
Reconstructing a formal security model

Gail-Joon Ahna,*, Seung-Phil Hongb, Michael E. Shinc

aDepartment of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
bResearch and Development Center, LG CNS Co., Korea

cDepartment of Information and Software Engineering, George Mason University, Fairfax, VA 22030, USA

Received 14 August 2001; revised 6 May 2002; accepted 22 May 2002

Abstract

Role-based access control (RBAC) is a flexible approach to access control, which has generated great interest in the security community.

The principal motivation behind RBAC is to simplify the complexity of administrative tasks. Several formal models of RBAC have been

introduced. However, there are a few works specifying RBAC in a way which system developers or software engineers can easily understand

and adopt to develop role-based systems. And there still exists a demand to have a practical representation of well-known access control

models for system developers who work on secure system development. In this paper we represent a well-known RBAC model with software

engineering tools such as Unified Modeling Language (UML) and Object Constraints Language (OCL) to reduce a gap between security

models and system developments. The UML is a general-purpose visual modeling language in which we can specify, visualize, and

document the components of a software system. And OCL is part of the UML and has been used for object-oriented analysis and design as a

de facto constraints specification language in software engineering arena. Our representation is based on a standard model for RBAC

proposed by the National Institute of Standards and Technology. We specify this RBAC model with UML including three views: static view,

functional view, and dynamic view. We also describe how OCL can specify RBAC constraints that is one of important aspects to constrain

what components in RBAC are allowed to do. In addition, we briefly discuss future directions of this work. q 2002 Elsevier Science B.V All

rights reserved.

Keywords: Access control; Role-based; Formal model; UML

1. Introduction

In role-based access control (RBAC) permissions are

associated with roles, and users are made members of

appropriate roles thereby acquiring the roles’ permissions.

RBAC has emerged as a widely accepted alternative to

classical discretionary and mandatory access controls [10].

RBAC is also a flexible approach that has generated great

interest in the security community [2]. Several models of

RBAC have been published and several commercial

implementations are currently available. RBAC regulates

the access of users to information and system resources on

the basis of activities that users need to execute in the

system. It requires the identification of roles in the system. A

role can be defined as a set of permissions associated with a

particular working activity. Then, instead of specifying all

the accesses each individual user is allowed, access

authorizations on objects are specified for roles. Since

roles in an organization are relatively persistent with respect

to user turnover and task re-assignment, RBAC provides a

powerful mechanism for reducing the complexity, cost, and

potential for error in assigning permissions to users within

the organization. Because roles within an organization

typically have overlapping permissions RBAC models

include features to establish role hierarchies, where a

given role can include all of the permissions of another role.

Another fundamental aspect of RBAC is authorization

constraints (also simply called constraints).

Although the usefulness of RBAC has been recog-

nized and several frameworks for the development of

role-based systems have been introduced [3–5], these

prior works were sometimes hard for system developers

to understand because some are too abstract and formal,

and others are often ad-hoc solutions focused on specific

application-oriented frameworks. These frameworks were

not sufficient to provide a sound blueprint to system

developers. There still exists a demand in developing a

0950-5849/02/$ - see front matter q 2002 Elsevier Science B.V All rights reserved.

PII: S0 95 0 -5 84 9 (0 2) 00 0 92 -7

Information and Software Technology 44 (2002) 649–657

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ1-704-687-3783; fax: þ1-704-687-4893.

E-mail addresses: gahn@uncc.edu (G. J. Ahn),

philhong@lgens.com (S.-P. Hong),

eshin@gmu.edu (M.E. Shin).

http://www.elsevier.com/locate/infsof


practical methodology to represent formal RBAC models

using widely accepted software engineering tools. This

issue is rarely addressed in the research literature while

domain-specific proof-of-concept implementations have

been practiced and discussed at considerable length.

In this paper our focus is to reduce a gap between security

models and system developments. To do so, we adopt the

NIST proposed RBAC standard [6,24] since it includes most

of well-recognized RBAC work [24]. In this paper we

represent this RBAC model with a general-purpose visual

modeling language UML. We choose Unified Modeling

Language (UML) because it has been a standard language in

the modeling community.

