb.permission>>

Primitive

* 1..*

 Description

A <<rb.permission>> represents a semantic unit pertaining to a

particular mode of access to one or more <<system>>. It provides

a functional building block of a role.

 Base class

Class

 TagDefinition

object: String

operation: String

property[*]: String

description: String

 Constraint

1. A <<rb.permission>> must be associated with one or more

instance of <<system>>.

2. A <<rb.permission>> itself has many-to-many association.

 Predefined classes

Abstract Permission, Primitive Permission

<<rb.permission>>

name

Stereotype: system

 Description

A <<system>> represents a semantic unit pertaining to a

functional building block of an information system.

 Base class

Class

 TagDefinition
authority: <<domain>>

property[*]: String

description : String
 Constraint

1. A <<system>> must be associated with one or more instance

of <<permission>>.

2. A <<system>> must be associated with one or more instance

of <<domain>>

2. A <<system>> itself has many-to-many association.

 Predefined classes

Collective System, Process System, Entity System, Utility
System.

<<system>>

name

<<domain>>

name

Stereotype: domain

 Description
A <<domain>> represents a semantic unit used to accomplish

network management goals such as delimiting security or

structuring information systems based upon business activities. It

comprises multiple <<system>>.

 Base class

Class

 TagDefinition
property[*]: String

description : String

 Constraint

1. A <<domain>> must be associated with zero or more instance

of <<system>>.

2. A <<domain>> itself has one-to-many association.

 Predefined classes
Higher Domain, Subordinate Domain

<<system>>

Collective

<<system>>

Entity

<<system>>

Process

<<system>>

Utility

*

* * *

Predefined classes

Predefined classes

Predefined classes

1 *

<<domain>>

Higher
<<domain>>

Subordinate

Figure 6: Domain, system, and permission stereotype

176

Security Administration System Administration

Role Composition
Permission
Derivation

<<system>>
Patient

Information
Management

<<rb.permission>>
Get_Demo_

Info

<<system>>
Order

Information
Management

<<system>>
Procedure

Codes
Management

….

<<rb.permission>>
Get_Location_

Info

<<rb.permission>>
Get_Insurance_Inf

o

<<rb.permission>>
Set_Test_
Request

<<rb.permission>>
Set_Work_

List

<<rb.permission>>
Get_Lab_

Codes

<<system>>
System Type A

<<system>>
System Type B

<<domain>>
Cardiology

<<rb.permission>>
Permission Type

A-1

<<rb.permission>>
Permission Type

A-2

<<rb.permission>>
Permission Type

B-1

Backward Flow

Business
Processes Analysis

….

<<domain>>
Laboratory

<<domain>>
CMC Hospital

Figure 7: Domain, system, and permission diagram

Figure 7 shows the domain, system, and permission di-
agram with a graphical and concise view of system-centric
information of the exemplary organizational setting. Since
the bottom-up model is used, the analysis of business pro-
cesses takes place within the system administration bound-
ary in order to derive system-centric information in general
and permissions in specific. Permissions as object and op-
eration pairs within systems are drawn on the basis of the
analysis of business processes. For example, assuming that
a process of lab order entry is identified and analyzed un-
der the laboratory domain, it concerns three information
systems to accomplish the business process: patient infor-
mation management, order information management, and
procedures code management. All of the three information
systems are collective systems comprising process systems
(application logic) and entity systems (database). After-
wards, six permissions are derived from the identified sys-
tems: Get Demo Info,Get Insurance Info, Get Location Info,
Set Test Request, Set Work List, and Get Lab Codes. All of
these permissions are abstract permissions, which consist of
one or more primitive permissions, for instance, pairs of ob-
ject (patient table) and operation (select statement). This
documented information flows back to the security admin-
istration boundary to help define roles in a more concrete
manner on the basis of the knowledge of domain, system,
and permission.

5. DISCUSSION AND CONCLUSION
Role engineering may be costly and time-consuming in

that large amounts of information need to be exchanged,
collected and so much activity is required of different au-
thorities involved. In this paper, we discuss an approach
to modeling system-centric information, which can be ex-

T
y

p
e

d
O

b
je

c
t

Attributive
Permissions

O
p

e
ra

ti
o

n

Automated
Mapping

Recommendation

Expression

Systems

Resource
Provisioning

Automated
Binding (or

Propagation)

