
Remote Attestation with Domain-Based
Integrity Model and Policy Analysis

Wenjuan Xu, Xinwen Zhang, Member, IEEE, Hongxin Hu, Student Member, IEEE,

Gail-Joon Ahn, Senior Member, IEEE, and Jean-Pierre Seifert, Member, IEEE

Abstract—We propose and implement an innovative remote attestation framework called DR@FT for efficiently measuring a target

system based on an information flow-based integrity model. With this model, the high integrity processes of a system are first

measured and verified, and these processes are then protected from accesses initiated by low integrity processes. Toward dynamic

systems with frequently changed system states, our framework verifies the latest state changes of a target system instead of

considering the entire system information. Our attestation evaluation adopts a graph-based method to represent integrity violations,

and the graph-based policy analysis is further augmented with a ranked violation graph to support high semantic reasoning of

attestation results. As a result, DR@FT provides efficient and effective attestation of a system’s integrity status, and offers intuitive

reasoning of attestation results for security administrators. Our experimental results demonstrate the feasibility and practicality of

DR@FT.

Index Terms—Remote attestation, platform integrity, security policy, policy analysis.

Ç

1 INTRODUCTION

IN distributed computing environments, it is crucial to
measure whether a remote party runs buggy, malicious

application codes or is improperly configured. Remote
attestation techniques have been proposed for this purpose
by analyzing the integrity of a remote system to determine its
trustworthiness. Typical attestation mechanisms are de-
signed based on the following steps. First, an attestation
requester (attester) sends a challenge to a target system
(attestee), which responds with the evidence of the integrity of
its hardware and software components. Second, the attester
derives runtime properties of the attestee and determines the
trustworthiness of the attestee. Finally and optionally, the
attester returns an attestation result, such as integrity status,
to the attestee.

Various attestation approaches and techniques have been
proposed. Trusted Computing Group (TCG) [1] introduces
trusted platform module (TPM) which enables integrity
measurements of a remote system. In addition, integrity
measurement mechanisms facilitating the capabilities of
TPM at application level have been proposed. For instance,
Integrity Measurement Architecture (IMA) [2] is an imple-
mentation of TCG approach to provide verifiable evidence

with respect to the current runtime state of a measured
system. Moreover, several attestation methods have been
introduced to address privacy properties [3], system beha-
viors [4], and information flow model [5]. However, existing
approaches have several limitations that obstruct their wide
deployment in real systems. First of all, TCG-based mechan-
isms are inefficient, since IMA need to verify all software
components of a running system. Furthermore, without a
build-in runtime integrity model, an attestation verification
procedure cannot evaluate the integrity status with respect to
the trust level of the system. The problems become worse
when the attestation target is a dynamic system with
continuously changing states due to some system-centric
events, such as security policy updates and software package
installations. Last but not least, existing attestation mechan-
isms cannot provide an effective and intuitive way to
represent attestation results and reflect such results in
integrity violation resolution.

Toward a systematic attestation solution, we propose an
efficient remote attestation framework, called dynamic
remote attestation framework and tactics (DR@FT), to
address aforementioned issues. Our framework is based
on a domain-based integrity model to describe the integrity
status of a system with information flow control. With this
property, the high integrity processes of a system are first
measured and verified, and these processes are then
protected from accesses initiated by low integrity processes
during runtime. In other words, the protection of high
integrity process is verified by analyzing security policies
and ensuring that the policies are correctly enforced.
Having this principle in place, DR@FT enables us to verify
whether certain applications (domains) in the attestee
satisfy integrity requirements without verifying all compo-
nents of the system. To accommodate the dynamic nature
of a system, DR@FT only verifies the latest changes in a
system state, instead of considering the entire system
information for each attestation inquiry. Through these two

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012 429

. W. Xu is with the Department of Computer Science and Information
Technologies, Frostburg State University, 101 Braddock Road Frostburg,
MD 21532. E-mail: wxu@frostburg.edu.

. X. Zhang is with Huawei Research Center, 1711 Winston Street, San Jose,
CA 95131. E-mail: xinwen.zhang@huawei.com.

. H. Hu and G.-J. Ahn are with Ira A. Fulton School of Engineering,
Arizona State University, PO Box 878809, Tempe, AZ 85287.
E-mail: {hxhu, gahn}@asu.edu.

. J.-P. Seifert is with Deutsche Telekom Laboratories and Technical
University of Berlin, Fakultat IV, Sekr. TEL11, Ernst-Reuter-Platz 7,
Berlin 10587, Germany. E-mail: jean-pierre.seifert@telekom.de.

Manuscript received 27 Dec. 2010; revised 31 Aug. 2011; accepted 4 Nov.
2011; published online 7 Dec. 2011.
Recommended for acceptance by X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2010-12-0238.
Digital Object Identifier no. 10.1109/TDSC.2011.61.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

tactics, our framework is able to achieve an efficient
attestation to the target system. Also, DR@FT adopts a
graph-based information flow analysis mechanism to
examine security policy violations based on our integrity
model, which helps cognitively identify suspicious infor-
mation flows in the attestee. To further improve the
efficiency of security violation resolution, we propose a
ranking scheme for prioritizing policy violations, which
provides a method for describing the trustworthiness of
different system states with risk levels.

Overall, the contribution of this paper is three-fold:

. First, we propose a domain-based integrity model to
describe the integrity and thus trustworthiness of a
general computing system. Built on information flow
control, the model is leveraged to identify the
trusted computing base (TCB) of a system (system
TCB) and trusted subjects and objects of an applica-
tion domain (domain TCB). For integrity protection
purpose, we define information flow control rules to
protect the integrity of system TCB and domain
TCBs. Our integrity model and information flow
control rules serve as a theoretical foundation for
attesting the trustworthiness of a system.

. We then introduce DR@FT along with its architec-
ture, protocols, and algorithms for measuring TCB
subjects and objects, reporting measurements to
attester, and evaluating integrity status of the
attestee based on our proposed integrity model.
We present the tactics to achieve efficient attestation
processing with the measurements of TCB subjects
at attestee side and accelerated verification proces-
sing based on policy update at attester side.

. To assist integrity verification, we also develop a
graph-based policy analysis tool, which automati-
cally checks possible integrity flow violations based
on our integrity model. Based on a set of information
flow control rules, our graph-based analysis tool
further provides intuitiveness on how to resolve
violations, which can be sent as the attestation result
to the attestee. To measure the risks of variant
information flow violations, we further propose a
ranked policy violation graph, which can be used to
guide the system administrator for effectively resol-
ving identified violations.

This paper is organized as follows: Section 2 briefly
overviews existing system integrity models, policy analysis,
and attestation mechanisms. Section 3 describes our
domain-based integrity model which provides a theoretical
foundation of DR@FT. Section 4 presents design require-
ments and attestation procedures of DR@FT. We then
illustrate our graph-based policy analysis tool in Section 5,
followed by an introduction of our ranked policy violation
graph and its application. We elaborate the implementation
details and evaluation results in Section 7. Section 8
concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Integrity Models

To describe and maintain the integrity status of a system,
there exist various information flow-based integrity
models such as Biba [6], LOMAC [7], Clark-Wilson [8],

and CW-Lite [9]. Biba integrity property is fulfilled if a
high-integrity process cannot read/execute a lower integ-
rity object, nor obtains lower integrity data in any other
manner. LOMAC allows high-integrity processes to read
lower integrity data, while downgrades the process’s
integrity level to the lowest integrity level that has ever
been activated. Clark-Wilson provides a different view of
dependencies, which states information flow from low-
integrity objects to high-integrity objects through a specific
program called transaction procedures (TP). Later, the
concept of TP is evolved as a filter in the CW-Lite model.
The filter can be a firewall, an authentication process, or a
program interface for downgrading or upgrading the
privileges of a process.

With existing integrity models, there is a gap between
concrete measurements of a system’s components and the
verification of its integrity status. We believe an application-
oriented and domain-centric approach accommodates the
requirements of attestation evaluation better than directly
adopting an abstract model. For example, in a Linux system, a
subject in traditional integrity models corresponds to a set of
processes, which belong to a single application domain. A
more concrete instance is that an Apache domain may include
various process types such as httpd_t, http_sysadm_
devpts_t, and httpd_prewikka_script_t, and all of
these types may have information flows among them, which
should be regarded as a single-integrity level. Also, sensitive
objects in a domain should share the same integrity protection
of its subjects. In this paper, we propose a domain-based
isolation model to capture the essence of application- or
domain-centric integrity requirements.