The constraints in RBAC have been considered as one of

the most important components that enforce the principal

motivations of RBAC model [7]. In the past few years,

researchers and vendors have proposed enhancements of

specification of RBAC constraints. Ref. [24] dealt with

more fine-granularity constraints such as operation-based

and object-based. Recently Ahn and Sandhu [8] proposed a

formal language called Role-based constraints specification

language 2000 (RCL2000) and identified useful role-based

authorization constraints such as prohibitionand obligation

constraints. The users of RCL2000 are security researchers

and security policy designers who have to understand

organizational objectives and articulate major policy

decisions to support theses objectives. RCL2000 also

provides n-ary expressions and more flexibility, sharing a

great deal of common semantics about expressing access

control constraints [9]. Next, we may face the following

question: How can we realize these useful constraints at the

system design stage? The idea of our approach is to inject

constraints specifications into an UML-representation of

RBAC. Using Object Constraint Language (OCL) that has

been used to express constraints in analysis and design, we

demonstrate that OCL can help us specify previously

identified constraints at the system design step. The

constraints include separation of duty constraints, prerequi-

site constraints, and cardinality constraints. This approach is

moderately convenient for system developers to specify and

understand constraints of RBAC model.

The rest of this paper is organized as follows. In Section

2, we briefly describe related technologies including RBAC

model, UML and OCL. Section 3 demonstrates how these

languages can specify the formal model. In Section 4, we

briefly discuss future works. Section 5 concludes this paper.

2. RBAC model

2.1. Role-based access control model

RBAC has recently received considerable attention as a

promising alternative to traditional discretionary (DAC) and

mandatory access controls (MAC) (see, for example, [1,

10–12]). As MAC is used in the classical defense arena, the

policy of access is based on the classification of objects such

as top-secret level. The main idea of DAC is that the owner

of an object has discretionary authority over who else can

access that object. But RBAC policy is based on the roles of

the subjects and can specify security policy in a way that

maps to an organization’s structure.

A standard for RBAC model was proposed by Ferraiolo

et al. [24]. They defined three models: Core RBAC,

Hierarchical RBAC and Constrained RBAC. And their

Constrained RBAC adds separation of duty relations such as

Static Separation of Duty relations and Dynamic Separation

of Duty relations. Fig. 1 illustrates the Hierarchical RBAC

model. Motivation and discussion about various design

decisions made in developing this family of models is given

in Ref. [24]. Fig. 1 shows (regular) roles and permissions that

regulate access to data and resources. Intuitively, a user is a

human being or an autonomous agent, a role is a job function

or a job title within the organization with some associated

semantics regarding the authority and responsibility con-

ferred on a member of the role, and a permission is an

approval of a particular operation one or more objects in the

system. Roles are organized in a partial order $ , so that if

x $ y then role x inherits the permissions of role y. Members

of x are also implicitly members of y. In such cases, we say x

is senior to y. Each session relates one user to possibly many

roles. The idea is that a user establishes a session and

activates some subset of roles that he or she is a member of

(directly or indirectly by means of the role hierarchy). The

Fig. 1. RBAC model.

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657650



RBAC model has the following components and these

components are formalized from the above discussions.

† USERS is a set of users,

† ROLES is a set of roles,

† OPSis a set of operations,

† OBSis a set of objects,

† PRMS ¼ 2ðOPS£OBSÞ; is a set of permissions,

† UA # USERS £ ROLES; is a many-to-many user to role

assignment relation,

† PA # PRMS £ ROLES; is a many-to-many permission to

role assignment relation,

† RH # ROLES £ ROLES; is partially ordered role hier-

archies (written as $ in infix notation),

† SESSIONS, is a set of sessions,

† assigned_users ðr : ROLESÞ ! 2USERS, the mapping of

role r onto a set of users,

† assigned_permissions ðr : ROLESÞ ! 2PRMS, the map-

ping of role r onto a set of permissions,

† user_sessions ðu : USERSÞ ! 2SESSIONS, the mapping of

user u onto a set of sessions,

† session_roles ðs : SESSIONSÞ ! 2ROLES, the mapping of

session s onto a set of roles,

† avail_session_perms ðs : SESSIONSÞ ! 2PRMS, the per-

missions available to a user in a session,

† authorized_user ðr : ROLESÞ ! 2USERS, the mapping of

role r onto a set of users in the presence of a role hierarchy,

and

† authorized_permissions ðu : ROLESÞ ! 2PRMS, the map-

ping of role r onto a set of permissions in the presence of a

role hierarchy.