Object

Attribute

Operation

Attribute

Figure 8: Permission derivation using the concept
of attributive permission

pressed both at a much higher level of abstraction and with
fairly less amount of information than that of objects and
operations, with a view to facilitating RE. We first describe
the general informational characteristics in RE. Afterwards,
we discuss two types of information flow among authorities
in RE process, forward information flow (FIF) and backward
information flow (BIF). Then, we introduce an information
model which is greatly useful in BIF. System-centric infor-
mation is incorporated in the information model and UML
extension mechanisms are exploited for modeling those in-
formation. The information model works both as a method
to analyze system-centric information and as an effective ve-
hicle for communication system-related knowledge. An ex-
emplary use of the information model is described to demon-
strate its feasibility.
Our future work will be conducted in both horizontal and

vertical directions for the purpose of extending the infor-

177

mation model. As a horizontal, we will investigate an in-
formation model which is suitable for use in the security
administration boundary. As a vertical, we will explore how
to model the business process in UML so that it can be ex-
pressed in conjunction with the proposed information model
as a whole in RE. In addition, further specifications of the
proposed information model which can account for a variety
of dynamic and static aspects of system-centric information
will be also explored. From the perspective of the implemen-
tation in RE, an approach to deriving or managing permis-
sions in automation is certainly an interesting topic. Figure
8 shows the concept of attributive permission, which may
be used for permission derivation in such a way. The basic
concept of the attributive permission concerns two types of
attributes which a permission can have for the purpose of
automation in the permission derivation: object attribute
and operation attribute. Those attribute are expressed by
a role engineer in order to obtain recommended permissions
in a automatic way. Our future work will investigate how to
concretize the concept of attributive permission.

6. ACKNOWLEDGMENT
This work was partially supported at the Laboratory of

Information of Integration, Security and Privacy at the Uni-
versity of North Carolina at Charlotte by the grants from
National Science Foundation (NSF-CCR-0124873) and the
Electronics and Telecommunications Research Institute.

7. REFERENCES
[1] G.-J. Ahn and R. Sandhu. Role-based authorization

constraints specification. ACM Transactions on
Information and System Security, 3(4), November
2000.

[2] E. Coyne. Role engineering. In Proceedings of 1st
ACM Workshop on Role-Based Access Control,
Gaithersburg, MD, November 1995.

[3] P. Epstein and R. Sandhu. Towards a UML based
approach to role engineering. In Proceedings of 4th
ACM Workshop on Role-Based Access Control, pages
33–42, Fairfax, VA, October 28-29 1999.

[4] P. Epstein and R. Sandhu. Engineering of
role/permission assignment. In Proceedings of 17th
Annual Computer Security Application Conference,
New Orleans, LA, December 2001.

[5] M. P. Gallaher, A. C. O’Connor, and B. Kropp. The
economic impact of role-based access control.
Planning report 02-1, National Institute of Standards
and Technology, March 2002.

[6] C. Goh and A. Baldwin. Towards a more complete
model for role. In Proceedings of 3rd ACM Workshop
on Role-Based Access Control, Fairfax, VA, October
22-23 1998.

[7] P. Herzum and O. Sims. The business component
approach. In OOPSLA’98 Business Object Workshop
IV, Vancouver, Canada, July 13 1998.

[8] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett.
Observations on the role life-cycle in the context of
enterprise security management. In Proceedings of 7th
ACM Symposium on Access Control Models and
Technologies, Monterey, CA, June 2002.

[9] G. Neumann and M. Strembeck. A scenario-driven
role engineering process for functional RBAC roles. In

Proceedings of 7th ACM Symposium on Access Control
Models and Technologies, Monterey, CA, June 2002.

[10] OMG. Unified modeling language UML specification
v1.4. Technical report, September 2001.

[11] C. Ramaswamy. Business process driven framework for
defining an access control service based on roles and
rules. In 23rd National Information Systems Security
Conference, Baltimore, MD, October 16-19 2000.

[12] H. Roeckle, G. Schimpf, and R. Weidinger.
Process-oriented approach for role-finding to
implement role-based security administration in a
large industrial organization. In Proceedings of 5th
ACM Workshop on Role-Based Access Control, Berlin,
Germany, July 26-27 2000.

[13] R. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of
roles. ACM Transactions on Information and System
Security, 2(1), February 1999.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, February 1996.

[15] R. S. Sandhu, D. Ferraiolo, and D. Kuhn. The NIST
model for role-based access control: Towards a unified
standard. In Proceedings of 5th ACM Workshop on
Role-Based Access Control, Berlin, Germany, July
26-27 2000.

[16] A. Schaad, J. Moffett, and J. Jacob. The role-based
access control system of a european bank: A case
study and discussion. In Proceedings of 6th ACM
Symposium on Access Control Models and
Technologies, Chantilly, VA, May 3-4 2001.

[17] D. Shin, G.-J. Ahn, S. Cho, and S. Jin. A role
administration system in role-based authorization
infrastructures - design and implementation. In
Proceedings of 18th ACM Symposium on Applied
Computing, Melbourne, FL, March 9-12 2003.

[18] Z. Tari and S.-W. Chan. A role-based access control
for intranet security. IEEE Internet Computing,
September-October 1997.

[19] D. Thomsen, D. O’Brien, and J. Bogle. Role based
access control framework for network enterprises. In
Proceedings of 14th Annual Computer Security
Application Conference, pages 50–58, Scotsdale, AZ,
December 7-11 1998.

[20] L. Zhang, G.-J. Ahn, and B. Chu. A rule-based
framework for role-based delegation. In Proceedings of
6th ACM Symposium on Access Control Models and
Technologies, pages 153–162, Chantilly, VA, May 3-4
2001.

178