2.2 Policy Analysis

Jaeger et al. [10] and Shankar et al. [11] use a tool called
Gokyo for checking the integrity of a proposed TCB for
SELinux [12]. Also, they attempt to implement their ideas in
an automatic manner. Gokyo mainly identifies a common
TCB in SELinux but a typical system may have multiple
applications and services with variant trust relationships.
Achieving the integrity assurance for these applications and
services was not addressed in Gokyo. Policy analysis on
SELinux is further proposed in [13] toward MLS security
properties.

Several query-based policy analysis tools have been
developed. APOL [14] is a tool developed by Tresys
Technology to analyze SELinux policies by computing an
information flow relation and the transitive closure of the
relation. Security Enhanced Linux Analysis Tool (SLAT) [15]
defines an information flow model and policies are
analyzed based on this model. Policy Analysis using Logic
Programming (PAL) [16] uses SLAT information flow
model to implement a framework for analyzing SELinux
policies. All these tools try to provide a way for querying
policies. However, they only display policies and policy
query results in a text-based fashion, which is difficult to
understand for policy developers or security administrators.

To overcome these limitations, we have developed a
graph-based methodology for identifying and expressing
interested information flows in SELinux policies [17]. We
have also proposed a policy analysis mechanism using Petri
Nets presented in [18]. However, these tools and mechanisms

430 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

are limited in identifying system TCB and domain TCBs, but
do not have the capability of identifying and ranking
integrity violations thus providing evidential support for
attestation results.

2.3 Remote Attestation

TCG specifications [1] define mechanisms for a TPM-
enabled platform to report its current hardware and
software configuration status to a remote challenger. A
TCG attestation process is composed of two steps: 1) an
attestee platform measures hardware and software com-
ponents starting from BIOS block and generates a hash
value. The hash value is then stored into a TPM Platform
Configuration Register (PCR). Recursively, it measures
BIOS loader and operating system (OS) in the same way
and stores them into TPM PCRs; 2) an attester obtains the
attestee’s digital certificate with an attestation identity key
(AIK), AIK-signed PCR values, and a measurement log file
from the attestee which is used to reconstruct the attestee
platform configuration, and verifies whether this config-
uration is acceptable. From these steps, we notice that TCG
measurement process is composed of a set of sequential
steps including the bootstrap loader. Thus, TCG does not
provide effective mechanisms for measuring a system’s
integrity beyond the system boot, especially considering
the randomness of executable contents loaded by a
running OS.

IBM IMA [2] extends TCG’s measurement scope to
application level. A measurement list M is stored in OS
kernel and composed of m0 . . .mi corresponding to loaded
executable application codes. For each loaded mi, an
aggregated hash Hi is generated and loaded into TPM
PCR, where H0 ¼ Hðm0Þ and Hi ¼ HðHi�1kHðmiÞÞ. Upon
receiving the measurements and TPM-signed hash value,
the attester proves the authentication of measurements by
verifying the hash value, which helps to determine the
integrity level of the platform. However, IMA requires to
verify the entire components of the attestee platform while
the attestee may only demand the verification of certain
applications. Also, the integrity status of a system is
validated by testing each measurement entry indepen-
dently, and it is impractical to disregard newly installed
untrusted applications or data from the untrusted network.

PRIMA [5] is an attestation mechanism based on IMA
and CW-Lite integrity model [9], and attempts to improve
the efficiency of attestation by verifying only codes, data,
and information flows related to trusted subjects. On one
hand, PRIMA needs to be extended to capture the dynamic
nature of system states such as software and policy updates,
which could be an obstacle for maintaining the efficiency.
On the other hand, PRIMA only represents an attestation
result with binary decisions (either trust or distrust) and
does not give semantic information about how much the
attestee platform can be trusted.

Property-based attestation [3] is an effort to protect the
privacy of a platform by collectively mapping related
system configurations to attestation properties. For exam-
ple, “SELinux-enabled” is a property which can be mapped
to a system configuration indicating that the system is
protected with an SELinux policy. That is, this approach
prevents the configurations of a platform from being

disclosed to a challenger. However, due to the immense
configurations of the hardware and software of the plat-
form, mapping all system configurations to properties is
infeasible and impractical.

Semantic remote attestation [4] is proposed with a
trusted virtual machine running on a platform. Through
monitoring the policy attached to a running software, its
behavior is verified. However, this approach does not
define the correct behavior of a security policy with respect
to integrity, which leads the attestation to be intractable.
Behavior-based attestation [19] attempts to attest system
behaviors based on an application level policy model. Such
a model-based approach may not comprehensively realize
the complex behaviors of dynamic systems.

3 DOMAIN-BASED INTEGRITY MODEL

According to TCG and IMA, the trustworthiness of a
system is described with the measured integrity values
(hash values) of loaded software components. However,
the measurement efficiency and attestation effectiveness
are major problems of these approaches since 1) too many
components have to be measured and tracked, 2) too many
known-good hash values are required from different
software vendors or authorities, and 3) runtime integrity
cannot be guaranteed and verified. Fundamentally, in
order to trust a single application of a system, every
software component in the system has to be trusted;
otherwise the attestation result should be negative. In our
work, we believe that the trustworthiness of a system is
tightly related to the integrity status, which is, in turn,
described by a set of integrity rules that are enforced by
the system. If any of the rules is violated, it should be
detected. Hence, so as to trust a single application domain,
we just need to ensure the TCB—including reference
monitor and integrity rules protecting the target applica-
tion domain—is not altered.

Based on this anatomy, we introduce domain-based
isolation principles for integrity protection, which are the
criteria to describe the integrity status of a system as well as
its trustworthiness. We first propose general methodologies
to identify high-integrity processes, which include system
TCB and domain TCB. We then specify security rules for
protecting these high-integrity processes.

3.1 System TCB

The concept of system TCB (TCBs) is similar to that of
traditional TCB [20], which can be identified along with the
subjects functioning as the reference monitor of a system
[21]. Applying this concept to SELinux [22], for example,
subjects functioning as the reference monitor such as
checkpolicy and loading policy belong to system
TCB. Also, subjects used to support the reference monitor
such as kernel and initial should also be included
into system TCB. With this approach, an initial TCBs can
be identified, and other subjects such as lvm and
restorecon can be added into TCBs based on their
relationships with the initial TCBs. Other optional meth-
ods for identifying TCBs are proposed in [10]. Considering
the similarity of operating systems and configurations, we
expect that the results would be similar. Furthermore, for

XU ET AL.: REMOTE ATTESTATION WITH DOMAIN-BASED INTEGRITY MODEL AND POLICY ANALYSIS 431

the attestation purpose, TCBs also includes integrity
measurement and reporting components, such as kernel
level integrity measurement agent [23] and attestation
request handling agent.

3.2 Domain TCB

In practice, other than TCBs, an application or user-space
service can also affect the integrity and the behavior of a
system. An existing argument [20] clearly states the
situation: “A network server process under a UNIX-like
operating system might fall victim to a security breach and
compromise an important part of the system’s security, yet
is not part of the operating system’s TCB.” Accordingly, a
comprehensive mechanism of policy analysis for TCB
identification and integrity violation detection is desired.
Hence, we introduce a concept called information domain
TCB (or simply domain TCB, TCBd). Let d be an information
domain functioning as a certain application or service
through a set of related subjects and objects. A domain d’s
TCB or TCBd is composed of a set of subjects and objects in
information domain d which have the same level of
integrity. By the same level of integrity, we mean that, if
information can flow to some subjects or objects of a
domain, it can flow to all others in the same domain with
legitimate operations of the application. That is, they need
the same level of integrity protection. Prior to the
identification of TCBd, we first identify the information
domain d based on its main functions and relevant
information flow associated with these functions. For
example, a running web server domain consists of many
subjects-such as httpd process, plugins, and tools, and
other objects-such as data files, config files, and logs.1

The integrity of an object is determined by the integrity
of subjects that have operations on this object. All objects
dependent on TCBd subjects are classified as TCB protected
objects or resources. Thus, we need to identify all TCBd

subjects from an information domain and verify the
assurance of their integrity. To ease this task, a minimum
TCBd is first discovered. In the situation that the minimum
TCBd subjects have dependency relationships with other
subjects, these subjects should be added to domain TCB, or
the dependencies should be removed. Based on these
principles, we first identify initial TCBd subjects which
are predominant subjects for the information domain d. We
further discover other TCBd subjects considering subject
dependency relationships with the initial TCBd through
information flow transitions, which means subjects that can
only flow to and from initial TCBd subjects should be
included into TCBd. For instance, for a web server domain,
httpd is the subject that initiates other web server related
processes. Hence, httpd is the predominant subject and
belongs to TCBd. Based on all possible information flows to
httpd, we then identify other subjects such as httpd-

suexec in TCBd.

