PWN The Learning Curve: Education-First CTF Challenges

Connor Nelson
Arizona State University
connor.d.nelson@asu.edu

ABSTRACT

We address the pressing need for effective and scalable cybersecu-
rity education methodologies for undergraduate students. While
Capture The Flag (CTF) challenges have been instrumental for some
learners, for many novices CTF challenges are simply too difficult
and too intimidating to be pedagogically effective. By dissecting
and individually presenting these concepts through modularized
challenges, we introduce a progressive learning curve that allows
students to master complex vulnerabilities, even culminating in
crafting advanced end-to-end exploits through both userspace and
the kernel. Recognizing the learning barriers imposed by debugging
and introspection tools, our method uniquely offers self-guiding
challenge variants, effectively decoupling problem-solving from
tool mastery. Drawing from five years of curating around 400 sys-
tems security challenges, this paper details our insights and experi-
ences, emphasizing the pivotal role of an education-first approach
over traditional CTFs. Our methodology’s success is underscored by
our survey results, with an overwhelming majority of participants
acknowledging its pivotal role in deepening their cybersecurity
understanding. Furthermore, we have successfully leveraged this
material as the foundational content for a follow-on vulnerability
research course, where freshly-trained students successfully identi-
fied 0-day vulnerabilities in real-world software. As a commitment
to global education, we make all challenges and accompanying
lecture materials discussed herein freely, and easily, accessible to
the world.

CCS CONCEPTS

« Applied computing — Education; Interactive learning envi-
ronments; » Security and privacy — Systems security; Soft-
ware and application security.

KEYWORDS

Capture The Flag, Cybersecurity Education, Binary Exploitation,
Challenge Design, Dynamic Challenge Generation

ACM Reference Format:

Connor Nelson and Yan Shoshitaishvili. 2024. PWN The Learning Curve:
Education-First CTF Challenges. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2024), March 20—
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3626252.3630912

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03...$15.00
https://doi.org/10.1145/3626252.3630912

Yan Shoshitaishvili
Arizona State University
yans@asu.edu

1 INTRODUCTION

Modern cybersecurity requires an understanding and integration
of several concepts concurrently. For example, a software exploit
might involve a race condition which enables a heap use-after-free.
This primitive might cause memory corruption that, in turn, can be
used to achieve arbitrary code execution through return oriented
programming. If the target is a sandboxed process, OS kernel vul-
nerabilities (for example, a kernel race condition) might then be
abused to gain code execution within the context of the kernel. Is it
possible to teach all of these concepts to the average undergraduate
computer science student? In order to understand this exploit, stu-
dents must master reverse engineering, race conditions, dynamic
allocator misuse, memory errors, return oriented programming,
sandboxing, and kernel security.

Despite this complexity, conveying such understanding is criti-
cal. Apple will pay up to $2 million for a zero-click remote chain
that provides full kernel execution with persistence, includes a
kernel PAC bypass, and circumvents the protections of Lockdown
Mode [1]. Such exploits fetch this price because they are constantly
being sought out, found, and used by bad actors to circumvent
the security of people and organizations [30]. Effective education
methodologies to instil in students an ability to identify and fix such
flaws is critical to the security of the modern software ecosystem.

In this paper, we implement and discuss a novel method-
ology for teaching advanced cybersecurity concepts to mas-
tery at scale. We explore the strategies necessary for students to
not only conceptually understand vulnerabilities, but to apply this
knowledge by crafting advanced end-to-end exploits from scratch.
Furthermore, we address the challenge of achieving this at scale,
catering to hundreds or even thousands of students. By the end
of a single semester undergraduate course at a large public R1 re-
search university, students—some of whom have previously never
seen x86-64 assembly—craft end-to-end exploits which, for example,
leverage kernel vulnerabilities to achieve arbitrary code execution
in a sandboxed process with modern mitigations in place. Two
crucial observations guide the design of our methodology.

First, we observe that although security concepts must be in-
tegrated concurrently, they need not be taught concurrently
or even atomically. We explore individual cybersecurity concepts
each in their own module, building them up gradually through a
series of challenges. We begin with a basic and simplified prob-
lem and gradually introduce more advanced concepts and realistic
constraints, progressively weaving through constituent concepts
and gently introducing ideas that will be crucial to succeeding in
later challenges. By minimizing conceptual jumps between chal-
lenges, we aim to flatten the learning curve and make the material
more approachable. After the students master several concepts
independently, we combine them.

Second, we observe that students need not learn to apply
a concept, while simultaneously learning the often-times


https://doi.org/10.1145/3626252.3630912
https://doi.org/10.1145/3626252.3630912
https://doi.org/10.1145/3626252.3630912

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

complex introspection tools necessary to debug and under-
stand why their solution is failing. Students often struggle to
appropriately employ tools like gdb and strace for aiding their
understanding of the problem. This presents a massive learning bar-
rier, as they have no way to know if their solution is failing because
of a bug in their solution or a bug in their understanding of the con-
cept. To solve this problem, we have developed self-guiding variants
of all challenges. This allows students to understand the concept
before moving on to the regular variant, which requires them to
use their own analysis tools such as gdb to solve the challenge. This
approach helps overcome difficulties of performing introspection
and debugging by decoupling them from the learning of the concept
itself, and reduces barriers to progress for many students.

