
Role-based access control in DCOM

Gail-Joon Ahn

Department of Computer Science, University of North Carolina at Charlotte, NC 28223, USA

Received 4 June 1999; received in revised form 14 February 2000; accepted 27 May 2000

Abstract

The explosive growth of the Web, the increasing popularity of PCs and the advances in high-speed network access

have brought distributed computing into the mainstream. To simplify network programming and to realize component-

based software architecture, distributed object models have emerged as standards. One of those models is distributed

component object model (DCOM) which is a protocol that enables software components to communicate directly over

a network in a reliable, and e�cient manner. In this paper, we investigate an aspect of DCOM concerning software

architecture and security mechanism. Also, we describe the concept of role-based access control (RBAC) which began

with multi-user and multi-application on-line systems pioneered in the 1970s. And we investigate how we can enforce

the role-based access control as a security provider within DCOM, specially in access security policy. Ó 2000 Elsevier

Science B.V. All rights reserved.

1. Introduction

Distributed applications introduce new design
and deployment issues. For this added complexity
to be worthwhile, there has to be a signi®cant
payback. Some applications are inherently dis-
tributed. Multiuser games and teleconferencing
applications are examples of such applications.
For these, the bene®ts of a robust infrastructure
for distributed computing are obvious. Many
other applications are also distributed, in the sense
that they have at least two components running on
di�erent machines. But because these applications
were not designed to be distributed, they are lim-
ited in scalability and ease of deployment. Any
kind of work¯ow or groupware application, most
client/server applications, and even some desktop
productivity applications essentially control the

way their users communicate and cooperate.
Adopting the notion of distribution into these
applications bene®ts the user and optimizes the use
of network and computer resources. The applica-
tion designed with distribution in mind can ac-
commodate di�erent clients with di�erent
capabilities by running components on the client
side when possible and running them on the server
side when necessary.

DCOM is an extension of the component object
model (COM). COM [6] de®nes how components
and their clients interact. This interaction is de-
®ned such that the client and the component can
connect without the need of any intermediary
system component. The client calls methods in the
component without any overhead whatsoever.
This study will look at the DCOM architecture and
DCOM's security mechanism. DCOM provides an
extremely e�cient default security mechanism
that lets developers write distributed applica-
tions without having to worry about security

www.elsevier.com/locate/sysarc

Journal of Systems Architecture 46 (2000) 1175±1184

E-mail address: gahn@uncc.edu (G.-J. Ahn).

1383-7621/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 1 3 8 3 - 7 6 2 1 (0 0) 0 0 0 1 7 - 5

at all. Any security provider supported by win-
dows NT can be used with DCOM's security
mechanism.

The concept of role-based access control
(RBAC) began with multi-user and multi-appli-
cation on-line systems pioneered in the 1970s. The
central notion of RBAC is that permissions are
associated with roles, and users are assigned to
appropriate roles. This simpli®es management of
permissions. Roles are created for the various job
functions in an organization and users are assigned
roles based on their responsibilities and quali®ca-
tions. Users can be easily reassigned from one role
to another. Role can be granted new permissions
as new applications and systems are incorporated,
and permissions can be revoked from roles as
needed. Several researchers have showed that
RBAC can be accommodated in current systems,
such as Oracle, Unix. To enforce role-based access
control in DCOM with advantages that RBAC
allows us to achieve, we use DCOM's group
mechanism which is similar to the notion of roles
in RBAC. Even though DCOM does not have role
concept inside, it is possible for RBAC to be ap-
plied to DCOM security mechanism, which can
satisfy DCOM's access security policy and achieve
ease of administration.

This paper begins with the description of the
DCOM model in Section 2. In Section 3, we dis-
cuss the RBAC model followed by Section 4 which
includes integration between RBAC model and
DCOM. Section 5 concludes the paper.

2. Distributed component object model

In programming and engineering disciplines, a
component is an identi®able part of a larger
program or construction. Usually, a component
provides a particular function or group of re-
lated functions. In programming design, a system
is divided into components that in turn are made
up of modules. In object-oriented programming
and distributed object technology, a component
is a reusable program building block that can be
combined with other components in the same or
other computers in a distributed network to
form an application. Examples of a component

include: a single button in a graphical user in-
terface, a small interest calculator, an interface to
a database manager. Components can be de-
ployed on di�erent servers in a network and
communicate with each other for needed services
[10,3]. A component runs within a context called
a container. Examples of containers include
pages on a Web site, Web browsers, and word
processors.