A user can be a member of many roles and a role can

have many users. Similarly, a role can have many

permissions and the same permissions can be assigned to

many roles. Each session relates one user to possibly many

roles. Intuitively, a user establishes a session during which

the user activates some subset of roles that he or she is a

member of. The permissions available to the users are the

union of permissions from all roles activates in that session.

The nature of permissions is not specified in the NIST

RBAC model. Permissions can be fine-grained (e.g. at the

level of individual objects) or coarse-grained (e.g. at the

level of entire sub-systems). They can be defined in terms of

primitive operations such as read and write in an OS and

create and delete in DBMS, or abstract operations,

such as credit and debit. An operation is an executable

representation of a program. Permissions can also be

customized. Each session is associated with a single user.

This association remains constant for the life of a session. A

user may have multiple sessions open at the same time, each

in a different window on the workstation screen for instance.

Each session may have a different combination of active

roles. The concept of a session equates to the traditional

notation of a subject in access control. A subject is a unit of

access control, and a user may have multiple subjects (or

sessions) with different permissions active at the same time.

There is a collection of constraints that allow or forbid

values of various components of the RBAC model.

2.2. Constraints

Constraints are an important aspect of access control and

are a powerful mechanism for laying out a higher-level

organizational policy [7]. Consequently, the specification of

constraints needs to be considered. This issue has become

crucial in the RBAC. There are several works such as Refs.

[13,14] that deal with constraints in the context of RBAC.

These previous works, however, are preliminary and

tentative, and need substantial further development. Most

prior work has focused on separation of duty constraints

[15]. Chen and Sandhu [13] suggested how constraints

could be specified. Giuri and Iglio [14] defined a new model

to provide the capability of defining constraints on roles. In

their model, a role is defined as a named set of constrained

protection domains (NSCPD) that is activatable only if the

corresponding constraint is satisfied. Their description

focused on the activation of roles. But we should also

consider that constraints be applied to other components in

RBAC. Jaeger and Tidswell [9] proposed a constraint

specification framework in which constraints are rep-

resented with graphical language expressions. Jajodia et al.

[16] introduced a language based authorization constraints

specification. While these language-based approaches have

been presented, these tend to lack the notion of role.

Recently, Ahn and Sandhu [8] introduced a formal

language, called RCL2000 and identified the major classes

of constraints in RBAC such as prohibition constraints and

obligation constraints, including cardinality constraints.

Also Ferraiolo et al. [24] clearly identified and formalized

separation of duty constraints as major constraints in NIST

RBAC model. In this paper, we try to accommodate these

well-known constraints using UML and OCL. Our UML

representation could be extended to include other static and

dynamic constraints but it remains for future work.

2.2.1. Prohibition constraints

In organizations, we need to prevent a user from doing

(or being) something that he is not allowed to do (or be)

based on organizational policy. Prohibition constraints are

constraints that forbid the RBAC component from doing (or

being) something that is not allowed to do (or be). A

common example of prohibition constraints is separation of

duty (SOD). SOD is a fundamental technique for preventing

fraud and errors, known and practiced long before the

existence of computers. We can consider the following

statement as an example of this type of constraint: if a user is

assigned to purchasing manager, he cannot be assigned to

accounts payable manager. This statement requires that the

same individual cannot be assigned to both roles that are

declared mutually exclusive.

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657 651



2.2.2. Obligation constraints

We also need to force a user to do (or be) something

that he is allowed to do (or be) based on organizational

policy. We derived another class of constraints from this

motivation. Obligation constraints are constraints that force

the RBAC component to do (or be) something. The

motivation of this class is from a constraint that requires a

user to have certain combinations of roles in user-role

assignment. We name this type of constraints as prerequi-

site constraints. There is another constraint that requires that

certain roles should be simultaneously active in the same

session in the simulation of lattice-based access control in

RBAC [17].

