
ROLE-BASED ACCESS CONTROL

ON THE WEB USING LDAP

Joon S. Park

Information and Software Engineering Department

George Mason University

jpark@itd.nrl.navy.mil

Gail-Joon Ahn

College of Information Technology

University of North Carolina at Charlotte

gahn@uncc.edu

Ravi Sandhu

Information and Software Engineering Department

George Mason University

sandhu@gmu.edu

Abstract This paper gives a framework for how to leverage Lightweight Direc-

tory Access Protocol (LDAP) to implement Role-based Access Control

(RBAC) on the Web in the server-pull architecture. LDAP-based di-

rectory services have recently received much attention because they can

support object-oriented hierarchies of entries in which we can easily

search and modify attributes over TCP/IP. To implement RBAC on

the Web, we use an LDAP directory server as a role server that con-

tains users' role information. The role information in the role server is

referred to by Web servers for access control purposes through LDAP

in a secure manner (over SSL). We provide a comparison of this work

to our previous work, RBAC on the Web in the user-pull architecture.

Keywords: Access Control, LDAP, RBAC, Web Security

1. Introduction

The emergence of Web technology has changed life styles and the

world economy. It enables us to access various information regardless of

1

2

the distance between service providers and requesters. Web technology

has continued its rapid evolution, most recently towards increasingly

secure transactions on enterprise-wide infrastructure. However, infor-

mation security problems have become more important as the world

uses more information systems, since the security of information sys-

tems directly or indirectly a�ect organizations, which rely on informa-

tion technology. An organization's enterprise intranet security depends

on largely on access control management. RBAC (Role-based Access

Control [SCFY96]) has been accepted as a proven technology for strong

and eÆcient access control. As the vehicle of access control management,

RBAC can be used to provide the services that focus on how users' role

information can be used instead of users' identities.

Park and Sandhu identi�ed two di�erent approaches for obtaining

user's attributes1 on the Web: user-pull and server-pull architectures [PS99].

They classi�ed the architectures based on \Who pulls the user's at-

tributes?" In the user-pull architecture, the user pulls her attributes

from the attribute server and then presents them to the Web servers,

which use those attributes for their purposes. In the server-pull archi-

tecture, each Web server pulls user's attributes from the attribute server

as needed and uses them for their purposes. To show the feasibility of

those approaches, RBAC (as one example of secure attribute services)

on the Web has been implemented in the user-pull architecture and de-

scribed in our previous papers [PS99b, PSG99, ASKP00]. In this paper,

we describe how we implement RBAC on the Web in the server-pull ar-

chitecture using commercial o�-the-shelf (COTS) technologies, such as

LDAP (Lightweight Directory Access Protocol [HSG99]) and SSL (Se-

cure Socket Layer [WS96, DA99]). Furthermore, we compare this work

with our previous work, based-on our hands-on experiences.

This paper is organized as follows. Section 2 brie
y introduces RBAC

and the existing technologies that we use for our server-pull implemen-

tation in this paper. In Section 3, we describe two di�erent operational

architectures of RBAC on the Web. Section 4 describes how we imple-

ment RBAC on the Web in the server-pull architecture using existing

well-known Web technologies. Section 5 compares the server-pull and

user-pull RBAC architectures based on our hands-on experiences. Fi-

nally, Section 6 concludes this paper.

1An attribute is a particular property of an entity, such as a role, access identity, group, or

clearance.

Role-based Access Controlon the Web Using LDAP 3

Assignment
 (PRA)

Permission-Role
PermissionsUsers

User-Role
Assignment
 (URA)

Roles

Figure 1. A Simpli�ed RBAC Model

2. Related Technologies

2.1. Role-based Access Control (RBAC)

Role-based Access Control (RBAC [SCFY96]) has rapidly emerged

in the 1990s as a technology for managing and enforcing security in

large-scale enterprise-wide systems. The basic notion of RBAC is that

permissions are associated with roles, and users are assigned to appro-

priate roles. Figure 1 shows a simpli�ed RBAC model. RBAC ensures

that only authorized users are given access to certain data or resources.

This simpli�es security management. Intuitively, a user is a human be-

ing or an autonomous agent, a role is a job function or job title within

the organization with some associated semantics regarding the authority

and responsibility conferred on a member of the role. Permissions are

simply treated as abstract token. A user can be a member of many roles

and a role can have many users (denoted by double arrows in Figure 1).

Similarly, a role can have many permissions and the same permissions

can be assigned to many roles.