COM is Microsoft's framework for developing
and supporting program component objects. The
COM provides a set of interfaces allowing clients
and servers to communicate within the same
computer (running a Windows 95 or NT system).
It is aimed at providing similar capabilities to
those de®ned in Common Object Request Broker
Architecture (CORBA), the framework for the
interoperation of distributed objects in a network.
Whereas OLE provides services for the compound
document that users see on their display, COM
provides the underlying services of interface ne-
gotiation, life cycle management (determining
when an object can be removed from a system),
licensing, and event services (putting one object
into service as the result of an event that has
happened to another object).

DCOM is a protocol that enables software
components to communicate directly over a net-
work in a reliable, and e�cient manner. At the
same time it is a program interface in which client
program objects can request services from server
program objects on other computers in a net-
work.

For example, one can create a page for a Web
site that contains a script or program that can be
processed (before being sent to a requesting user)
not on the Web site server but on another, more
specialized server in the network. Using DCOM
interfaces, the Web server site program (now act-
ing as a client object) can forward a remote pro-
cedure call (RPC) to the specialized server object,
which provides the necessary processing and re-
turns the result to the Web server site. This result is
passed on to the Web page viewer.

In following section, we will look at the
DCOM's architecture and the processing steps
DCOM takes. We will also discuss its security
mechanism and policy.

1176 G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184

2.1. DCOM's architecture

A client that needs to communicate with a
component in another process cannot call the
component directly, but has to use some form of
inter-process communication provided by the op-
erating system. COM provides this communica-
tion in a completely transparent fashion: it
intercepts calls from the client and forwards them
to the component in another process. When client
and component reside on di�erent machines,
DCOM simply replaces the local inter-process
communication with a network protocol. Neither
the client nor the component is aware that the wire
that connects them has just become a little longer.
Fig. 1 shows the overall DCOM architecture: the
COM run-time provides object-oriented services to
clients and components and uses RPC and the
security provider to generate standard network
packets that conform to the DCOM wire-protocol
standard.

Table 1 describes how DCOM works [8]. In
summary, the client program calls CoInitialize,
then CoCreateInstance passing the CLSID and
IID(s). The client receives back Interface Point-
er(s), and then calls the desired method. The server
program implements the interface as a class, and
has only two extra calls to CoInitialize and Co-
RegisterClassObject.

2.2. DCOM's security mechanism

Di�erent platforms use di�erent security pro-
viders, and many platforms even support multiple
security providers for di�erent usage scenarios or
for interoperability with other platforms [1,12].
DCOM and RPC are designed in such a way that
they can simultaneously accommodate multiple
security providers. All these security providers
provide a means of identifying a security principal,
a means of authenticating a security principal, and
a central authority that manages security princi-
pals and their keys. A security principal is a
module that is associated with access privileges in
the systems. It represents an entity such as indi-
vidual user or a group. Every time a user logs in to
the system it is as a particular principal. Each user
may have several principals associated with the
user. On the other hand each principal is required
to be associated with a single user. This list of se-
curity principals is called an access control list
(ACL). Access control lists consist of multiple
access control entries (ACE), which correspond to
individual security principals. Each access control
entry can indicate that the corresponding security
principal is to be allowed access or that it is to be
denied access. If a client wants to access a secured
resource, it passes its security identity and some
form of authenticating data to the resource and
the resource asks the security provider to authen-
ticate the client. Security providers typically use
low-level custom protocols to interact with clients
and protected resources.

Using the network for distributing an applica-
tion is challenging not only because of the physical
limitations. It also raises new issues related to se-
curity between and among clients and compo-
nents. Since many operations are now physically
accessible by anyone with access to the network,
access to these operations has to be restricted at a
higher level. Without security support from the
distributed development platform, each applica-
tion would be forced to implement its own security
mechanisms. A typical mechanism would involve
passing some kind of username and password ±
usually encrypted ± to some kind of logon method.
The application would validate these credentials
against a user database or directory and return

OLE

DCOM

Stub
Object
Proxy

Network

Protocol Stack

DCE
RPC

SCM SCM

Security
Provider

Protocol Stack

DCE
RPC

Security
Provider

Component

Protocol

Client

CoCreate
Instance

(Remote)
Activation

CoCreateInstance

Registry Registry
Table
Class Class

Table

Fig. 1. DCOM architecture.