2.2.3. Cardinality constraints

Another constraint is a numerical limitation for the

number of users, roles, and sessions. For example, only one

person can fill the role of department chair; similarly, the

number of roles (sessions) an individual user can belong to

(activate) could be constrained.

3. Related technologies

3.1. Unified Modeling Language

The UML is a general-purpose visual modeling language

in which we can specify, visualize, and document the

components of software systems. It captures decisions and

understanding about systems that must be constructed [18].

The UML has become a standard modeling language in the

field of software engineering [19].

The UML consists of functional, static, and dynamic

models. In a functional model, the functional requirements

of systems are specified using use case diagrams. A use case

defines the services that a system provides to users. A static

model provides a structural view of information in a system.

Classes are defined in terms of their attributes and

relationships. The relationships include association, gen-

eralization/specialization, and aggregation of classes. A

dynamic model shows a behavioral view of a system. It can

be described with collaboration diagrams, sequence dia-

grams, and statechart diagrams. A collaboration diagram

and sequence diagram are developed to capture how objects

collaborate with each other to execute a use case. State

dependent views of objects are defined in statechart

diagrams.

In this paper, we take class diagrams, use case diagrams,

and object collaboration diagrams for a static view, a

functional view, and a dynamic view of the RBAC model,

respectively. In the rest of this paper, we use UML notations

introduced in Refs. [19–21].

3.2. Object Constraint Language

The OCL [21,22] is an expression language that describes

constraints on object-oriented models. A constraint is a

restriction on one or more values of an object-oriented

model. OCL is an industrial standard for object-oriented

analysis and design. Each OCL expression is written in the

context of an instance of a specific type. In an OCL

expression, the reserved word self is used to refer to the

contextual instance. The type of the context instance of an

OCL expression is written with the context keyword,

followed by the name of the type. The label inv: declares the

constraint to be an invariant constraint. For example,

suppose that employees work for a company and they are

involved in projects. These relationships can be modeled

using the class model of the UML. If the context is

Company, then self refers to an instance of Company. The

following shows an example of OCL constraint expression

describing a company that has more than 200 employees:

context Company inv:

self.employee ! size . 200

The self.employee is a set of employees that is selected

by navigating all the classes such as Company and

Employee classes through an association. The ‘.’ stands

for a navigation. A property of a set is accessed by using an

arrow ‘ ! ’ followed by the name of the property. A

property of the set of employees is expressed using a

keyword ‘size’ in this example.

The following shows another example describing that an

employee can join a project A only if the employee is

already involved in a project B:

context Employee inv:

self.project ! includes(‘A’) implies self.project !

includes(‘B’)

The self.project ! includes(‘A’) means that the project

A is an element of projects in which an employee is

involved. The implies statement is true if self.project !

includes(‘A’) is false, or if self.project ! includes(‘A’) and

self.project ! includes(‘B’) are true.

An OCL expression delivers a subset of a collection.

That is, the OCL has special constructs to specify a selection

from a specific collection. For example, the following OCL

expression specifies that the collection of employees whose

age is over 50 is not empty:

context Company inv:

self.employee ! select(age . 50) ! notEmpty

The ‘select’ takes an employee from self.employee and

evaluates an expression (age . 50) for the employee. If this

evaluation result is true, then the employee is in the result set.

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657652



4. Practical transition towards an application

4.1. UML-representation of RBAC

Major components in RBAC are users, roles, per-

missions, sessions, and constraints. In order to represent

RBAC model using UML, we analyze each component with

a notion of object class. In Sections 4.1.1–4.1.3, our

analysis is specified by three different views such as static,

functional, and dynamic views.

4.1.1. Static view

The conceptual static model for RBAC is depicted in Fig. 2.