3.3 Integrity Protection with Domain Isolation

To protect the identified TCBs and TCBd, we develop
principles similar to those in Clark-Wilson [8]. Clark-
Wilson leverages TP to allow information flow from low-
integrity processes to high-integrity processes. To support

TP, we adopt the concept of filters. Filters can be processes

or interfaces [24] that normally are distinct input informa-

tion channels and are created by a particular operation

such as open(), accept(), or other calls that enable data

input. For example, su process allows a low-integrity

process (e.g., staff) being changed to be a high-integrity

process (e.g., root) by executing passwd process, thus

passwd can be regarded as a filter for processes run by

root privilege. Also, high-integrity process (e.g., httpd

administration) can accept low-integrity information (e.g.,

network data) through the secure channel such as sshd.

Consequently, sshd can be treated as a filter for higher

privilege processes. In general, filters include any available

sanitization process and TP in traditional integrity model.

Since it is usually very difficult to build and completely

verify a sanitization process, we believe it is more

reasonable to assume that the system is in higher trusted

state when any low-to-high information flow is explicitly

authorized by a user.
With the identifications of TCBs, TCBd, and filters for

information domain d, all the other subjects in a system are

categorized as NON-TCB. Our domain-based isolation is

defined as follows:

Definition 1. Domain-based isolation is satisfied for an

information domain d if

. information flows are from TCBd; or

. information flows are from TCBs to either TCBd or
TCBd protected resources; or

. information flows are from NON-TCB to either TCBd

or TCBd protected resources via filter(s).

Deductively, we articulate the rule for integrity evalua-

tion based on domain-based isolation.

Rule 1. If there is information flow from NON-TCB to TCBd

without passing through any filter, there is an integrity

violation related to TCBd protected resources.

Rule 2. Or if there is information flow from NON-TCB or TCBd

to TCBs without passing through any filter, there is an

integrity violation related to TCBs protected resources.

4 DR@FT: DESIGN AND PROCEDURES

DR@FT consists of three main parties: an attestee (the target

platform), an attester (attestation challenger), and a trusted

authority as shown in Fig. 1. The attestee is required to

provide its system state information to the attester for

verification. Here, we assume that the attestee is initially in

a trusted system state and the system state is changed to a

new state after certain system behaviors.
A reporting daemon on the attestee gets the measured

new state information (step 1) with IMA and generates the

policy updates (step 2). This daemon then gets AIK-signed

PCR value(s) and sends to the attester. After the attester

receives and authenticates the information, with the

attestee’s AIK public key certificate from the trusted

authority, it verifies the attestee’s integrity through codes

and data verification (step 3), reporting process authentica-

tion (step 4) and policy analysis (step 5).

432 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

1. Section 7 shows the Apache domain TCB in our evaluation system.

4.1 System State and Trust Requirement

For attestation purpose, a system state is captured as a

snapshot of the attestee system at a particular moment, where

the factors characterizing the state can influence the system

integrity on any future moment of the attestee system. Based

on our domain-based integrity model, the attestee system

integrity can be represented via information flows, which are

characterized by the trusted subject list, filters, policies, and

the trustworthiness of TCBs. Based on these properties, we

define the system state of the attestee as follows:

Definition 2. A system protection state (or simply system

state) at the time period i is a tuple Ti ¼ fTSLi; CDi;

Policyi; Filteri; RProcessig, where

. TSLi ¼ fs0; s1 . . . sng represents a set of high-integ-
rity processes which corresponds to a set of subjects
s0; s1 . . . sn in TCBs and TCBd;

. CDi ¼ fcdðs0Þ; cdðs1Þ . . . cd ðsnÞg is a set of codes
and data for loading a subject sj 2 TSLi;

. Policyi is the security policy currently configured on
the attestee;

. Filteri is a set of processes defined to allow
information flow from low-integrity processes to
high-integrity processes; and

. RProcessi represents a list of processes that measure,
monitor, and report the current TSLi, CDi, Filteri,
and Policyi information. IMA agent and the attesta-
tion reporting daemon are the examples of the
RProcessi.

According to this definition, a system state does not

include a particular application’s running state such as its

memory page and CPU context (stacks and registers). It

only represents the security configuration or policy of an

attestee system. A system state transition indicates one or

more changes in TSLi, CDi, Policyi, Filteri, or RProcessi.

A system state Ti is trusted if TSLi belongs to TCBs [TCBd,

CDi does not contain untrusted codes and data, Policyi
satisfies domain-based isolation, Filteri belongs to defined

filters in domain-based isolation, and RProcessi codes and

data do not contain malicious codes and data and these

RProcessi processes are integrity protected from the

untrusted processes via Policyi.

As mentioned earlier, we assume that there exists an

initial trusted system state T0. Through changing the

variables in T0, the system transits to other states such as

T1; . . . ; Ti. The attestation in DR@FT is to verify whether or

not Ti is trusted.

4.2 Attestation Procedures

4.2.1 Integrity Measurements

The measurement at the attestee side has two different
forms, depending on how much the attestee system changes.
Specifically, in case any subject in TCBs is updated, the
attestee must be fully remeasured from the system reboot
and the attester needs to attest it completely, since this
subject may affect the integrity of subjects in RProcess of
the system such as the measurement agent and reporting
daemon. After the reboot and all TCBs subjects are
remeasured, a trusted initial system state T0 is built. To
perform the remeasurement, the attestee measures a state Ti
and generates the measurement list Mi which is added by
trusted subject list (TSLi) measurement, codes and data
(CDi) measurement, policy (Policyi) measurement, filter
(Filteri) measurement, and attestation process (RProcessi)
measurement, as explained as follows:

. Trusted subject list (TSLi) measurement: with TPM
and measurement mechanisms such as IMA, the
trusted subject list TSLi is measured with a result
mtsl, which is added to a measurement list by
Mi ¼Mikmtsl. HðMiÞ is extended to a particular
PCR of the TPM, where H is a hash function such
as SHA1.

. Codes and data (CDi) measurement: for every
subject sj in TSLi, its codes and data cdðsjÞ are
measured. To specify the mapping relationship, the
measurement mcdsj consists of the information of
cdðsjÞ and sj. After mcdsj is generated, it is added to
the measurement list by Mi ¼Mikmcdsj and its hash
value is extended to PCR.

. Policy (Policyi) measurement: corresponding to
Policyi, the attestee generates the measurement mp,
which is added to the measurement list with
Mi ¼Mikmp, and corresponding PCR is extended
with its hash value.

XU ET AL.: REMOTE ATTESTATION WITH DOMAIN-BASED INTEGRITY MODEL AND POLICY ANALYSIS 433

Fig. 1. Overview of DR@FT.

. Filter (Filteri) measurement: the codes and data of
Filteri are measured as mf , which is extended to the
measurement list Mi ¼Mikmf , and the PCR is
extended.

. Attestation Process (RProcessi) measurement: the
codes and data of AProcessi are measured as mr,
which is added to the measurement list Mi ¼Mikmr,
and the PCR is also extended.

In another case, where there is no TCBs subject

updated and the TSLi or Filteri subjects belonging to

TCBd are updated, the attestee only needs to measure the

updated codes and data loaded by the changed TSL or

filter subjects, and generates a measurement list Mi. The

generation of this measurement list is realized through

the runtime measurement supported by the underlying

measurement agent.
To support both types of measurements, we develop an

attestation reporting daemon which monitors the runtime

measurements of the attestee. In case the runtime measure-

ments for TCBs are changed, the attestee is required to be

rebooted and fully measured with IMA. The measurements

values are then sent to the attester by the daemon. On the

other side, the changed measurement value is measured by

IMA and captured with the reporting daemon only if the

measurement for TCBd is changed. Obviously, this daemon

should be trusted and is included in TCBs. That is, its codes

and data are required to be protected with integrity policy

and corresponding hash values are required to be stored at

the attester side.