Our challenges draw inspiration from Capture The Flag (CTF),
but we have observed that while CTFs are valuable, they are not a
universal solution in cybersecurity learning: CTF challenges are de-
signed to be challenging, not necessarily educational. Adopting an
education-first approach, we created over 400 challenges over five
years, tailored for our undergraduate Computer Systems Security
course. These challenges have been integrated into a globally acces-
sible educational website, teaching binary exploitation concepts to
over 10,000 students. In this paper, we detail our experience design-
ing these challenges and discuss the lessons we have learned in the
process: highlighting the design of the challenges, what worked,
what didn’t, and why. To evaluate our methodology’s effectiveness,
a survey was administered to students who participated in our
course. The results showed that a majority found the challenges
instrumental in grasping cybersecurity concepts. Following this, a
subsequent course on vulnerability research indicated that students
could leverage this foundational knowledge to identify and report
vulnerabilities in real-world software. As a commitment to global
education, we make all challenges and accompanying lecture ma-
terials discussed herein freely, and easily accessible, to the world,
available at https://pwn.college/.

2 RELATED WORK

Researchers have explored the use of hacking as a pedagogical tool
to teach computer science and cybersecurity concepts. In [5], Bratus
defines hacking by “the ability to question the trust assumptions in
the design and implementation of computer systems rather than
any negative use of such skills"" Through the hacker lens, students
are able to perceive a cross-layer view of computer systems. This ap-
proach encourages students to think critically and creatively about
computer systems. By analyzing the failure modes of systems from
a hacker’s perspective, students can gain a deeper understanding
of how the various layers of a system interact and can be exploited.

Applied cybersecurity labs are an effective pedagogical approach
for cybersecurity concepts such as SDN Security [23], Reverse En-
gineering [2], SQL Injection [4], and Android mobile security [16].
Moreover, researchers have proposed using hacking as toy prob-
lems to teach various underlying computer science concepts [22].
For example, parsing can be taught through the example of intru-
sion detection systems, file systems can be taught through forensics
and recovering deleted files, and assembly and memory allocation
can be taught through shellcode and buffer overflows.

Connor Nelson and Yan Shoshitaishvili

Capture The Flag (CTF) events are popular in the cybersecu-
rity community as opportunities for participants to apply their
knowledge to solve complex challenges in a competitive format.
The educational merit of hacking events has been acknowledged by
the academic community, as evidenced by academic competitions
like iCTF [25], picoCTF [8], and CSAW CTF [14] that specifically
cater to students and enable them to showcase their abilities and
engage in peer competition. CTF events have become an effective
way to cultivate the next generation of cybersecurity experts [3, 11]
and advance the state of the art in cybersecurity. Increasingly, CTF
is being used within academic courses, with many educators incor-
porating them into their courses as exercises [19] or even making
them the focal point of a flipped classroom model [7, 21]. Educators
report increased student engagement, and improved self-confidence
and motivation among the students [7, 10, 17].

CTF can be an incredibly valuable educational tool, but there
are many challenges and pitfalls, especially for novices. While a
flag-based system provides instant feedback on the correctness of
an answer, it lacks partial flags or credit, making it difficult to gauge
progress. This limitation is especially pronounced in challenges
intentionally designed to frustrate competitors, which are unsuit-
able for educational purposes. Instead, a well-designed challenge
should guide students through the solution process, as Chung ar-
gues [9]. However, a methodology for designing challenges that
strike the right balance between being engaging and informative is
challenging and has received limited attention in the literature. In
this paper, we focus on addressing these limitations.

Vykopal et al. [26] identified three main reasons why beginners
may become discouraged: overly difficult challenges, ambiguous
challenges, and limited feedback on progress. In [29], the authors
aimed to target a novice population by designing challenges that
did not require significant prior knowledge (for example, avoiding
compiled binaries, which were considered too difficult). However,
novices still struggle to self-learn and require guidance and support.
For instance, in [20], researchers provided novices with mentors
and taught a lecture on the networking tool tcpdump to prepare
them for upcoming challenges. The authors of picoCTF found that
competitors tend to prefer challenges that require minimal famil-
iarity with the command line or additional tools, and consequently
stressed the importance of teaching tooling to students [8]. Simi-
larly, [28] found that while there is no way to fake the knowledge
needed in a CTF challenge, the game must be at an appropriate level
for the audience. If students have not studied networking and lack
experience with the command line, they may experience difficulty
and frustration. As a solution, the authors suggest creating tutorials
and “level zero" versions of challenges to provide a foundation for
students to build upon. This approach allows novices to gradually
develop their skills and knowledge, gaining confidence and moti-
vation as they progress through the challenges. In this paper, we
expand upon this idea of a “level zero” version of challenges, by
providing an entire progression of challenges that build upon each
other to ramp up the difficulty and complexity, and continue to
build up confidence and knowledge along the way.

In order to gain better insight into how students approach and
progress in solving challenges, some tools have been developed
which introspects their process [18, 27]. These tools help educators
identify challenging tasks and improve educational materials. In


https://pwn.college/

PWN The Learning Curve: Education-First CTF Challenges

this paper, we focus specifically on the process by which we en-
hance those educational materials, and in particular, enhance the
challenges. We take the insight of where a student is struggling
and use it to guide the design of predecessor challenges that will
help them succeed.