G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184 1177

some dynamic identi®er for use in future method
class. On each subsequent call to a secure method,
the clients would have to pass this security iden-
ti®er. Each application would have to store and
manage a list of usernames and passwords, protect
the user directory against unauthorized access, and
manage changes to passwords, as well as dealing
with the security hazard of sending passwords over
the network. A distributed platform must thus
provide a security framework to safely distinguish
di�erent clients or di�erent groups of clients so
that the system or the application has a way of
knowing who is trying to perform an operation on
a component.

DCOM uses the extensible security framework
provided by Windows NT. Widows NT provides a
solid set of built-in security providers that support
multiple identi®cation and authentication mecha-
nisms, from traditional trusted-domain security
models [5] to noncentrally managed, massively

scaling public-key security mechanisms [2]. A
central part of the security framework is a user
directory, which stores the necessary information
to validate a user's credentials. DCOM can make
distributed applications secure without any secu-
rity-speci®c coding or design in either the client or
the component. Just as the DCOM programming
model hides a component's location, it also hides
the security requirements of a component. The
same binary code that works in a single-machine
environment, where security may be of no concern,
can be used in a distributed environment in a se-
cure fashion [7].

DCOM's default security mechanism is illus-
trated in Fig. 2. DCOM achieves security trans-
parency by letting developers and administrators
con®gure the security settings for each component.
Just as the Windows NT File System lets admin-
istrators set access control lists (ACLs) for ®les
and directories, DCOM stores access control lists

Table 1

DCOM steps

Client initialization

The client calls CoInitialize which initializes the COM library for use. Next, the client calls COM library's CoCreateInstance, passing

the ID for the desired class (CLSID) and an array of desired interface IDs (IIDs).

Server activation (Client side)

The call to CoCreateInstance is passed on to the Service Control Manager (SCM) on the client machine which looks up the Class ID

in the local Class Table to see if the server is already running. If not the SCM will look in the Registry using the CLSID to ®nd the

type and location of the server.

Server activation (Server side)

Using the server machine address, the client SCM establishes an RPC link with the server machine's SCM, passing it the desired

CLSID and IID(s). The server SCM checks its Class Table to see if the server is running, and if it is not, it looks up the CLSID in the

Registry to ®nd out what command needs to be executed to start the server, and executes it. When a COM server starts up, the ®rst

thing it calls is CoInitialize. The second thing it calls is CoRegistryClassObject, passing the implemented CLSID and a pointer to the

server program's Class Factory. This e�ectively advertises the server program to DCOM, adding its entry into the Class Table.

The Class Factory

Whenever a client requests a new instance of a server class, the SCM calls a method called CreateInstance on the server program's

Class Factory. This is the common gateway used by all clients. CreateInstance then instantiates the object and passes the pointer to

the object's IUnknown interface back to the SCM.

Multiple query interface (MQI)

Once the SCM has a pointer to the object's IUnknown interface, it can use QueryInterface to request pointers to other interfaces.

Proxy/Stub Loading

Data passed back between client and server have to be packaged into RPC packets. This process is called marshalling, and is

performed by the Proxy/Stub DLL(s). Using the Interface ID (IID) returned from the MQI step, the SCMs on each machine

interrogate the Registry for the DLL(s) that need to be loaded into the client's and server's process spaces. Interface Pointers are

then handed back to the client that issued the CoCreateInstance call.

Method Call

Using the Interface Pointer, the client calls the server method.

1178 G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184

for components. These lists simply indicate which
users or groups of users have the right to access a
component of a certain class. These lists can easily
be con®gured using the DCOM con®guration tool.
Whenever a client calls a method or creates an
instance of a component, DCOM obtains the cli-
ent's current username associated with the current
process. Windows NT guarantees that this user
credential is authentic. DCOM then passes the
username to the machine or process where the
component is running. DCOM on the compo-
nent's machine then validates the username again
using authentication mechanism and checks the
access control list for the component. If the client's
username is not included in this list (either directly
or indirectly as a member of a groups of users),
DCOM simply rejects the call before the compo-
nent is ever involved. This default security mech-
anism is completely transparent to both the client
and the component and is highly optimized. It is
based on the Windows NT security framework,
which is probably one of the most heavily used
parts of the Windows NT operating system: on
each and every access to a ®le or even to a thread-
synchronization primitive like an event or sema-
phore.