4.2.2 Policy Updates

To analyze if the current state of the attestee satisfies

domain-based integrity property, the attester requires

information about the current security policy loaded at

the attestee side. Due to the large volume of policy rules in

a security policy, sending all policy rules in each attestation

and verifying all of them by the attester may cause the

performance overhead. Hence, in DR@FT, the attestee only

generates policy updates from the latest attested trusted

state and sends them to the attester for the attestation of

such updates.
To support this mechanism, we have the attestation

reporting daemon to monitor any policy update on attestee

system and generate a list of updated policy rules. The

algorithm of this operation is shown in Algorithm 1. Upon

the system policy Policyi�1 is changed on state Ti�1, the

daemon process reads the policy rules in the stored security

policy Policy0 of the trusted system state T0 and the current

policy Policyi separately, and compares these rules. Then,

the daemon finds the added, changed, and deleted rules

through functions added, changed, deleted, respectively, and

saves them into the policy update file. Note that the policy

update comparison is performed between the current

updated policy and the stored trusted security policy

Policy0 or previously attested and trusted Policyi�1. The

complexity of this policy update algorithm is O(nr), where

nr represents the number of the policy rules in the new

policy file Policyi.

Algorithm 1. Generating Policy Updates

4.2.3 Codes and Data Verification

With received measurement list Mi and AIK-signed PCRs,
the attester first verifies the measurement integrity by
reconstructing the hash values and compares with PCR
values. After this is passed, the attester performs the analyses.
Specifically, it obtains the hash values of CDi and checks if
they corresponds to known-good fingerprints. Also, the
attester needs to assure that the TSLi belongs to TCBs and
TCBd. In addition, the attester also gets the hash value of
Filteri and ensures that they belong to the filter list defined
on the attester side. In case this step succeeds, the attester has
the assurance that target processes on attestee side are proved
without containing any untrusted code or data, and the
attester can proceed to next steps. Otherwise, the attester
sends a proper attestation result denoting this situation.

4.2.4 Reporting Process Authentication

To prove that the received measurements and updated policy
rules are from the attestee, the attester authenticates them by
verifying that all the measurements, updates, and integrity
measurement agent processes in the attestee are protected.
That is, the RProcessi does not contain any untrusted codes
or data and its measurements correspond to PCRs in the
attester. Also, there is no integrity violated information flow
to these processes from subjects of TSLi, according to the
domain isolation rules. Note that these components can also
be updated, but after any update of these components, the
system should be fully remeasured and attested from the
bootstrap to rebuild a trusted initial system state T0.

4.2.5 Policy Analysis by Attester

DR@FT analyzes policy using a graph-based analysis
method. In this method, a policy file is first visualized

434 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

with a graph. The policy graph is then analyzed against a
predefined security model, such as our domain-based
isolation model, and a policy violation graph is generated.
The main goal of this intuitive approach is to give
semantic information of attestation result to the attestee,
such that system administrators can easily recognize any
violated configuration.

Note that verifying all of the security policy rules in each
attestation request decrease the efficiency, as loading policy
graph and checking all of the policy rules are costly. Thus,
we need to develop an efficient way for analyzing the
attestee policy. In our method, the attester stores the policy
of initial trusted system state T0 or the latest trusted system
state Ti, and loads its corresponding policy graph, which
does not have any policy violation. Upon receiving the
updated information from the attestee, the attester just
needs to analyze these updates to examine if there is new
information flow violating integrity requirements. The
details of graph-based policy analysis are explained in
Section 5.

4.2.6 Attestation Result Sending to Attester

In case the attestation is successful, a new trusted system
state is built and the corresponding information is stored at
the attester side for subsequent attestations. On the other
hand, if the attestation fails, there are several possible
attestation results including any combination of the follow-
ing cases: CDi integrity success/fail, RProcessi un/authen-
ticated, and Policyi success/fail. To assist the attestee
reconfiguration, the attester also sends a representation of
the policy violation graph to the attestee. Moreover, with
this policy violation graph, the attester ranks the violation
graph and measures the trustworthiness of the attestee,
which is explained in Section 6.

5 GRAPH-BASED POLICY ANALYSIS

As we have discussed, existing attestation solutions such as
TCG and IMA lack the expressiveness of the attestation
result. Instead of a boolean value for an attestation result,
DR@FT adopts a graph-based policy analysis mechanism,
where a policy violation graph can be constructed for
identifying all policy violations on the attestee side. We
further introduce a risk model based on a ranking scheme,
which implies how severe the discovered policy violations
are and how efficiently they can be resolved. This section
illustrates the graph-based integrity analysis and violation
identification. We explain the risk model in next section.

5.1 Information Flow and Policy Graph

For information flow purpose, all operations between
subjects and objects in a policy can be classified as
write like or read like [15] and operations between subjects
can be expressed as calls. Depending on the types of
operations, information flow relationships can be identified.
If a subject x can write an object y, there is information flow
from x to y, which is denoted as writeðx; yÞ. On the other
hand, if a subject x can read an object y, there is information
flow from y to x denoted as readðy; xÞ. Another situation is
that if a subject x can call another subject y, there is
information flow from y to x, which is denoted as callðy; xÞ.

Moreover, the information flow relationships between
subjects and objects can be further described through flow
transitions. In a policy, if a subject s1 can write an object o
which can be read by another subject s2, it implies that there
is an information flow transition from subject s1 to subject s2,
denoted as flowtransðs1; s2Þ. Also, if a subject s2 can call a
subject s1, there is a flow transition from s1 to s2. A
sequence of flow transitions between two subjects repre-
sents an information flow path.

With information flow and flow transitions between
subjects and objects, we define a policy graph as follows:

Definition 3. A Policy Graph of a system is a directed graph
G ¼ ðV ;EÞ, where the set of vertices V represents all subjects
and objects in the system, and the set of edges E ¼ V � V
represents all information flow relations between subjects and
objects. That is,

. V � Vo
S
Vs, where Vo and Vs are the sets of nodes that

represent objects and subjects, respectively;
. E � Er

S
Ew

S
Ec. Given the vertices vs1,vs2 2 Vs

separately representing subjects s1 and s2, and
vertices vo 2 Vo representing object o, ðvs1; voÞ 2
Ew if and only if writeðs1; oÞ, ðvo; vs2Þ 2 Er if and
only if readðo; s2Þ, and ðvs1; vs2Þ 2 Ec if and only if
callðs1; s2Þ.

We use semantic substrates to display policies [25]. We
divide a canvas into different areas based on the classifica-
tion of entities (subjects and objects) and then layout nodes
expressing the entities into corresponding areas. We also use
nonspacial cues (e.g., color or shape) to emphasize certain
nodes or a group of nodes. Fig. 2 shows some example policy
rules within a policy graph. The Y -axis is divided into
regions, where each region contains nodes representing
entities such as subjects and objects. Furthermore, in each
region, nodes representing entities of different classifications
are placed in different spaces along with the X-axis. For
subjects and objects in a policy, Sc1 . . .Scn and Oc1 . . .Ocm

separately represent certain classifications. Different colors
and shapes are used to distinguish the identification of
different nodes. Circles and rectangles are used to represent
subjects and objects, respectively. Relationships between
subjects and objects are expressed with lines in different
colors or shapes. For instance, the write operation between
subject s2 and object o2 is expressed with a red link.

5.2 Policy Violation Graph

An information flow represents how data flow among
system subjects. A sequence of information flow transitions

XU ET AL.: REMOTE ATTESTATION WITH DOMAIN-BASED INTEGRITY MODEL AND POLICY ANALYSIS 435

Fig. 2. Policy graph: The link between s2 and o2 represents write
operation, s3 and o2 for read operation, and s4 and s3 for call operation.

between two subjects shows an information flow path.
Applying our domain-based isolation approach, policy
violations can be detected to identify information flows
from low-integrity subjects to high-integrity subjects.
Corresponding information flow paths representing such
policy violations are named violation paths.

Based on domain-based integrity model, we can discover
two kinds of violation paths, direct violation paths and
indirect violation paths. A direct violation path is a one-hop
path through which an information flow can go from a low-
integrity subject to a high-integrity subject. We observe that
information flows are transitive in general. Therefore, there
may exist information flows from a low-integrity subject to
a high-integrity subject via several other subjects. This
multihop path is called indirect violation path. All direct
and indirect violation paths belonging to a domain can
construct a policy violation graph for this domain.