Designing effective challenges can be both a difficult and time-
consuming task. Alpaca [12] is a system that uses Al and a database
of vulnerabilities to generate challenge scenarios automatically
according to user-specified constraints. The generated scenarios in-
clude a series of vulnerabilities and exploits that must be overcome
to complete the challenge and create virtual machines with these
vulnerabilities built-in. Users can specify complexity levels and
specific vulnerabilities that must be used. Conversely, SecGen [24]
generates challenges by randomly selecting composable modules.
In [13], the authors automatically generate variants of reverse en-
gineering challenges in order to prevent cheating. picoCTF also
focuses on automatic challenge generation [6], but uses a much
more trivial find-and-replace approach against challenge values.
In this paper, we focus on templated challenge generation which
enables very slight modifications within low level program details.
Rather than using different high level vulnerabilities present within
a scenario, or focusing only on the task of replacing specific values
in a challenge, as done in prior work, our templating methodol-
ogy is more generic and allows us to easily create a progression of
challenges that build upon each other by specifying only the dif-
ferences between challenges. This provides a significant advantage
over the prior work, as it allows our challenges to be much more
maintainable, and is what enables challenge progression in the first
place.

3 INDIVIDUALIZED CONCEPTS

We split the complex area of binary security into a number of single-
concept modules, which we detail in this section. Because Linux-
based infrastructure is easier to build and maintain, our challenges
explore these concepts in a Linux environment, although analogues
can conceptually be created for other platforms as well. Successful
solution of a challenge allows students to retrieve challenge-specific
secret files, called flags, that they can redeem for credit in our
institution’s Computer Systems Security course.

Shellcode Injection. Shellcoding is the art of injecting code into
a program, usually during exploitation, to induce attacker-desired
actions. It is traditionally taught by presenting students with a stack
buffer overflow and an executable stack, and expecting students
to figure out memory corruption, an exploit payload, as well as
learning how to debug their exploit all at once. Instead, this module
explicitly focuses on the payload by ingesting shellcode and imme-
diately executing it, allowing students to fully focus on learning
about shellcode itself. Throughout the module, we gradually intro-
duce additional constraints on this shellcode to force students to
reason creatively about accomplishing attacker goals under difficult
situations.

Before running shellcode, teaching variants disassemble the in-
gested payload, after any mutations and constraints are applied, and
display it. Additionally, we have recently implemented an automatic
breakpoint at the beginning of the shellcode when students start the
challenge from a debugger, to ease troubleshooting. While students

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Send your payload (up to 8 bytes)!
AAAAAAAA

You sent 8 bytes!
Let's see what happened with the stack:

| Stack location | Data (bytes) | Data (LE int) |

0x00007ffc82475420 (rsp+0x0000) | 00 00 00 00 00 00 00 00
0x00007ffc82475428 (rsp+0x0008) 08 66 47 82 fc 7f 00 00
0x00007ffc82475430 (rsp+0x0010) f8 65 47 82 fc 7f 00 00
0x00007ffc82475438 (rsp+0x0018) a0 86 86 93 01 00 00 00
0x00007ffc82475440 (rsp+0x0020) | 24 87 86 93 29 7f 00 00
0x00007ffc82475448 (rsp+0x0028) | 08 00 00 00 00 00 00 00
0x00007ffc82475450 (rsp+ox0030) 41 41 41 41 41 41 a1 4
0x00007ffc82475458 (rsp+0x@038) | 00 00 00 00 00 00 00 00

0x0000000000000000
0x00007fc82476608
0x00007ffc824765f8
0x00000001938686a0
0x000072993868724
0x0000000000000008
ox4141414141414147
0x0000000000000000

00 00 00 00 00 00 00 00
do 11 40 00 08 00 00 00
50 54 47 82 fc 7f 00 00
00 65 47 82 fc 7f 00 00
c7 1f 40 00 00 00 00 00

0x0000000000000000
0x00000008004011d0
0x00007fc82475450
0x00007fc82476500
0x0000000000401fc7

0x00007fc824754b8 (rsp+0x0098)
0x00007ffc824754c0 (rsp+0x00a0)
0x00007fCc824754c8 (rsp+0x0as)
0x00007FCc824754d0 (rsp+0x@0be)
0x00007fCc824754d8 (rsp+0x@0bs)

The program's memory status:

- the input buffer starts at @x7ffc82475450

- the saved frame pointer (of main) is at @x7ffc824754de

- the saved return address (previously to main) is at @x7ffc824754d8

- the saved return address is now pointing to @x401fc7.

- the address of win() is 0x401833.

If you have managed to overwrite the return address with the correct value,
challenge() will jump straight to win() when it returns.

Let's try it now!

Figure 1: Memory Errors teaching variant.

can, of course, do both of these things manually, simplifying the
debugging process helps avoid frustration.