System administrators can create roles, grant permissions to those

roles, and then assign users to the roles on the basis of their speci�c

job responsibilities and policy. Therefore, role-permission relationships

can be prede�ned, making it simple to assign users to the corresponding

permissions through the roles. Without RBAC, it is diÆcult (especially,

in a large enterprise system) to determine and change what permissions

have been authorized for what users.

2.2. Lightweight Directory Access Protocol
(LDAP)

User information is often fragmented across the enterprise, leading to

data that is redundant, inconsistent, and expensive to manage. Directo-

ries are being viewed as one of the best mechanisms to make enterprise

information available to multiple di�erent systems within an organiza-

tion. Directories also make it possible for organizations to access infor-

4

LDAP Server

LDAP Client

1. Search request from client

2. Returned entry from server

3. Result code message

Figure 2. LDAP Operation

mation over the Internet. The most common information stored in a di-

rectory service is information about users on a network; this can include

user id, passwords, assigned groups, or network access rights. In order

to retrieve the information, a directory access protocol is used to convey

the entries from directory-oriented server. The trend towards directo-

ries has been accelerated by the recent growth of LDAP (Lightweight

Directory Access Protocol [HSG99]).

LDAP is a protocol that enables X.500 based directories to be read

through Internet clients. It was developed by the University of Michi-

gan and the Internet Engineering Task Force (IETF) as a set of network

services to provide object management and access over TCP/IP net-

works. LDAP is also a message-oriented protocol. When an LDAP

client needs a speci�c entry in an LDAP server, the LDAP client gener-

ates an LDAP message containing a request and sends this message to

the LDAP server. The server retrieves the entry from its database and

sends it to the client in an LDAP message. It also returns a result code

to the client in a separate LDAP message to terminate the session. Fig-

ure 2 shows this interaction between the LDAP server and client. With

this feature of directory services, we use an LDAP server and client for

our server-pull RBAC implementation.

Although we use LDAP between Web servers and role server for

RBAC in the server-pull architecture, it is also possible to use LDAP

for the user-pull architecture, where clients can retrieve their roles from

the role server via LDAP and present them to the Web servers.

2.3. Secure Socket Layer (SSL)

SSL [WS96, DA99] was introduced with the Netscape Navigator browser

in 1994, and rapidly became the predominant security protocol on the

Web. Since the protocol operates at the transport layer, any program

that uses TCP (Transmission Control Protocol) is ready to use SSL con-

Role-based Access Controlon the Web Using LDAP 5

nections. The SSL protocol provides a secure means for establishing an

encrypted communication between Web servers and browsers. SSL also

supports the authentication service between Web servers and browsers.

SSL uses X.509 certi�cates. Server certi�cates provide a way for users

to authenticate the identity of a Web server. The Web browser uses the

server's public key to negotiate a secure TCP connection with the Web

server. Optionally, the Web server can authenticate users by verifying

the contents of the client certi�cates.

Even though SSL provides secure communications betweenWeb servers

and browsers on the Web, it cannot protect against end-system threats.

For instance, after a user, Alice, receives her attributes from a Web

server over SSL, it does not mean that the attributes are still safe. In

other words, once the user receives some attributes from the server over

SSL, an attacker is able to change the attributes in the user's machine,

because SSL does not support security in the user's end system. How-

ever, as we will see later in this paper, SSL can be used as part of our

implementation to protect information on the Web.

3. Operational Architectures

Park and Sandhu identi�ed two di�erent approaches for obtaining a

user's attributes on the Web, especially with respect to the user-pull

and server-pull architectures, in which each architecture has user-based

and host-based modes [PS99]. In this section, we embody those general

approaches for RBAC on the Web with speci�c components and rela-

tionships. Basically, there are three components in both architectures:

client, Web server, and role server. These components are already be-

ing used on the Web. Clients connect to Web servers via HTTP using

browsers. The role server is maintained by an administrator and assigns

users to the roles in the domain [SP98]. Detailed technologies (such as

authentication, role transfer and protection, and veri�cation) to support

these architectures depend on the applications that are used.

3.1. RBAC in User-Pull Architecture

In the user-pull architecture, a user, say Alice, pulls her roles from the

role server and then presents them to the Web servers, as depicted in a

UML (Uni�ed Modeling Language [BJR98]) collaborational diagram in

Figure 3. We call this a user-pull architecture, since the user pulls her

roles from the role server, in which roles are assigned to the users in the

domain. HTTP is used for the user-server interactions with standard

Web browsers and Web servers.