Definition 4. A policy violation graph for a domain d is a

directed graph Gv ¼ ðV v; EvÞ:

. V v � V v
NTCB [V v

TCBd [V v
TCBs where V v

NTCB, V v
TCBd

and V v
TCBs are subject vertices containing in direct or

indirect violation paths of domain d and belong to
NON-TCB, TCBd, and TCBs, respectively.

. Ev � Ev
Nd [Ev

dT [Ev
NT [Ev

NTCB [Ev
TCBd [Ev

TCBs

where

Ev
Nd � ðV v

NTCB � V v
TCBdÞ;

Ev
dT � ðV v

TCBd � V v
TCBsÞ;

Ev
NT � ðV v

NTCB � V v
TCBsÞ;

Ev
NTCB � ðV v

NTCB � V v
NTCBÞ;

Ev
TCBd � ðV v

TCBd � V v
TCBdÞ;

and Ev
TCBs � ðV v

TCBs � V v
TCBsÞ, and all edges in Ev

are contained in direct or indirect violation paths of

domain d.

Fig. 3a shows an example of policy violation graph which
examines information flows between NON-TCB and TCBd.

2

Five direct violation paths are identified in this graph:
<S01; S1>,<S02; S2>,<S03; S2>,<S04; S4>, and<S05; S4> across
all the boundaries between NON-TCB and TCBd. Also, eight
indirect violation paths exist. For example, <S02; S5> is a
four-hop violation path passing through other three TCBd

subjects S2, S3, and S4.

Algorithm 2 realizes the processing to identify policy
violation graph with inputs of a policy graph and updated
policy file. First, a function policyParse parses the updated
policy information into subjects, objects, and their relation-
ships with permission mapping. Second, we load this
information onto the previously generated Policy0 graph
with functions changeNodes and changeLinks, respectively.
Then, it determines if there is a new information flow
generated on this graph with a function getnewFlow. Third,
we need to check if this new information flow violates our
domain-based isolation rules using a function identifyViola-
tion. Through this approach, rather than analyzing all the
policy rules and all information flows for each attestation,
we verify the new policy through only checking the
updated policy rules and the newly identified information
flows. The complexity of this policy analysis algorithm is
O(nn +nl +nt), where nn represents the number of changed
subjects and objects, nl is the number of changed subject and
object relationships in the policy update file; and nt
represents the number of changed TCB in the TSL file.

Algorithm 2. Finding Integrity Violations with Policy
Graph and Updates

6 RANKING POLICY VIOLATION GRAPH

In order to explore more features of policy violation graphs
and facilitate efficient policy violation detection and resolu-
tion, we introduce a scheme for ranking policy violation

436 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

2. Similarly, the information flows between NON-TCB and TCBs, and
between TCBd and TCBs can be examined accordingly.

Fig. 3. Example policy violation graph and rank. SubjectRank and PathRank indicate severity of violating paths.

graphs. There are two steps to rank a policy violation graph.
First, TCBd subjects in the policy violation graph are ranked
based on dependency relationships among them. The rank
of a TCBd subject shows reachable probability of low-
integrity information flows from NON-TCB subjects to the
TCBd subject. In addition, direct violation paths in the
policy violation graph are evaluated based on the ranks of
TCBd subjects to indicate the severity of these paths which
allow low-integrity information to reach TCBd subjects. The
ranked policy violation graphs are valuable for system
administrators as they need to estimate the risk level of a
system and provide a guide for choosing appropriate
strategies for resolving policy violations efficiently.

6.1 Ranking Subjects in TCBd

Our notation of SubjectRank (SR) in policy violation graphs
is a criterion that indicates the likelihood of low-integrity
information flows coming to a TCBd subject from NON-
TCB subjects through direct or indirect violation paths. The
ranking scheme we adopt is a similar process of rank
analysis applied in hyper-text link analysis system, such as
Google’s PageRank [26] that utilizes a link structure
provided by hyperlinks between web pages to gauge their
importance. Comparing with PageRank which focuses on
analyzing a web graph, where the entries are any web pages
contained in the web graph, the entries of low-integrity
information flows to TCBd subjects in a policy violation
graph are only identified NON-TCB subjects.

Consider a policy violation graph with N NON-TCB
subjects, and si is a TCBd subject. Let NðsiÞ be the number
of NON-TCB subjects from which low-integrity information
flows could come to si, N

0 ðsiÞ the number of NON-TCB
subjects from which low integrity information flows could
directly reach to si, InðsiÞ a set of TCBd subjects pointing to
si, and OutðsjÞ a set of TCBd subjects pointed from sj. The
probability of low-integrity information flows reaching a
subject si is given by

SRðsiÞ ¼
NðsiÞ
N

N
0 ðsiÞ

NðsiÞ
þ 1�N

0 ðsiÞ
NðsiÞ

� � X
sj2InðsiÞ

SRðsjÞ
jOutðsjÞj

0
@

1
A:
ð1Þ

SubjectRank can be interpreted as a Markov Process, where

the states are TCBd subjects, and the transitions are the links

between TCBd subjects which are all evenly probable. While

a low-integrity information flow attempts to reach a high-

integrity subject, it should select an entrance (a NON-TCB

subject) which has the path(s) to this subject. Thus, the

possibility of selecting correct entries to a target subject is
NðsiÞ
N . After selecting correct entries, there still exist two ways,

through direct violation or indirect violation paths, to reach a

target subject. Therefore, the probability of flow transition

from a subject is divided into two parts: N
0 ðsiÞ

NðsiÞ for direct

violation paths and 1� N
0 ðsiÞ

NðsiÞ for indirect violation paths. The

1� N
0 ðsiÞ

NðsiÞ mass is divided equally among the subject’s

successors sj, and
SRðsjÞ
jOutðsjÞj is the rank value derived from sj.

Fig. 3b displays a result of applying (1) to the policy
violation graph shown in Fig. 3a. Note that even though a
subject s4 has two direct paths from NON-TCB subjects like a
subject s2, the rank value of s4 is higher than the rank value of
s2, because there is another indirect flow path to s4 (via s3).

6.2 Ranking Direct Violation Path

We further define PathRank (PR) as the rank of a direct
violation path,3 which reflects the severity of the violation
path through which low-integrity information flows may
come to TCBd subjects. Direct violation paths are regarded
as the entries of low integrity data to TCBd in policy
violation graph. Therefore, the ranks of direct violation
paths give a guide for system administrators to adopt
suitable defense countermeasures for solving identified
violations. To calculate PathRank accurately, three condi-
tions are needed to be taken into account: 1) the number of
TCBd that low-integrity flows can reach through this direct
violation path; 2) SubjectRank of reached TCBd subjects;
and 3) the number of hops to reach a TCBd subject via this
direct violation path.

Suppose <s0i; sj> is a direct violation path from a NON-
TCB subject s0i to a TCBd subject sj in a policy violation
graph. Let Reachð<s0i; sj>Þ be a function returning a set of
TCBd subjects to which low-integrity information flows
may go through a direct violation path <s0i; sj>, SRðslÞ the
rank of a TCBd subject sl, and Hsðs0i; slÞ a function returning
the hops of the shortest path from a NON-TCB subject s0i to
a TCBd subject sl. The following equation is utilized to
compute a rank value of the direct violation path <s0i; sj>.

PRð<s0i; sj>Þ ¼
X

sl2Reachð<s0i;sj>Þ

SRðslÞ
Hsðs0i; slÞ

: ð2Þ

Fig. 3c shows the PathRank of the example policy
violation graph, which is calculated by the above-defined
equation. For example, <s02; s2> has a higher rank than
<s01; s1>, because <s02; s2> may result in low-integrity
information flows to reach more or important TCBd

subjects than <s01; s1>.