Reverse Engineering. Reverse Engineering is the process of an-
alyzing a system in order to derive knowledge of its design and
implementation. While this often means simply learning to read
assembly, in order to truly master reverse engineering, it is im-
portant to be able to infer and understand the core design of a
target system. This understanding, in turn, is typically used to rea-
son about vulnerabilities in binary code. In this module, however,
we free students from the need to reason about vulnerabilities by
creating challenges requiring students to understand and invert
algorithms that are implemented with (through the course of the
module) increasing amount of obfuscation.

Teaching variants display the results of data mutations as they
occur, allowing students to double-check their hypotheses. In later
levels, teaching variants display the VM state and executed instruc-
tions to enhance initial student understanding.

Memory Errors. Memory errors occur when a user is able to cor-
rupt memory they’re not supposed to, the result of which can have
brutal effects and may enable significant control over a program. To
understand this concept requires an understanding of a program’s
runtime as it uses control flow metadata, common issues surround-
ing buffer overflows and buffer overreads, as well as the impacts of
static and dynamic memory layouts. Over the course of this module,
we guide students from a simple overflow into a boolean variable
through a number of complex concepts that require students to rea-
son about security mitigations, exploitation in partial-knowledge
settings, and other concepts. To reduce the number of concepts
they have to consider, we provide a “win” function for students to
eventually redirect execution to, rather than forcing them to reason
about shellcode.

Teaching challenges in this module display critical memory data,
especially control data stored on the stack such as return addresses,
canaries, and saved registers, as shown in Figure 1. While this
information is accessible through a debugger, having it readily
available allows students to focus on understanding the concept
first, then understanding the debugger later.

Return Oriented Programming. Return Oriented Programming
(ROP) is a code reuse attack in which attackers redirect control



SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

$ echo -ne "
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\ L' @\X00\Xx00\x00\x00\x00<\x00\x00\x00\x00\x00\x00\x00
'@\x00\x00\x00\x00\x00*\x00\x00\x00\x00\x00\x00\x008 ' @\x00\x00\x00\x00\x00" | /challenge
Received 160 bytes! This is potentially 5 gadgets.

Let's take a look at your chain!

Note that we have no way to verify that the gadgets are executable from within this challenge.
You will have to do that by yourself.

+--- Printing 6 gadgets of ROP chain at 0x7ffeed754998.

| 0x0000000000402709: pop rax ; ret ;

| 0x000000000000003c: (UNMAPPED MEMORY)

| 0x0000000000402720: pop rdi ; ret ;

| 0x000000000000002a: (UNMAPPED MEMORY)

| 0x0000000000402738: syscall ; ret ;

| 0x0000000000000000: (UNMAPPED MEMORY)

Leaving!

$ echo $?
42

Figure 2: Return Oriented Programming teaching variant.

This challenge can manage up to 1 unique allocations.
[*] Function (malloc/free/puts/read_flag/quit): malloc
Size: 407

[*] allocations[0] = malloc(407)

[*] allocations[@] = 0x5630d7b702c@

[*] Function (malloc/free/puts/read_flag/quit): free

[*] free(allocations[0])

| TCACHE BIN #24 | SIZE: 393 - 408 | COUNT: 1 | HEAD: 0x5630d7b702c@ | KEY: 0x5630d7b70010 |

| ADDRESS | PREV_SIZE (-@x1@) | SIZE (-0x@8) | next (+0x00) | key (+0x08) |
| @x5630d7b702c0 | @ | exial (P) | (nil) | 0x5630d7b70010 |

[*] Function (malloc/free/puts/read_flag/quit): read_flag
[*] flag_buffer = malloc(407)

[*] flag_buffer = 0x5630d7b702c0

[*] Read the Flag!

[*] Function (malloc/free/puts/read_flag/quit): puts
[*] puts(allocations[@])
Data: FLAG{...}

Figure 3: Dynamic Allocator Misuse teaching variant.

flow not to injected shellcode (for example, because Data Execution
Prevention mitigations leave no place for executable shellcode), but
to a series of disjoint sets of instructions (termed gadgets), with
control flow transfers facilitated by ret instructions coupled with
attacker control of the program stack. Throughout this module,
we guide students from first calling a single function, to chaining
multiple functions, and gradually through the chaining of ROP
gadgets in complex scenarios.

Analogous to Shellcode Injection, teaching challenges disassem-
ble the ROP chain that would be executed before executing it. This
is a feature not seen even in popular debuggers, and helps students
understand what is happening when their ROP chain executes.

Dynamic Allocator Misuse. In recent years, attackers have by-
passed exploitation mitigations by abusing dynamic memory alloca-
tors to achieve full control of program memory. This has historically
been considered a somewhat secret art, and mostly explored in high-
skill CTFs. To keep things tractable for students, this module mostly
focuses on the details of the implementation of the tcache allo-
cation caching layer of Linux’s glibc, attacks against which are
simpler than the general case of allocator misuse.

The teaching variants display the current state of tcache, in-
cluding cached allocations and any relevant metadata, as shown in
Figure 3. While, again, there are tools that can perform this func-
tion, including this in the challenge enables students to tackle the
problem head on without any impediments.