It contains classes, relationships between classes, and

cardinalities in relationships. The basic entities are user,

role, permission, constraint, and session classes. The per-

mission class is represented as a relationship between

operations and objects. The constraints in the RBAC model

can have various forms, which are dependent on application

systems. In order to simplify the analysis model, the constraint

in our static model has only five constraints such as user

constraint, permission constraint, session constraint, per-

mission constraint, and separation of duty constraint. Also,

the static model has a special class called session hour. This

class is used when a user establishes a session to activate her/

his roles. This notion is useful to express session-based

constraint. For example, an organization may require that a

user can establish her/his session only during the certain

amount of time. In order to enforce this kind of constraints,

we need to keep track of session hours for each session.

In the static model, UA relation and PA relation are

represented as ‘Assigned to’ relation with a many-to-many

cardinality. User-session relation is viewed as a user can

establish one or more sessions to activate at least one or

more roles per each session with the constant session

lifetime. The role inheritance relation is shown as well.

4.1.2. Functional view

Next, we make more concrete functional requirements to

represent functions in RBAC systems. The functional view

is depicted in Fig. 3 using the use case model that has three

actors such as a security administrator, a user, and a role

domain engineer. The role domain engineer organizes a set

of permissions, constructs role hierarchies, and specifies

constraints. The security administrator who administrates a

role-based system may assign users to roles and assign

permissions to roles. The user who would be real persons or

external systems may establish sessions, make a request to

perform an operation on an object, and close sessions.

The following shows the brief specification of the

Session Establishing use case:

Use case: Session Establishing use case

Actors: User

Precondition: System idle

Description: A user presents information for establish-

ing a session.

Fig. 2. Class diagram (static view).

Fig. 3. Use case model.

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657 653



System displays the roles that a user can activate. The

user selects roles to activate. System activates a session

with the roles that the user selected.

After a user establishes her/his session with selected

roles, the user may need to access the system resources

requiring authorization procedures that should be based on

her/his role information. In other words, the permissions

that are associated with her/his roles should be approved by

the system. The following shows the brief specification of

such a use case, called Permission Checking use case:

Use case: Permission Checking use case

Actors: User

Precondition: A session was activated by a user.

Description: A user makes a request to perform an

operation on an object.

System notifies a user whether or not the permission is

approved.

In this paper, the limited functions are inferred from the

RBAC model. We may also consider other functions in the

RBAC system that may be articulated. For example, we may

require additional functions for monitoring sessions

initiated by a security administrator or inquiring a session’s

status initiated by a user.

4.1.3. Dynamic view

In the dynamic view, the use cases are refined to show the

interactions among the objects in each use case. The

collaboration diagram for the session establishment is

depicted in Fig. 4, where a user initiates the use case

through a user interface, and RBACController coordinates

interactions between the objects in the use case. The

collaboration diagram for permission checking is shown in

Fig. 5, where it requires a precondition that a session needs

to be activated before the execution of permission checking

use case. The complete descriptions of each diagram are

described in Table 1.

4.2. Constraints specification

The conceptual static model (see Fig. 2) contains classes,

their attributes, and their relationships. The basic entities are

user, role, permission, constraint, and session classes. Each

class has an attribute, that is, a name, which can be an

identification of instance of the class. In the class model, the

UA and PA relations indicate that users can be assigned to

roles and permissions can be assigned to roles, respectively.

Next, we need to express constraints that regulate the

construction and the activities of each class from this UML

representation. Our expression includes separation of duty

constraints, prerequisite constraints, and cardinality

constraints.

4.2.1. Separation of duty constraints

Separation of duty is a well-known principle for

preventing fraud by identifying conflicting roles—such as

Purchase Manager and Accounts Payable Manager—and

ensuring that the same individual can belong to at most one

conflicting role. We may apply this conflicting notion to

other components such as user and permission in RBAC.

The concept of conflicting permissions defines conflict in

terms of permissions rather than roles. Thus the permission

to issue purchase orders and the permission to issue

payments are conflicting, irrespective of the roles to which

they are assigned. Conflict defined in terms of roles allows

conflicting permissions to be assigned to the same role by

error (or malice). Conflict defined in terms of permissions

eliminates this possibility. In the real world, we may also

have a notion of conflicting users based on organizational

policy. The following examples show how we can specify

this type of constraints using OCL.