6.3 Evaluating Trustworthiness

Let Pd be a set of all direct violation paths in a policy
violation graph. The entire rank, which can be considered as
a risk level of the system, can be computed as follows:

RiskLevel ¼
X

<s0i;sj>2Pd
PRð<s0i; sj>Þ: ð3Þ

The calculated risk level could reflect the trustworthiness
of an attestee. Generally, the lower risk level indicates the
higher trustworthiness of a system. When an attestation is
successful and there is no violation path being identified,
the risk level of the attested system is zero, which means an
attestee has the highest trustworthiness. On the other hand,
when an attestation is failed, corresponding risk level of a
target system is computed. A selective service could be
achieved based on this fine-grained attestation result. That
is, the number of services provided by a service provider to
the target system may be decided with respect to the trust
level of the target system. Hence, a system administrator
could refer to this attestation result as the evaluation of her/
his system as well as resolution guidelines since this
quantitative response would give her a proper justification
to adopt countermeasures for improving the trustworthi-
ness of a target system.

XU ET AL.: REMOTE ATTESTATION WITH DOMAIN-BASED INTEGRITY MODEL AND POLICY ANALYSIS 437

3. It is possible that a system administrator may also want to evaluate
indirect violation paths for violation resolution. In that case, our ranking
scheme could be adopted to rank indirect violation paths as well.

6.4 Attestee Reconfiguration

When the current system state of an attestee does not
satisfy integrity requirements, a system administrator may
need to change the system configuration based on the
attestation result to enhance the system integrity and
improve its trust level. The total rank of all violation paths
provides a measurement of risk level of a system and thus
reflects the system’s trustworthiness. A system adminis-
trator is able to adopt different countermeasures to resolve
identified violations with respect to the different rank
values of violation paths. We summarize several options
as follows:

. Changing CDi and TSLi: in case an attestation is
failed because of loading malicious or unknown
codes or data into the system, removing these codes
and data can change the system state to be trusted,
while there is no change to the policy.

. Identifying filter: if a filter is identified along with
the information flow path that causes a violation, the
filter can be added to CDi and TSLi. In this case, the
violation is treated as a false alarm and there is no
change to the policy graph.

. Changing Policyi: we are able to modify policy for
violation resolution, either by excluding subjects or
objects from the violated information flow paths, or
by replacing subjects or objects with more restricted
privileges. Based on the violated information flow
paths and corresponding ranks, a system adminis-
trator can first eliminate highly ranked violation
paths since they generally involve more violations
and more TCBd subjects. Through modifying policy
rules, Pflowi is changed to satisfy our domain
isolation requirements. In other words, an attestee
can maintain integrity requirements by modifying
system policies properly for a newly installed soft-
ware which interacts with TSL subjects.

. Adding filter: we can also introduce a new filter
subject that acts as a gateway along a violation flow
path between NON-TCB and TCB subjects. By
including such a filter in CDi and TSLi, the violation
can be resolved in subsequent attestations.

7 IMPLEMENTATION AND EVALUATION

We have implemented DR@FT to evaluate its effectiveness
and measure the performance. This section first describes
our experimentation setup, followed by implementation
details, effectiveness evaluation, and performance study.

Our attestee platform is a Lenovo ThinkPad X61 with
Intel Core 2Duo Processor L7500 1.6 GHz, 2 GB RAM, and
Atmel TPM. We enable SELinux with the default policy
based on the current distribution of SELinux [22]. To
measure the attestee system with TPM, we update the Linux
kernel to 2.6.26.rc8 with the latest IMA implementation [23],
where SELinux hooks and IMA functions are enabled.

Having IMA enabled, we configure the measurement of
the attestee information. After the attestee system kernel is
booted, we mount the sysfs file system and inspect the
measurement list values in ascii_runtime_measure-

ments and ascii_bios_measurements. Fig. 5a shows a
sample of the measurement list.

7.1 Attestation Implementation

We start from a legitimate attestee and make measurements
of the attestee system for the later verification. To invoke a
new attestation request from the attester, the attestation
reporting daemon runs in the attestee and monitors the
attestee system. This daemon is composed of two main
threads: one monitors and obtains new system state
measurements, and the other monitors and obtains the
policy updates of the attestee. The daemon is also measured
and the result can be obtained through the legitimate
attestee. Thus, the integrity of the daemon can be verified
later by the attester. In case the attestee system state is
updated due to new software installation, changing policy,
and so on, the corresponding thread of the daemon
automatically obtains the new measurement values as
discussed in Section 4. The daemon then securely transfers
the attestation information to the attester based on available
security mechanisms supported by the trusted authority.

After receiving the updated system information from
the attestee, the measurement module of the attester checks
the received measurements against the stored PCR to
prove its integrity. To analyze the revised attestee policy,
the policy analysis module is developed as a daemon,
which is derived from a policy analysis engine [27]. We
extend the engine to support information flow query
functions, so as to identify violated information flows from
the updated policy rules based on domain-based isolation
rules. We use JDK1.6 and other necessary Java libraries to
develop the main analysis components. We implemented
graph drawing with graph package Piccolo [28]. We also
accommodate the attestation procedures presented in
Section 4.2, as well as our rank scheme to evaluate the
trustworthiness of the attestee.

7.2 Identifying TCBs and Resolving Violations

To evaluate the proposed attestation framework, we attest
our testbed platform with Apache web server installed. To
configure the trusted subject list of the Apache domain, we
first identify TCBs based on the reference monitor-based
TCB identification [21], including the integrity measure-
ment, monitoring agents, and daemon. For TCBd of the
Apache, we identify the Apache information domain,
Apache TCBd, including httpd_t and httpd_suexec_t,
and the initial filters sshd_t, passwd_t, su_t, through
the domain-based isolation principles. Both TCBs and
TCBd are initially identified with a graphical policy analysis
tool [27], and then all possible policy violations are detected
as well according to our domain-based integrity model.
Fig. 4a shows an example with automatically identified
policy violations, which indicates write_like operations from
NON-TCB subjects to objects that can be read by TCBd

subjects. We then apply the system reconfiguration strate-
gies discussed in Section 6.4 to resolve these violations.

Update TCB. We observe that some violations are
generated due to the reason that all information flows to
some subjects in turn flows to TCB subjects. We then
include these subjects in the TCB. For example, in our
evaluation policy, httpd_awstats_script_t can flow to
TCBd subjects through httpd_awstats_script_rw_t.
At the same time, it is flown in by many NON-TCB subjects
through some common types such as devtty_t. Hence, we
ignore the violations caused by this awstats_script and

438 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

include it into TCBd. Similar situation occurs for
httpd_apcupsd_cgi_script_t and httpd_prewik-

ka_script_t. However, httpd_staff_script_t can-
not be included into TCBd since it would lead unlimited file
access for the staff services such as staff_t, staff_

mozilla_t, and staff_mplayer_t.
Remove Policy Rules. Another way for resolving policy

violations is to remove related policy statements. For
example, webalizer_t is to label a tool for analyzing
the log files of web server and is not necessary to modify
web server information. To resolve the policy violations
caused by webalizer_t due to the write access to
httpd_sys_content_t, we remove the policy rule
stating write_like operation between webalizer_t and
httpd_sys_content_t.

Modify Policy Rules. Many policy violations are caused

because related subjects or objects are given too much

privileges. Hence, rather than just removing related policy

statements, we also need to replace these subjects or objects

with more restricted rights. For example, for policy violations
caused by read and write accesses to initrc_devpts_t,
our solution is to redefine initrc_devpts_t by introdu-
cing initrc_devpts_t, system_initrc_devpts_t,
and *_daemon_initrc_devpts_t.4 Corresponding pol-
icy rules are modified as follows:

allow httpd_t

initrc_devpts_t:chr_file {ioctl read

getattr lock write append};

is changed to

allow httpd_t

httpd_daemon_initrc_devpts_t:chr_file

{ioctl read getattr lock write

append};

Add Filter. Based on our domain-based integrity
model, a filter can be introduced into policies to resolve
policy violations. For example, to remove the violations
caused by http_port_t, we introduce a network filter
subject as follows:

allow user_xserver_t

networkfilter_t:process transition;

allow networkfilter_t

http_port_t:tcp_socket {recv_msg

send_msg};

After the modification is applied, the original policy
violations are eliminated. In general, to validate the result of
a policy modification, we need to recheck the relationships
between the policy violation related domains and types.
Comparing Figs. 4a with 4b, we can observe that all read
operations between TCBd and type http_port_t are
removed. Also, the write operations between NON-TCB
and http_port_t are also removed. Instead, a new
domain networkfilter_t is added, which has write
and read operations on http_port_t. Also, all TCBd and
NON-TCB subjects can transit to this new domain type.

The initial TCBd is then adjusted during the process of
resolving violations. Table 1 shows the final system TCB
and Apache TCB identified with our approach. We then
install unverified codes and data to evaluate the effective-
ness of our attestation framework.