Sandboxing. Sandboxing is the practice of isolating code to limit
attacker capabilities during exploitation. While many courses dis-
cuss this concept within systems security, we have found few that
actually introduce labs or challenges which practically explore it.
To maximize ease of learning, this module assumes arbitrary code
execution has already been achieved (by directly running the shell-
code that students have learned to write in the previous module)

Connor Nelson and Yan Shoshitaishvili

in order to focus entirely on the sandboxing mechanism itself. The
specific sandboxing mechanisms used evolve over the course of the
module, exposing students to different sandboxing scenarios.

The teaching variants describe the jailing process as it happens,
describing the resources that are available at what point of challenge
execution.

Race Conditions. Concurrency errors are some of the trickiest
and least-understood software bugs. Because they occur in many
different contexts and are dependent on the specifics of the soft-
ware in question, the teaching of concurrency errors seems to be
less common than the teaching of other software errors. Our chal-
lenges progress from filesystem-based time-of-check to time-of-use
(TOCTOU) attacks into complex mutex issues in memory, allow-
ing students to gradaully familiarize themselves with underlying
concepts.

As challenges get more intricate, introspecting the program and
reason about what impact they may have at what point in execu-
tion becomes difficult. Teaching challenges in this module stall the
program in critical areas, allowing students to experiment with
carrying out their attack without time pressure (and resulting im-
plementation difficulties in scripting fast attacks) before resuming
the challenge execution at their leisure.

Kernel Security. The security of operating system kernels is con-
sidered to be a very advanced topic. Undergraduate OS courses
rarely cover interactions with the kernel in any significant way,
and undergraduate security courses rarely talk about the kernel at
all (other than its effects of memory allocation and permissions).
Our challenge design allows us to not only discuss the kernel, but
instill in our students a deep-seated understanding of its security
implications. This module has a fundamental effect on students in
the sense that it expands their experience from “program” hacking
to “system” hacking: the first time a student single-steps into (as op-
posed to over) a syscall instruction to find themselves debugging
the kernel syscall handler, their perspective fundamentally expands
beyond a typical undergraduate security course.

Teaching variants log outputs of kernel APIs used by the vulner-
able code. This allows students to, for example, understand what
data the kernel accesses from userspace applications.

4 INTEGRATION CHALLENGE DESIGN

To truly achieve proficiency, students must put the individual con-
cepts learned in the modules above together into an end-to-end
understanding of cybersecurity. We created two such integration
modules: one focusing on the exploitation of individual programs
(integrating Shellcode Injection through Memory Errors), and one
focusing on the exploitation of multi-component systems (integrat-
ing all of the material). These challenges, despite their complexity,
are combinations of prior modules. The teaching variant actions in
those prior modules are preserved wherever possible.

Program Exploitation. As with the single-concept challenges, a
core tenet of the progression is the gradual, bit-by-bit increase in
complexity. Thus, the challenges start with a very simple buffer
overflow, and become increasingly complicated from there. The
final challenge of this module is a version of the VM from the
Reverse Engineering module, reimagined as a realistic just-in-time
compiler-based rather than interpreter-based VM. Students discover



PWN The Learning Curve: Education-First CTF Challenges

memory corruption issues within the virtual machine to hijack
control flow of the program, then abuse the just-in-time compilation
to introduce precisely-crafted shellcode. This sort of end to end
exploit is conceptually similar to what modern web browser exploits
against actual JavaScript engines look like in the real world.

System Exploitation. The second integration module extends into
advanced material, exploring, e.g., the impacts of Race Conditions to
enable Dynamic Allocator Misuse in multi-threaded software. These
challenges convey two concepts: the chaining of radically different
vulnerabilities to achieve a goal impossible with either vulnerability
alone, and the importance of knowledge of the interconnectedness
of program memory regions during exploitation.

These challenges integrate Kernel Security by reimagining the
VM from the Reverse Engineering module as a kernel subsystem
(similar to the BPF VM that powers the Linux kernel’s network
and system call firewalls). The final challenge (again, a series of
challenges gradually leads to cumulative increases in complexity)
requires students to perform a multi-stage exploit using concepts
from all of the prior modules to first race heap operations to achieve
arbitrary code execution in a sandboxed userspace program, then
pivot to attacking the virtual machine kernel subsystem by racing
threads to induce memory corruption in the kernel, get a kernel
pointer leak, and achieve arbitrary code execution in the kernel, all
in order to finally disable the properly-configured seccomp sandbox
(by rewriting relevant kernel data structures that track process
sandboxing state), escalate privileges to root (again, by carefully
corrupting kernel data structures), and get the flag.

5 DISCUSSION

Smoothing Learning Curves. As challenges are responsible for
progressively introducing concepts, it is critical to minimize jumps
in difficulty throughout the progression of a module. We can mea-
sure difficulty jumps by analyzing discontinuities in challenge solve
progressions in terms of the percentage of students solving each
challenge. In our experience, when a large drop in solutions exists
between one challenge and the next, it means that the more diffi-
cult challenge is conveying too many concurrent concepts. These
concepts should be broken apart into one or more intermediate
challenges which build up to that original difficult challenge.