6

Server
Web

2.7:
Validation
Result

2.11:
Transaction
Results

2.6:
Validation
Result

2.9:
Request
Transactions

2.10:
Transaction
Results

Client
(Browser)

Request

*Authentication Information can be either user−based or host−based.

Role
Request

2:

Access
Web Server (with
User−based
Auth−Info.)

2.4:

Transactions

2.8:

Server
1.2: Process Result

User

2.1:

Request

2.5: Credentials
(Roles + Auth−Info.*)

Role

Administrator
Role

2.2:
Role
Information

2.3:
Role−
Request
Result

1: Role Assign/Revoke

Role

Figure 3. A Collaborational Diagram for the User-Pull Architecture

In the user-pull-host-based mode, the user needs to download her roles

from the role server and store them in her machine, which has her host-

based authentication information, such as IP numbers2. Later, when

the user wants to access the Web server, which requires proper authen-

tication information and roles, her machine presents that information

to the Web server. After client authentication and role veri�cation, the

Web server uses the roles for RBAC. However, since this mode is host-

based, it cannot support high user mobility, while it may support more

convenient services than the user-based mode, which requires user's co-

operation (e.g., typing in passwords).

On the other hand, the user-pull-user-based mode supports high user

mobility. The user can download her roles to her current machine from

the role server. Then, she presents those roles to the Web server along

with her user-based authentication information, such as her passwords.

After user authentication and role veri�cation, the Web server uses the

roles for RBAC. In this mode, the user can use any machines, which

support HTTP, as long as she has right user-based authentication infor-

mation (e.g., passwords).

In this user-pull architecture, we must support the binding of roles

and identi�cation for each user. For instance, if Alice presents Bob's

2Address-based authentication is a convenient authentication mechanism because the au-

thentication process is transparent to users, but such a method is not always desirable. For

example, if the user's IP address is dynamically assigned to her computer whenever she con-

nects to the Internet, or the user's domain uses a proxy server, which provides the same

IP numbers to the users in the domain, this is not a proper authentication technique. In

addition, we cannot avoid IP spoo�ng, which is a technique for gaining unauthorized access

by sending messages to a computer with a trusted IP address.

Role-based Access Controlon the Web Using LDAP 7

Server
Web

Access
Web Server (with
User−based
Auth−Info.)

2:

Client
(Browser)

User

*Authentication Information can be either user−based or host−based.

Request
Transactions

2.4:

2.3:
Authentication
Result

2.7:
Transaction
Results

1: Role Assign/Revoke

1.2: Process Result

2.1: Credentials

2.5:
Request
Transactions

2.2:
Authentication
Result

2.10:
Transaction
Results

2.3a: Role Information

2.2a: Request User RolesRole
Administrator

Role
Server

(Auth−Info.*)

Figure 4. A Collaborational Diagram for the Server-Pull Architecture

roles with her authentication information to the Web server, she must

be rejected. General approaches for binding user attributes and their

identities are discussed by Park and Sandhu in [PS00].

3.2. RBAC in Server-Pull Architecture

In the server-pull architecture, each Web server pulls the user's roles

from the role server as needed and uses them for RBAC as depicted

in a UML collaborational diagram in Figure 4. We call this a server-

pull architecture, since the server pulls the user's roles from the role

server. HTTP is used for the user-server interactions with standard

Web browsers and Web servers. If the role server provides users' roles

securely, the Web server can trust those roles and uses them for RBAC.

In this architecture, the user does not need access to her roles. In-

stead, she needs only her authentication information. In the server-pull-

host-based mode, she presents her host-based authentication informa-

tion (e.g., IP numbers) to the Web server. Role obtaining mechanism

is transparent to the user, while limiting the portability. However, in

the server-pull-user-based mode, Alice presents her user-based authen-

tication information (e.g., passwords) to the Web server. This supports

high portability, while it requires the user's cooperation (e.g., typing in

passwords). After user authentication, the Web server downloads the

user's roles from the role server and uses them for RBAC.

We describe an implementation of this architecture in both user and

host-based modes in Section 4. A detailed comparison of the user-pull

and server-pull architectures is discussed in Section 5.