XU ET AL.: REMOTE ATTESTATION WITH DOMAIN-BASED INTEGRITY MODEL AND POLICY ANALYSIS 439

Fig. 4. Policy violations and corresponding resolution for Apache
domain.

4. *Representing the corresponding service name.

TABLE 1
Identified System TCB and Apache TCB

7.3 Installing Malicious Code

We first install a Linux rootkit, which gains administrative
control without being detected. Here, we assign the rootkit
with the domain unconfined_t, which enables informa-
tion flows to domain initrc_t which labels initrc

process in the TCBs of the attestee.
Following the framework proposed in Section 4, the

attestee system is measured from the bootstrap with the
configured IMA. After getting the new measurement values,
the reporting daemon sends these measurements to the
attester. Note that there is no policy update in this experi-
ment. Different from IMA, we only measure the TCBs and
TCBd subjects. After getting the measurements from the
attestee, the attester verifies them by analyzing the measured
hash values. Fig. 5 shows partial measurements of a trusted
initial system state and the changed state because of the
installed rootkit. The difference between these two measure-
ments indicates that the original initrc is altered, thus the
attester confirms that the attestee is not in a trusted state.

7.4 Identifying Vulnerable Software

In this experimentation, we install a vulnerable software
called Mplayer on the attestee side. Mplayer is a media
player and encoder software which is susceptible to
several integer overflows in the real video stream dumux-
ing code. These flaws allow an attacker to cause a denial of
service or potentially execution of the arbitrary code by
supplying a deliberately crafted video file. During the
installation of a Mplayer, a Mplayer policy module is also
loaded into the attestee policy. In this policy module, there
are several different subjects such as usr_mplayer_t,
staff_mplayer_t, and sysadm_mplayer_t. Also,
some objects are defined in security policies such as
user_mplayer_home_t, staff_mplayer_home_t, and
sysadm_mplayer_home_t. After the Mplayer is in-
stalled, the attestation daemon finds that the new
measurement of Mplayer is generated and the security
policy of the system is changed. As the Mplayer does not
belong to TCBs and Apache TCBd, the attestation daemon
does not need to send the measurements to the attester.
Consequently, the daemon only computes the security
policy updates and sends the information to the attester.

Upon receiving the updated policies, we analyze these
updates and obtain a policy violation graph as shown in
Fig. 6. Through objects such ascifs_t,sysadm_devtps_t,
andncsd_var_run_t, information flows from Mplayer can
reach Apache domain. In addition, rank values are calculated
and shown in the policy violation graph, which guides
effective violation resolutions. For example, there are three
higher ranked paths including paths from sysadm_

devpts_t to httpd_t, from ncsd_var_run_t to
httpd_rotatelogs_t, and from cifs_t to httpd_

prewikka_script_t. Meanwhile, a risk level value
(1.2584) reflecting the trustworthiness of the attestee system
is computed based on the ranked policy violation graph.

Once receiving the attestation result shown in Fig. 6, the
system administrator can resolve the violation that has the
higher rank than others. Thus, the administrator can first
resolve the violation related to httpd_t through introdu-
cing httpd_sysadm_devpts_t.

allow httpd_t

httpd_sysadm_devtps_t:chr_ file {ioctl

read write getattr lock append};

After the policy violation resolution, the risk level of the
attestee system is lowered to 0.7315. Continuously, after
the attestee resolves all the identified policy violations and
the risk level is decreased to be zero, the attestation daemon
gets a new policy update and sends it to the attester. Upon
receiving this update, the attester verifies whether the
identified information flows violate domain-based isolation
integrity rules since these flows are within the NON-TCB
even though there are new information flows compared to
the stored Policy0. Thus, an attestation result is generated
which indicates the risk level (in this case, zero) of the
current attestee system. Consequently, a new trusted
system state is built for the attestee. In addition, the
information of this new trusted system state is stored in
the attester side for the later attestation.

7.5 Performance

To examine the scalability and efficiency of DR@FT, we
investigate how well the attestee measurement agent,
attestation daemon, and the attester policy analysis module
scale along with increased complexity, and how efficiently
DR@FT performs by comparing it with traditional ap-
proaches.

In DR@FT, the important factors influencing the attesta-
tion performance include system updates and policy
changes. Hence, we evaluate the performance of DR@FT
by changing codes and data to be measured and modifying
the security policies. Based on our study, we observe that
normal policy increased or decreased no more than 40 KB
when installing or uninstalling software. Also, a system

440 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 5. Measurement list example consisting a PCR location, file SHA-1 hash, and file name.

Fig. 6. Information flow verification for Mplayer. The links show the
information flow from Mplayer (filled circle nodes) to Apache (unfilled
nodes). The rank values on the paths indicate the severity of violations.

administrator does not make the enormous changes over
the policy. Therefore, the performance is measured with the
range from zero to around 40 KB in terms of policy size.

Performance on the attestee side. Based on DR@FT, the
attestee has three main factors influencing the attestation
performance. 1) Time spent for the measurement: based on
our experimentation, the measurement time increases
roughly linearly with the size of the target files. For
example, measuring policy files with 17.2 and 20.3 MB
requires 14.63 and 18.26 seconds, respectively. Measuring
codes around 27 MB requires 25.3 seconds. 2) Time spent
for identifying policy updates TPupdate: based on the
specification in Section 4, policy updates are required to
be identified and sent to the attester. As shown in Table 2,
for a system policy which is with the size of 17.2 MB at its
precedent state, the increase of the policy size requires more
time for updating the policy and vice versa. 3) Time spent
for sending policy updates TPsend: basically, the more policy
updates, the higher overhead was observed.

Performance on the attester side. In DR@FT, the measure-
ment verification is relatively straightforward. At the attester
side, the time spent for policy analysis TPanalysis mainly
influences its performance. As shown in Table 2, the analysis
time roughly increases when the policy change rate increases.

Comparison of dynamic and static attestation. To
further evaluate the efficiency of DR@FT, we compare the
overhead of DR@FT with a static attestation. In the static
approach, the attestee sends all system state information to
an attester, and the attester verifies the entire information
step by step. As shown in Table 2, the time spent for the
static attestation is composed of TPsend and TPanalysis, which
represent the time for sending policy module and analyzing
them, respectively. Obviously, the dynamic approach can
dramatically reduce the overhead compared to the static
approach. It shows that DR@FT is an efficient way when
policies on an attestee are updated frequently.

8 CONCLUSION

We have presented a dynamic remote attestation frame-
work called DR@FT for efficiently verifying if a system
satisfies integrity protection property and indicates integrity
violations which determine its trustworthiness level. The
integrity property of our work is based on an information
flow-based domain isolation model, which is utilized to
describe the integrity requirements and identify integrity
violations of a system. To achieve the efficiency and
effectiveness of remote attestation, DR@FT focuses on
system changes on the attestee side. We have extended
our intuitive policy analysis engine to represent integrity
violations with a rank scheme. In addition, our results show

that our dynamic approach can dramatically reduce the
overhead compared to the static approach. We believe such
a comprehensive method would help system administrators
reconfigure the system with more efficient and strategic
manner.

There are several directions that our attestation frame-
work can be extended to. First, DR@FT attests system
configurations according to security policies, while it does
not attest the trustworthiness of dynamic contents of a
system such as runtime state of applications. Second, our
risk evaluation does not explain the tolerable risk level and
relevant system properties. In addition, all verification tasks
are performed at the attester side. The attester may need to
delegate some attestation tasks to trusted components at the
attestee or other trusted side. Our future work would seek a
more flexible and systematic way to address these issues.

ACKNOWLEDGMENTS

The work of Gail-Joon Ahn and Hongxin Hu was partially
supported by the grants from the US National Science
Foundation (NSF-IIS-0900970 and NSF-CNS-0831360) and
the US Department of Energy (DE-SC0004308). The work of
Gail-Joon Ahn and Wenjuan Xu was also partially supported
by the grants from the US National Science Foundation
(NSF-IIS-0242393) and the US Department of Energy Early
Career Principal Investigator Award (DE-FG02-03ER25565).

REFERENCES

[1] “ T r u s t e d C o m p u t i n g G r o u p , ” h t t p s : / / w w w .
trustedcomputinggroup.org, 2011.