A representative example of this evolution is our Reverse Engi-
neering module. The Fall 2020 iteration of our course had a massive
difficulty jump approximately 70% through the module, resulting
in half as many solves as the previous challenge. This occurs when
the first virtual machine reverse engineering challenge is intro-
duced. Compared to the prior (much simpler) “crackme” challenges,
students were required to understand numerous new concepts con-
currently in order to solve the challenge: obfuscation, interpretation
of bytecode, and the use of complex data structures. Many students
failed to make this jump. To remediate this, we added several con-
ceptually simpler challenges in Fall 2021 to prepare students for
this challenge. We did this by initially introducing pieces of the
VM just as obfuscation for normal code logic, initially avoiding
any sort of interpreter loop (and subsequent handling by the VM
of its own control flow) or embedded VM instruction interpreters.
Over the course of a number of challenges, we introduced these
sub-concepts one by one, making it much easier for students new

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

to reverse engineering to adapt. This resulted in a much smoother
challenge progression and dramatically improved student success.
As opposed to the 50% drop in solves of the first VM challenge,
no challenge in Fall 2021 had a solve drop of more than 10%. At
this point, we hit a limit in curve smoothness: in 2022, we added
additional intermediate challenges because we felt that obfuscation
concepts could be introduced even more slowly, but we did not
observe a similar improvement in solution rates over Fall 2021.

Challenge Generation. We developed pwnshop, an open-source
(available at https://github.com/pwncollege/pwnshop), template-
based system for generating and maintaining our hundreds of indi-
vidual challenges. This system leverages Jinja [15] as a templating
layer on top of C source code. In doing so, we can conditionally
include or exclude code, which is crucial for maintainably generat-
ing a challenge with just a small difference compared to a previous
challenge. This capability enables us to fix a bug in a challenge (for
example, disabling output buffering), and having that fix propagate
to all challenges that are based on that template. Furthermore, this
allows us to generate challenges with randomized values, such as
randomized passwords or randomized memory layouts. The bene-
fits of this approach are twofold. First, it allows us to generate more
versions of the same fundamental challenge, which can be useful for
increasing student’s practice with a particular concept (for example,
calculating buffer overflow offsets). Second, it allows us to generate
challenges that are unique to each student, which can be useful
for preventing students from sharing complete solutions with each
other. In order to make sure that the challenges are still solvable,
we have verify scripts that can solve any version of a challenge,
and we use these scripts to verify that the challenges are solvable
before they are released to students.

Refining Core CS Concepts. An interesting benefit of our chal-
lenges to students is the solidification of earlier Computer Science
concepts that students may have previously missed. For example,
despite many students having prior experience with process sched-
uling in our institution’s Operating Systems course, many of our
students did not seem to truly “get” the concept until they had to ex-
ploit process scheduling intricacies to attack programs in the Race
Condition module. We observed similar effects with concept missed
in students’ Computer Organization courses, and with privilege
and memory isolation in the Kernel Security module.

6 EVALUATION

Survey. To understand the effectiveness of challenge-based learn-
ing and our challenge design, we distributed an IRB-exempt (min-
imal harm) survey to our students. They survey contained both
quantitative (Likert scale) and qualitative (free response) compo-
nents. Since our challenges are openly and freely accessible to
learners around the world, we received a wide variety of responses
from 200 total respondents. In this section, we distill these responses
into insights about the potential of our proposed learning approach.

We present our Likert question results in Figure 4. Our style of
challenge-based learning was popular: 93.1% of students reported
liking challenge-based learning and 92.6% reported significant learn-
ing from these challenges. Students almost universally appreciated
the immediate feedback. Our “teaching-variant” challenges were
quite well-received, with 84.8% of students reporting being helped


https://github.com/pwncollege/pwnshop

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

= Strongly Disagree Disagree Neutral

Tlike challenge-based learning 15.9%

I e

50 0 50 100 150

Figure 4: Survey Responses. Total number of participants to
respond positively (postive values) and negatively (negative
values).

by them. Likewise, 84.7% of students learned something new from
solving individual challenges and were satisfied with our challenges’
difficulty progression. In fact, 82.2% of students prefer more chal-
lenges, despite this course obtaining a reputation as the hardest
course in our department. There does not appear to be consensus
of whether these additional challenges should be on the easier or
harder end of the progression. Overall, 88.1% of students would pre-
fer more of their learning to be challenge-based. Questions about
individual modules also confirmed the aforementioned refinement
of Computer Science concepts.

Another theme was the duality of challenge frustration and the
satisfaction derived from solving them. During course design, we
often strive to avoid frustration (for example, by smoothing diffi-
culty curves between challenges), but the framing of the responses
suggests that some frustration might incentivize students to push
through and “defeat” the challenge. In several modules, including
Race Conditions, Kernel Security, Memory Errors, and Dynamic Al-
locator Misuse, students reported that carrying out attacks against
related weaknesses helped them develop code resilient to such flaws.
Further exploration of this phenomenon could be valuable to the
Software Engineering field.

The qualitative responses shed light on some subtleties. While
students find challenge-based learning rewarding and engaging,
some note that the nature of the class can be “frustrating”, and
that some challenges are repetitive or lack guidance. Even on these,
students enjoy the practical application of skills and the immediate
feedback on their progress. Free form responses confirm that stu-
dents appreciate the progressive difficulty within modules and the
self-pacing that they enable. However, they suggest various offering
lab time for hands-on, guided assistance with concepts to prevent
languishing among the student body. Overall, they believe that
challenge-based learning is an effective approach for cybersecurity
education but there are clear paths for refined execution.