8

Role Server
(Directory

Server: DS)
Web Server

client

1 Authenticate client (using password or client certificate)
2 Display the initial page
3 Request resources by clicking a link
4 Establish SSL between DS and Web server
5 LDAP over SSL; Request client ’s role information to DS
6 LDAP over SSL; Return client ’s role information to Web server
7 Display appropriate resources after authorization check

based on client ’s roles

1
2
3
7

4
5
6

Figure 5. Transaction Procedures for RBAC in Server-Pull Architecture

4. Implementing RBAC on the Web in the
Server-Pull Architecture

We use LDAP to communicate between the directory-oriented role

server and Web servers. In our implementation, we use Netscape Direc-

tory Server as an LDAP-supporting role server and use its group objects

as users' role attributes. This directory-oriented role server contains

users' role information to be used for access control by Web servers.

The basic scenario of our implementation is that a client presents her

authentication information to a Web server and then, after a successful

authentication process, the Web server gets the client's role information

from the role server via LDAP to use those roles for RBAC services in

the Web server.

For this purpose, we set up a computing environment based on the

server-pull architecture (see Section 3.2) as shown in Figure 4. Figure 5

shows the transaction procedures of our experiment. We have three ma-

jor components: Web server, role server, and client. The role server

keeps URA (User-Role Assignment) information. The Web server con-

tains resources, which require particular roles to be accessed. The Web

server also contains a PRA (Permission-Role Assignment) table, which

Role-based Access Controlon the Web Using LDAP 9

Figure 6. Directory Server: Enabling SSL

speci�es the required roles for particular resources in the Web server.

This table is referenced to check if the user has proper roles to access

particular resources in the Web server. Clients use Web browsers to

connect Web servers over HTTP or HTTPS.

The detailed transaction procedures are as follows. A client presents

her authentication information to a Web server. We can use user-

name/passwords, IP numbers, client certi�cates3, or other authentica-

tion techniques for this purpose. The Web server authenticates the user

using proper authentication mechanism. Once a user is authenticated by

the Web server successfully (otherwise, the user gets an error message),

the Web server triggers the CGI (Common Gateway Interface) scripts

that call an LDAP client software. This LDAP client software sends a

search query to the LDAP server, which retrieves the user's roles from

the directory server through SSL. The retrieved roles are sent back to the

3To use client certi�cates, which is an optional operation of SSL, we need to con�gure the Web

server to accept and understand particular client certi�cates. Note that this SSL channel is

optional and independent from the SSL connection between Web servers and the role server.

10

LDAP client in the Web server during the same SSL session. When the

user requests an access to the resources, which requires particular roles

to be accessed, by clicking the corresponding link in the initial page, the

Web server compares the user's roles (that it pulled from the role server)

with the ones in its PRA table. If the user has corresponding roles in

the table, the Web server allows the user to access the resources.

Figure 6 is a snapshot showing the directory server (role server in our

case) con�guration. This directory server is running a process called

slapd (LDAP server daemon) to allow requests from LDAP clients. We

con�gure this server to have two network ports: one is for regular port

and the other is for secure communications. For the secure communi-

cations, we need to enable SSL establishment between the LDAP client

(installed in the Web server in our implementation) and directory server,

more speci�cally the LDAP server.

5. Discussion

In this section, based on our hands-on experiences, we discuss the

tradeo�s between the user-pull (implemented and described in [PS99b,

PSG99, ASKP00]) and the server-pull (implemented and described in

Section 4) architectures using di�erent technologies for RBAC on the

Web. In the user-pull architecture, the user pulls her roles from the role

server, and then presents the role information to the Web servers along

with her authentication information. In the server-pull architecture, the

user presents her authentication information to the Web servers, which

pulls the user's role information from the role server for RBAC after a

successful authentication.

The user-pull architecture requires a user's cooperation to obtain her

roles, but it enhances the Web server performance. Once the user obtains

her roles, she can use them in many di�erent sessions even in di�erent

Web servers until the roles expire. This increases the reusability. By this

feature, the user-pull architecture is a good solution for the applications,

especially, where users' convenience is required for maintaining and us-

ing their roles frequently in diverse Web sites, such as pay-per-access.

However, the longevity of the roles decreases the freshness of the roles.

For instance, if the user already pulled her roles, the updated version

in the role server would not become e�ective instantly. Namely, an ad-

ditional synchronization process is required. Thus, when the dynamic

role update is critical, the role server should push the status change

of users' roles, such as role revocation, to the Web servers for updated

information.

Role-based Access Controlon the Web Using LDAP 11

User-Pull Architecture Server-Pull Architecture

User's Convenience Low High

Performance High Low

Reusability High Low

Role Freshness Low High

Single-Point Failure Low High

Table 1. A Comparison of User-Pull and Server-Pull Architectures

The server-pull architecture requires the Web server's cooperation for

obtaining the user's role information - which decreases the Web server

performance - from the role server. In this architecture, the Web server

retrieves the user's role information from the role server for each session.