[2] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and
Implementation of a TCG-Based Integrity Measurement Archi-
tecture,” Proc. 13th Conf. USENIX Security (SSYM ’04), 2004.

[3] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi, and C.
Stüble, “A Protocol for Property-Based Attestation,” Proc. First
ACM Workshop Scalable Trusted Computing (STC ’06), 2006.

[4] V. Haldar, D. Chandra, and M. Franz, “Semantic Remote
Attestation: A Virtual Machine Directed Approach to Trusted
Computing,” Proc. Third Conf. Virtual Machine Research and
Technology Symp. (VM ’04), 2004.

[5] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: Policy-reduced
Integrity Measurement Architecture,” Proc. 11th ACM Symp.
Access Control Models and Technologies (SACMAT ’06), 2006.

[6] K.J. Biba, “Integrity Consideration for Secure Compuer System,”
Technical Report 3153, Mitre Corp., 1977.

[7] T. Fraser, “Lomac: Low Water-Mark Integrity Protection for Cots
Environment,” Proc. IEEE Symp. Security and Privacy (SP ’00),
May 2000.

[8] R.S. Sandhu, “Lattice-Based Access Control Models,” Computer,
vol. 26, no. 11, pp. 9-19, Nov. 1993.

[9] U. Shankar, T. Jaeger, and R. Sailer, “Toward Automated
Information-Flow Integrity Verification for Security-Critical Ap-
plications,” Proc. Network and Distributed System Security Symp.
(NDSS), 2006.

XU ET AL.: REMOTE ATTESTATION WITH DOMAIN-BASED INTEGRITY MODEL AND POLICY ANALYSIS 441

TABLE 2
Attestation Performance Analysis (in Seconds)

[10] T. Jaeger, R. Sailer, and X. Zhang, “Analyzing Integrity Protection
in the Selinux Example Policy,” Proc. 12th Conf. USENIX Security
Symp. (SSYM ’03), 2003.

[11] U. Shankar, T. Jaeger, and R. Sailer, “Toward Automated
Information-Flow Integrity Verification for Security-Critical Ap-
plications,” Proc. Network and Distributed System Security Symp.
(NDSS), The Internet Soc., http://dblp.uni-trier.de/db/conf/
ndss/ndss2006.html#ShankarJS06, 2006.

[12] S. Smalley, “Configuring the Selinux Policy,” http://www.nsa.
gov/SELinux/docs.html, 2003.

[13] B. Hicks, S. Rueda, L.S. Clair, T. Jaeger, and P. McDaniel, “A
Logical Specification and Analysis for Selinux mls Policy,” ACM
Trans. Information Systems Security, vol. 13, no. 3, pp. 1-31, 2010.

[14] Tresys Technology APOL, http://www.tresys.com/selinux/,
2011.

[15] J. Guttman, A. Herzog, and J. Ramsdell, “Information Flow in
Operating Systems: Eager Formal Methods,” Proc. Workshop Issues
in the Theory of Security (WITS), 2003.

[16] B. Sarna-Starosta and S.D. Stoller, “Policy Analysis for Security-
Enhanced Linux,” Proc. Workshop Issues in the Theory of Security
(WITS), pp. 1-12, Apr. 2004.

[17] W. Xu, M. Shehab, and G. Ahn, “Visualization Based Policy
Analysis: Case Study in Selinux,” Proc. ACM Symp. Access Control
Models and Technologies, 2008.

[18] G. Ahn, W. Xu, and X. Zhang, “Systematic Policy Analysis for
High-Assurance Services in Selinux,” Proc. IEEE Workshop Policies
for Distributed Systems and Networks, pp. 3-10, 2008.

[19] M. Alam, X. Zhang, M. Nauman, T. Ali, and J.-P. Seifert, “Model-
Based Behavioral Attestation,” Proc. 13th ACM Symp. Access
Control Models and Technologies (SACMAT ’08), 2008.

[20] Trusted Computer System Evaluation Criteria. United States Govt.
Dept. of Defense (DOD), Profile Books, 1985.

[21] A.P. Anderson, “Computer Security Technology Planning Study,”
Technical Report ESD-TR-73-51, vol. II, 1972.

[22] S. Smalley, “Configuring the Selinux Policy,” http://www.nsa.
gov/SELinux/docs.html, 2003.

[23] “LIM Patch,” http://lkml.org/lkml/2008/6/27, 2011.
[24] N. Provos, M. Friedl, and P. Honeyman, “Preventing Privilege

Escalation,” Proc. 12th Conf. USENIX Security Symp. (SSYM ’03),
p. 11, Aug. 2003.

[25] M. Green, “Toward a Perceptual Science of Multidimensional
Data Visualization: Bertin and Beyond,” http://www.ergogero.
com/dataviz/dviz2.html, 1998.

[26] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual
Web Search Engine,” Computer Networks and ISDN Systems, vol. 30,
nos. 1-7, pp. 107-117, 1998.

[27] W. Xu, X. Zhang, and G.-J. Ahn, “Towards System Integrity
Protection with Graph-Based Policy Analysis,” Proc. 23rd Ann.
IFIP WG 11.3 Working Conf. Data and Applications Security, 2009.

[28] “Piccolo ToolKit,” http://www.cs.umd.edu/hcil/jazz/. 2011.

Wenjuan Xu received the PhD degree in
information technology from the University of
North Carolina at Charlotte. She is an assistant
professor of the Department of Computer
Science and Information Technologies at Frost-
burg State University, Maryland. Her main
research interest include access control and
information security.

Xinwen Zhang received the PhD degree in
information security from George Mason Uni-
versity, Fairfax in 2006. He is a research staff
member at Huawei Research Center at Santa
Clara. His research interests include security
policies, models, architectures, and mechanism
in general computing and networking systems.
His recent research focuses on secure and
trusted network infrastructure, cloud computing,
and mobile platforms and systems. He is a
member of the IEEE.

Hongxin Hu is currently working toward the
PhD degree from the School of Computing,
Informatics, and Decision Systems Engineering,
Ira A. Fulton School of Engineering, Arizona
State University, Tempe. He is also a member of
the Security Engineering for Future Computing
Laboratory, Arizona State University. His current
research interests include access control mod-
els and mechanisms, security and privacy in
social networks, security in distributed and cloud

computing, network and system security, and secure software engineer-
ing. He is a student member of the IEEE.

Gail-Joon Ahn received the PhD degree in
information technology from George Mason
University, Fairfax, Virginia, in 2000. He is an
associate professor in the School of Computing,
Informatics, and Decision Systems Engineering,
Ira A. Fulton Schools of Engineering and the
Director of Security Engineering for Future
Computing Laboratory, Arizona State University.
His research interests include information and
systems security, vulnerability and risk manage-

ment, access control, and security architecture for distributed systems,
which has been supported by the US National Science Foundation,
National Security Agency, US Department of Defense, US Department
of Energy, Bank of America, Hewlett Packard, Microsoft, and Robert
Wood Johnson Foundation. He is a recipient of the US Department of
Energy CAREER Award and the Educator of the Year Award from the
Federal Information Systems Security Educators Association. He was
an associate professor at the College of Computing and Informatics, and
the Founding Director of the Center for Digital Identity and Cyber
Defense Research and Laboratory of Information Integration, Security,
and Privacy, University of North Carolina, Charlotte. He is a senior
member of the IEEE.

Jean-Pierre Seifert received the PhD degree in
the year 2000 with Professor Dr. Claus Schnorr,
one of the most important theoretician in the field
of secure information systems from Johann-
Wolfgang-Goethe-University at Frankfurt/Main
where he studied computer science and mathe-
matics. Afterward, he gained intensive practical
experience working in the research and devel-
opment departments for hardware Security at
Infineon, Munich and Intel. At Intel, (2004-2006),

he has been responsible for the design and integration of new CPU
security instructions for micro processors that are going to be integrated
in all Intel micro processors. From 2007-2008, he developed for
Samsung Electronics the worldwide first commercial secure cell phone
based on the Linux operating system. Since the end of 2008, he has
been a professor heading the group of security in Telecommunications
at TU Berlin and Deutsche Telekom Laboratories. In 2002, he has been
honored by Infineon with the award inventor of the Year and has
received as well two Intel Achievement Awards in 2005 for his new CPU
security instructions for the Intel micro processors. Approximately 40
patents have been granted to him in the field of computer security. He is
a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

442 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