Follow-on Course. To assess how well the skills acquired from
our challenge-based learning approach translated into practical
applications, we created a follow-on course on applied vulnera-
bility research. This course was offered to students who had suc-
cessfully completed all challenges from our preliminary challenge-
based learning course. The objective of this course was to give

Connor Nelson and Yan Shoshitaishvili

students the opportunity to find and responsibly disclose vulnera-
bilities in real-world open-source software. A total of 19 students
enrolled in this course, forming 5 teams. The teams analyzed a
variety of projects including PHP, MuJS, Pillow, Radare2, and a
popular Gameboy Advanced emulator. All teams were able to find
zero-day vulnerabilities in their respective projects, with several
of those vulnerabilities translating into CVEs and a more secure
global software ecosystem. Students focused on reverse engineer-
ing, automated vulnerability discovery (fuzzing), crash triaging,
exploit development, and responsible disclosure.

While we haven’t conducted a rigorous evaluation, it appears
the skills from our challenge-based learning approach—especially
in exploitation processes, reverse engineering, and modern exploit
techniques—played a significant role in the course’s success. There
is a significant breadth and depth of knowledge and skills required
to even begin real-world vulnerability research; students must be
able to understand threat models, and understand the technical
implication of how different exploit primitives can be used together
to exploit a vulnerability in order to truly compromise a system’s
security boundaries. We relied on the fact that all students in this
course had, for example, already successfully abused dynamic allo-
cators to leak information, bypass PIE, perform an arbitrary write,
and achieve code execution through ROP—and had done so in sev-
eral contexts, with different constraints, and spent hours debugging
these exploit chains to completion. This allowed us to focus exclu-
sively on the more advanced aspects of how to apply these skills to
real-world software, with the aid of modern vulnerability research
techniques. We are unaware of any other undergraduate university
course that has been able to successfully teach these pre-requisite
skills to students to the extent that we achieved.

Interestingly, we also discovered that while students were more
than capable of producing exploits for the vulnerabilities they dis-
covered, and several did, they were more interested in reporting
the vulnerability without a full exploit, so that they could move
on to finding more vulnerabilities. This in turn suggests that there
are two critical tracks in vulnerability research: the ability to find
vulnerabilities, and the ability to exploit them. While in this paper
we primarily focused on the latter and happened to achieve the for-
mer, further research is needed in order to better understand how
this style of material can be optimized explicitly toward finding
vulnerabilities in real-world software.

7 CONCLUSION

In this paper, we described a design for a challenge-based cyberse-
curity curriculum that combines single-concept modules and inte-
gration modules comprised of challenges that gradually increase in
complexity (conveying sub-concepts one by one) and help guide
students through their own solutions. In running cybersecurity
courses with these challenges, we observed not only great efficacy
in student outcomes in cybersecurity, but a radical refinement of
their understanding of core Computer Science concepts. To help
the educational community, we have made these challenges, as well
as the accompanying lecture material, freely available to the world.

Acknowledgments. This work would not have been possible with-
out the vibrant enthusiasm of the pwn.college community, and
the generous support of the Department of Defense; thank you.



PWN The Learning Curve: Education-First CTF Challenges

REFERENCES

[1] Apple. 2023. Apple Security Bounty Categories.

[2

[10

[11

[12

[13

[14

[15
[16

—

=

]

]

]

]

https://security.apple.com/
bounty/categories/

John Aycock, Andrew Groeneveldt, Hayden Kroepfl, and Tara Copplestone. 2018.
Exercises for Teaching Reverse Engineering. In Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education.
188-193.

Masooda Bashir, April Lambert, Jian Ming Colin Wee, and Boyi Guo. 2015. An
Examination of the Vocational and Psychological Characteristics of Cybersecu-
rity Competition Participants. In 2015 USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 15).

Nada Basit, Abdeltawab Hendawi, Joseph Chen, and Alexander Sun. 2019. A
Learning Platform for SQL Injection. In Proceedings of the 50th ACM technical
symposium on computer science education. 184-190.

Sergey Bratus, Anna Shubina, and Michael E Locasto. 2010. Teaching the Princi-
ples of the Hacker Curriculum to Undergraduates. In Proceedings of the 41st ACM
technical symposium on computer science education. 122-126.

Jonathan Burket, Peter Chapman, Tim Becker, Christopher Ganas, and David
Brumley. 2015. Automatic Problem Generation for Capture-the-Flag Competi-
tions. In 2015 USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE 15).

Martin Carlisle, Michael Chiaramonte, and David Caswell. 2015. Using CTFs for
an Undergraduate Cyber Education. In 2015 USENIX Summit on Gaming, Games,
and Gamification in Security Education (3GSE 15).

Peter Chapman, Jonathan Burket, and David Brumley. 2014. PicoCTF: A Game-
Based Computer Security Competition for High School Students. In 2014 USENIX
Summit on Gaming, Games, and Gamification in Security Education (3GSE 14).
Kevin Chung and Julian Cohen. 2014. Learning Obstacles in the Capture The Flag
Model. In 2014 USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE 14).