Example 1. Conflicting roles cannot be assigned to the

same user. Consider two mutually exclusive roles such as

accounts payable manager and purchasing manager. Mutual

exclusion specifies that one individual cannot have both

roles. This constraint on UA can be specified using the OCL

expression as follows:

Fig. 4. Collaboration diagram (session establishment).
Fig. 5. Collaboration diagram (permission checking).

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657654



context User inv:

let M: Set ¼ {{accounts payable manager, purchasing

manager},…} in

M ! select(mlself.role ! intersection(m) !

size . 1) ! isEmpty

This constraint expression selects all mutually exclusive

sets, checks all roles assigned to each user, and determines

whether the user has more than one mutually exclusive role.

Hence, this expression ensures that a user can have at most

one of mutually exclusive roles.

Example 2. Conflicting permissions cannot be assigned to

the same role. This example says that a user can have, at

most, one conflicting permission acquired through roles

assigned to the user. This constraint is a stronger

formulation than Example 1, which prevents mistakes in

role-permission assignment. Suppose we have two conflict-

ing permissions such as ‘prepare check’ and ‘issue check’.

The OCL expression is as follows:

context Role inv:

let M: Set ¼ {{prepare check, issue check},…} in

M ! select(mlself.permission ! intersection(m) !

size . 1) ! isEmpty

Example 3. Conflicting users cannot be assigned to the

same role. Conflicting users should also be considered. For

example, for the process of preparing and approving

purchase orders in the purchasing manager role, it might

be company policy that members of the same family should

not prepare the purchase order, and also be a user who

approves that order. The following expression ensures that

two conflicting users, user a and user b, cannot be assigned

to the same role.

context Role inv:

let M: Set ¼ {{user a, user b},…} in

M ! select(mlm ! intersection(self.user !

select(self.name ¼ ‘purchase manager’)) !

size . 1) ! isEmpty

Example 4. Conflicting roles cannot be activated in the

same session. This example is a simple dynamic separation

of duty constraint. Suppose that a user has the supervisor

roles and inherits permissions from both accounts payable

manager role and purchasing manager role. It may be

acceptable for the user not to activate these two conflicting

roles at the same time. The following is OCL expression

about this constraint.

context User inv:

let M: Set ¼ {{accounts payable manager, purchasing

manager},…} in

M ! select(mlm ! intersection(self.session.role) !

size . 1) ! isEmpty

4.2.2. Prerequisite constraints

This constraint is based on the concept of prerequisite

Table 1

Use cases of session establishment and permission checking

Session establishment Permission Checking

[S1] A user inputs information for establishing a session

[S1.1–1.7] User Interface sends session establishment input to RBAC

Controller. RBAC Controller requests user roles from User entity.