This increases the freshness of the roles, so the information update (e.g.,

role revocation) is more eÆcient than the user-pull architecture, because

all the roles are stored in the role server and pulled by the Web servers on

demand. By this feature, the server-pull architecture is a good solution

for the applications, especially, where dynamic role update is critical,

such as stop-payment in electronic transactions. However, it decreases

reusability and increases the single-point failure vulnerability because

every session requires an access to the role server. We summarize the

comparison of the user-pull and server pull architectures in Table 1.

6. Conclusion

We have developed the system architectures and mechanisms for achiev-

ing RBAC on the Web. We have also described several proof-of-concept

implementations to demonstrate the feasibility of our approaches. Af-

ter we had practical experiences in both the user-pull and server-pull

architectures of RBAC on the Web, we compared the tradeo�s of both

approaches. A comprehensive description and analysis for RBAC on the

Web using di�erent technologies in di�erent architectures is available

in [PSA01]. We believe that our work can be an important step towards

o�ering strong and eÆcient security management based on users' roles

on the Web.

References

[ASKP00] Gail-Joon Ahn, Ravi Sandhu, Myong Kang, and Joon Park. Injecting

RBAC to Secure a Web-based Work
ow System. In Proceedings of 5th ACM

Workshop on Role-based Access Control, pages 1{10, Berlin, Germany, July 2000.

[BJR98] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Uni�ed Modeling

Language User Guide. Addison-Wesley, 1998.

12

[DA99] T. Dierks and C. Allen. The TLS (Transport Layer Security) Protocol. RFC

246, January 1999.

[HSG99] Timoth Howes, Mark Smith, and Gordon Good. Understanding and De-

ploying LDAP Directory Services. Macmillan Technical Publishing, 1999.

[Neu94] B. Cli�ord Neuman. Using Kerberos for Authentication on Computer Net-

works. IEEE Communications, 32(9), 1994.

[Net99] Netscape Communications Corporation.

Netscape Directory Server 4.1 Deployment Guide.

http://developer.netscape.com/docs/manuals/directory/dir40/de/contents.htm,

1999.

[PS00] Joon S. Park and Ravi Sandhu. Binding Identities and Attributes Using

Digitally Signed Certi�cates. In Proceedings of 16th Annual Computer Security

Applications Conference (ACSAC), New Orleans, Louisiana, December 2000.

[PS00b] Joon S. Park and Ravi Sandhu. Secure Cookies on the Web. IEEE Internet

Computing, 4(4), 36-44, July-August 2000.

[PS99] Joon S. Park and Ravi Sandhu. Smart Certi�cates: Extending X.509 for Secure

Attribute Services on the Web. In Proceedings of 22nd National Information

Systems Security Conference (NISSC), Crystal City, Virginia, October 1999.

[PS99b] Joon S. Park and Ravi Sandhu. RBAC on the Web by Smart Certi�cates.

In Proceedings of 4th ACM Workshop on Role-based Access Control, pages 1{9,

Fairfax, Virginia, October 1999.

[PSA01] Joon S. Park, Ravi Sandhu, and Gail-Joon Ahn. RBAC on the Web. ACM

Transactions on Information and Systems Security, 4(1), February 2001.

[PSG99] Joon S. Park, Ravi Sandhu, and SreeLatha Ghanta. RBAC on the Web by

Secure Cookies. In Proceedings of 13th Annual IFIP11.3 Conference on Database

Security, Seattle, Washington, July 1999.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based Access Control Models. IEEE Computer, 29(2):38{47,

February 1996.

[SP98] Ravi Sandhu and Joon S. Park. Decentralized User-Role Assignment for Web-

based Intranets. In Proceedings of 3rd ACM Workshop on Role-based Access

Control, pages 1{12, Fairfax, Virginia, October 1998.

[WS96] D. Wagner and B. Schneier. Analysis of the SSL 3.0 Protocol. In Proceed-

ings of 2nd USENIX Workshop on Electronic Commerce, Oakland, California,

November 1996.

[YLS96] Nicholas Yialelis, Emil Lupu, and Morris Sloman. Role-based Security for

Distributed Object Systems. In Proceedings of IEEE Fifth Workshops on Enabling

Technology: Infrastructure for Collaborative Enterprise. 1996.