Adrian Dabrowski, Markus Kammerstetter, Eduard Thamm, Edgar Weippl, and
Wolfgang Kastner. 2015. Leveraging Competitive Gamification for Sustainable
Fun and Profit in Security Education. In 2015 USENIX Summit on Gaming, Games,
and Gamification in Security Education (3GSE 15).

Michael H Dunn and Laurence D Merkle. 2018. Assessing the Impact of a National
Cybersecurity Competition on Students’ Career Interests. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education. 62-67.

Joshua Eckroth, Kim Chen, Heyley Gatewood, and Brandon Belna. 2019. Alpaca:
Building Dynamic Cyber Ranges with Procedurally-Generated Vulnerability
Lattices. In Proceedings of the 2019 ACM Southeast Conference. 78-85.

Wu-chang Feng. 2015. A Scaffolded, Metamorphic CTF for Reverse Engineering.
In 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 15).

Efstratios Gavas, Nasir Memon, and Douglas Britton. 2012. Winning Cybersecu-
rity One Challenge at a Time. IEEE Security & Privacy 10, 4 (2012), 75-79.

Jinja. 2023. https://jinja.palletsprojects.com/.

Jean-Francois Lalande, Valérie Viet Triem Tong, Pierre Graux, Guillaume Hiet,
Wojciech Mazurczyk, Habiba Chaoui, and Pascal Berthomé. 2019. Teaching
Android Mobile Security. In Proceedings of the 50th ACM Technical Symposium on

[17

(18

[19

[20

[21

[22

[23

[26

[27

[28

[29

[30

]

]

]

]

]

]

]

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Computer Science Education. 232-238.

Kees Leune and Salvatore J Petrilli Jr. 2017. Using Capture-the-Flag to Enhance
the Effectiveness of Cybersecurity Education. In Proceedings of the 18th Annual
Conference on Information Technology Education. 47-52.

Jelena Mirkovic, Aashray Aggarwal, David Weinman, Paul Lepe, Jens Mache,
and Richard Weiss. 2020. Using Terminal Histories to Monitor Student Progress
on Hands-on Exercises. In Proceedings of the 51st ACM Technical Symposium on
Computing Science Education. 866—-872.

Jelena Mirkovic and Peter AH Peterson. 2014. Class Capture-the-Flag Exercises.
In 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14).

Jelena Mirkovic, Aimee Tabor, Simon Woo, and Portia Pusey. 2015. Engaging
Novices in Cybersecurity Competitions: A Vision and Lessons Learned at ACM
Tapia 2015. In 2015 USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 15).

Mike O’Leary. 2017. Innovative Pedagogical Approaches to a Capstone Lab-
oratory Course in Cyber Operations. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. 429-434.

TJ O’Connor, Ben Sangster, and Erik Dean. 2010. Using Hacking to Teach Com-
puter Science Fundamentals. American Society for Engineering Education, St.
Lawrence Section (2010).

Younghee Park, Hongxin Hu, Xiaohong Yuan, and Hongda Li. 2018. Enhancing
Security Education Through Designing SDN Security Labs in CloudLab. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science Education.
185-190.

Z Cliffe Schreuders, Thomas Shaw, Mohammad Shan-A-Khuda, Gajendra
Ravichandran, Jason Keighley, and Mihai Ordean. 2017. Security Scenario Gener-

ator (SecGen): A Framework for Generatin%{Randoml{_ Vulnerable Rich-scenario
VMs for Learning Computer Security and Hosting CTF Events. In 2017 USENIX

Workshop on Advances in Security Education (ASE 17).

Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta, Adam Doupe, Yanick Fratan-
tonio, Luca Invernizzi, Dhilung Kirat, and Yan Shoshitaishvili. 2014. Ten Years
of iCTF: The Good, The Bad, and The Ugly. In 2014 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE 14).

Jan Vykopal, Valdemar Svabensky, and Ee-Chien Chang. 2020. Benefits and
Pitfalls of Using Capture the Flag Games in University Courses. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. 752-758.
Richard Weiss, Michael E Locasto, and Jens Mache. 2016. A Reflective Approach
to Assessing Student Performance in Cybersecurity Exercises. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education. 597-602.
Richard S Weiss, Stefan Boesen, James F Sullivan, Michael E Locasto, Jens Mache,
and Erik Nilsen. 2015. Teaching Cybersecurity Analysis Skills in the Cloud. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
332-337.

Joseph Werther, Michael Zhivich, Tim Leek, and Nickolai Zeldovich. 2011. Expe-
riences In Cyber Security Education: MIT Lincoln Laboratory Capture-the-Flag
Exercise. In 4th Workshop on Cyber Security Experimentation and Test (CSET 11).
Google Project Zero. 2021. A deep dive into an NSO zero-click iMessage exploit:
Remote Code Execution. https://googleprojectzero.blogspot.com/2021/12/a-
deep-dive-into-nso-zero-click.html


https://security.apple.com/bounty/categories/
https://security.apple.com/bounty/categories/
https://jinja.palletsprojects.com/
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

	Abstract
	1 Introduction
	2 Related Work
	3 Individualized Concepts
	4 Integration Challenge Design
	5 Discussion
	6 Evaluation
	7 Conclusion
	References