User entity replies user roles to RBAC Controller. If user roles from

User entity are not available, RBAC Controller notifies the user

through User Interface. RBAC Controller requests the user’s subroles

from Role entity. Role entity infers the user’s subroles and replies

the subroles to RBAC Controller. RBAC Controller sends the user’s

roles to User Interface. User interface displays roles that the

user can select for activating the session

[S2] The user selects roles that s/he wants to activate

in a session

[S2.1–2.8] User interface sends input for the session activation to

RBAC Controller. RBAC Controller requests

Session Constraint entity to check for conflicts among the roles

that the user selected. Session Constraint entity checks conflicts

with the roles and replies the result to RBAC Controller. If

the roles that user selected have conflicts, RBAC Controller notifies

the user through User Interface. RBAC Controller requests opening a

session from Session entity. Session entity requests setting time from

Session entity. Session entity replies a session name to RBAC

Controller. RBAC Controller sends the session name to User

Interface. User Interface displays the session name

[P1] A user inputs information for session approval that includes

a session name and a permission that s/he requests

[P1.1] User interface sends the permission approval input to

RBAC Controller

[P1.2] RBAC Controller requests activated roles from

Session entity

[P1.3] Session entity replies the user’s activated roles to RBAC

Controller. If a session name from the user is not available,

RBAC Controller notifies the user through User Interface

[P1.4] RBAC Controller requests the subroles of the user’s

activated roles from Role entity

[P1.5] Role entity infers the subroles and replies them to

RBAC Controller

[P1.6] RBAC Controller requests a permission approval from

Permission entity, sending the user’s activated roles, their

subroles, and the permission that the user want to get the

approval

[P1.7] Permission entity checks permissions for the roles and

sends an approval to RBAC Controller. If the permission is

not approved, RBAC Controller notifies the user through

User Interface

[P1.8] RBAC Controller sends the approval to User Interface

[P1.9] User Interface displays the approval to the user

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657 655



roles introduced in Ref. [1]. For example, a user can be

assigned to the engineer role only if the user already is

assigned to the employee role. It ensures that only users who

are already assigned to the employee role can be assigned to

the engineer role. We call this kind of constraint as

prerequisite-role constraints. The following examples

demonstrate that OCL can also specify prerequisite

constraints.

Example 5. A user can be assigned to role r1 only if the user

is already a member of role r2. Mostly, the prerequisite role

is junior to the new role being assumed. Consider only those

users who are already members of the project_team role can

be assigned to the tester role within that project. This

constraint can be specified as follows:

context User inv:

self.role ! includes(‘tester’) implies self.role !

includes(‘project_team’)

Example 6. A permission p can be assigned to a role only if

the role already possesses permission q. This constraint is

the dual form of Example 5. For instance, in many systems

permission to read a file requires permission to read the

directory in which the file is located. Assigning the former

permission without the latter would be incomplete. This

constraint on PA can be specified using the OCL expression

as follows:

context Permission inv:

self.role ! includes(‘read file’) implies self.role !

includes(‘read directory’)

4.2.3. Cardinality constraints

Another constraint type is a numerical limitation for

classes in a role-based system. This numerical limitation

may vary depending upon the organizational policy. We

show that OCL can specify these constraints without any

extension of language.

Example 7. Numerical limitation N that exists for the

number of users authorized for a role cannot be exceeded.

This example limits the number of users to be assigned to a

role. Suppose there is only one person in the role of

chairman of a department. The chairman role should be

assigned to only one user. The OCL expression for this

constraint on UA can be as follows:

context Role inv:

self.user ! select(ulself.name ¼ ‘chairman’) !

size ¼ 1

Example 8. Numerical limitation N that exists for the

number of sessions a user can have active at the same time.

This example limits the number of sessions to be activated

by a user. For example, a user is allowed to activate only

two sessions at the same time. This constraint can be

specified using OCL as follows.

context User inv:

self.session ! size # 2

5. Concluding remarks

We have demonstrated how a well-known model can be

represented using software engineering tools. Rather than

simply enumerating each component in RBAC model, we

showed UML-based analysis model using class diagrams,

use case diagrams, and object collaboration diagrams. Also,

we have shown how authorization constraints for role-based

systems can be specified using an industrial standard

constraints specification language, OCL. We have specified

separation of duty constraints, prerequisite constraints and

cardinality constraints, OCL. As a result, we can represent a

formal security model so that system developers may

understand components and requirements on secure role-

based systems development. This issue has rarely been

addressed in the literature. We believe that our framework

can be a basis in developing role-based systems built upon

formal RBAC models.

There is room for much additional work with our

approach. Based on this work, we would investigate how

each component and functional specifications in NIST

RBAC model can be fully represented with UML. Also, the

validation of OCL specifications and time-based constraints

will be studied. A case study for validating our specifica-

tions using an OCL parser [23] is currently under

investigation.

References

[1] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, Role-based

access control models, IEEE Computer 29 (2) (1996) 38–47.

[2] J. Joshi, A. Ghafoor, W. Aref, E. Spafford, Digital government

security infrastructure design challenges, IEEE Computer 34 (2)

(2001) 66–72.

[3] P. Epstein, R. Sandhu, Towards a UML based approach to role

engineering, Proceedings of the Fourth ACM Workshop on Role-

based Access Control, Fairfax, VA, 1999, October 28–29, pp. 135–

142.

[4] C. Youman, E. Coyne, R. Sandhu (Eds.), Proceedings of the Second

ACM Workshop on Role-based Access Control, Fairfax, VA, 1997,

November 6–7.

[5] C. Youman, E. Coyne, R. Sandhu (Eds.), Proceedings of the Third

ACM Workshop on Role-based Access Control, Fairfax, VA, 1998,

October 22–23.

[6] R. Sandhu, D. Derraiolo, R. Kuhn, The NIST model for role-based

access control: towards a unified standard, Proceedings of Fifth ACM

Workshop on Role-based Access Control, Berlin, Germany, 2000,

July.

[7] T. Jaeger, On the increasing importance of constraints, Proceedings of

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657656



the Fourth ACM Workshop on Role-based Access Control, Fairfax,

VA, 1999, October 28–29, pp. 135–142.

[8] G.-J. Ahn, R. Sandhu, Role-based authorization constraints specifica-

tion, ACM Transactions on Information and Systems Security 3 (4)

(2000).

[9] T. Jaeger, J. Tidswell, Practical safety in flexible access control

models, ACM Transactions on Information and Systems Security 4

(3) (2002) in press.

[10] D. Ferraiolo, R. Kuhn, Role-based access controls, Proceedings of the

15th NIST–NCSC National Computer Security Conference, Balti-

more, MD, 1992, October 13–16, pp. 554–563.

[11] M.Y. Hu, S.A. Demurjian, T.C. Ting, User-role based security in the

ADAM object-oriented design and analyses environment, in: J.

Biskup, M. Morgernstern, C. Landwehr (Eds.), Database Security

VIII: Status and Prospects, North-Holland, Amsterdam, 1995.

[12] I. Mohammed, D.M. Dilts, Design for dynamic user-role-based

security, Computers and Security 13 (8) (1994) 661–671.

[13] F. Chen, R. Sandhu, Constraints for role based access control,

Proceedings of the First ACM Workshop on Role-Based Access

Control, Gaithersburg, MD, 1995, November 30–December 1, pp.

39–46.

[14] L. Giuri, P. Iglio, A formal model for role-based access control with

constraints, Proceedings of Ninth IEEE Computer Security Foun-

dations Workshop, Kenmare, Ireland, 1996, June, pp. 136–145.

[15] R. Simon, M. Zurko, Separation of duty in role-based environments,

Proceedings of 10th IEEE Computer Security Foundations Workshop,

Rockport, MA, 1997, June, pp. 183–194.

[16] S. Jajodia, P. Samarati, V. Subrahmanian, A logical language for

expressing authorizations, Proceedings of the IEEE Symposium on

Security and Information Privacy, Oakland, CA, 1997, May, pp. 31–

42.

[17] R.S. Sandhu, Role hierarchies and constraints for lattice-based access

controls, in: E. Bertino (Ed.), Proceedings of the Fourth European

Symposium on Research in Computer Security, Rome, Italy, Springer,

Berlin, September 25–29, 1996, Published as Lecture Notes in

Computer Science, Computer Security (ESORICS96).

[18] M. Shin, G.-J. Ahn, UML-based representation of role-based access

control, Proceedings of Fifth IEEE International Workshop on

Enterprise Security, WETICE 2000, NIST, MD, 2000, June 14–16.

[19] J. Rumbaugh, G. Booch, I. Jacobson, The Unified Modeling Language

Reference Manual, Addison-Wesley, Reading, MA, 1999.

[20] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language

User Guide, Addison-Wesley, Reading, MA, 1999.

[21] OMG Web site, Unified modeling language notation guide, Version

1.3, September 2000.

[22] J. Warmer, A. Kleppe, The Object Constraint Language: Precise

Modeling with UML, Addison-Wesley, Reading, MA, 1999.

[23] IBM Web site, OCL Parser, Version 0.3, 1999.

[24] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R. Chandramouli,

Proposed NIST standard for role-based access control, ACM

Transactions on Information and Systems Security 4 (3) (2001).

G.-J. Ahn et al. / Information and Software Technology 44 (2002) 649–657 657


	Reconstructing a formal security model
	Introduction
	RBAC model
	Role-based access control model
	Constraints

	Related technologies
	Unified Modeling Language
	Object Constraint Language

	Practical transition towards an application
	UML-representation of RBAC
	Constraints specification

	Concluding remarks
	References