2.3. DCOM's security policy

DCOM distinguishes four fundamental aspects
of security [4]:
· Access security: protecting the object. Which se-

curity principals are allowed to call an object?
The most obvious security requirement on dis-

tributed applications is the need to protect ob-
jects against unauthorized access. Sometimes
only authorized users are supposed to be able
to connect to an object. In other cases, non-au-
thenticated or unauthorized users might be al-
lowed to connect to an object, but must be
limited to certain areas of functionality. Current
implementations of DCOM provide declarative
access control on a per-process level.

· Launch security: protecting the server machine.
Which security principals are allowed to create
a new object in a new process? Another related
requirement on a distributed infrastructure is
to maintain control over who can create objects.
Since all COM objects of a machine are poten-
tially accessible via DCOM, it is critical to pre-
vent unauthorized users from creating
instances of these objects.

· Security identity: controlling the object. What is
the security principal of the object itself? Anoth-
er aspect of distributed security is that of con-
trolling the objects themselves. Since an object
performs operations on behalf of arbitrary call-
ers, it is often necessary to limit the capabilities
of the object itself. One obvious approach is that
of making the object assume the identity of the
caller. Whatever action the object performs is
limited by the caller's privileges. Although man-
aging access can be simpli®ed by using user
groups, it is often simpler to have the object it-
self run under a dedicated security identity, in-
dependent of the security identity of the
current caller.

· Connection policy: integrity and privacy. DCOM
gives both callers and objects a range of choices
to determine how the data on the connection are
to be secured. DCOM o�ers two fundamental
choices with regard to data protection: integrity
and privacy. Clients or objects can request that
data be transferred with additional information
that ensures data integrity. If any portion of the
data is altered on its way between the client and
the object, DCOM will detect this and automat-
ically reject the call. Data integrity implies that
each and every data packet contains authentica-
tion information.
The scope of this paper will be within the ®rst

security policy, access security. The following

ComponentDCOM

Client

Client

Security Provider

Access Control List
For Component:

Directory:

User: Alice

User: Bob

Registry
BobAlice/

Password,Bob/

Password

Fig. 2. Security mechanism.

G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184 1179

sections will show how to simulate this security
issue with RBAC.

3. Overview of RBAC model

RBAC is an alternative policy to traditional
mandatory access control (MAC) and discretion-
ary access control (DAC) [20,21]. As MAC is used
in the classical defense arena, the policy of access is
based on the classi®cation of objects such as top-
secret level [15]. The main idea of DAC is that the
owner of an object has discretionary authority
over who else can access that object [9,19]. But
RBAC policy is based on the role of the subjects
and can specify security policy in a way that maps
to an organization's structure.

A general family of RBAC models called
RBAC96 was de®ned by Sandhu et al. [18]. Fig. 3
illustrates the most general model in this family.
Motivation and discussion about various design
decisions made in developing this family of models
are given in [16,18]. Also, there are variations re-
garding distributed systems [22].

Fig. 3 shows (regular) roles and permissions
that regulate access to data and resources. Intu-
itively, a user is a human being or an autonomous
agent, a role is a job function or job title within the
organization with some associated semantics re-
garding the authority and responsibility conferred
on a member of the role, and a permission is an
approval of a particular mode of access to one or
more objects in the system or some privilege to

carry out speci®ed actions. Roles are organized in
a partial order P , so that if x P y, then role x
inherits the permissions of role y. Members of x
are also implicitly members of y. In such cases, we
say x is senior to y. Each session relates one user to
possibly many roles. The idea is that a user es-
tablishes a session and activates some subset of
roles that he or she is a member of (directly or
indirectly by means of the role hierarchy). The
RBAC model has the following components and
these components are formalized from the above
discussions.
· U is a set of users,
· R is disjoint sets of roles and administrative

roles, respectively,
· P is disjoint sets of permissions and administra-

tive permissions,
· UA � U � R, is a many-to-many user to role as-

signment relation,
· PA � P � R is many-to-many permission to role

assignment relations,
· RH � R� R is partially ordered role hierarchies

(written as � in in®x notation),
· S is a set of sessions,
· user : S ! U , is a function mapping each session

si to the single user user�si� and is constant for
the session's lifetime,

· roles : S ! 2R is a function mapping each ses-
sion si to a set of roles roles�si� � fr j
�9r0P r���user�si�; r0� 2 UA�g (which can change
with time) so that session si has the permissionsS

r2roles�si�fp j �9r006 r���p; r00� 2 PA�g, and
· there is a collection of constraints stipulating

which values of various components of the
RBAC model are allowed or forbidden.
A user can be a member of many roles and a

role can have many users. Similarly, a role can
have many permissions and the same permissions
can be assigned to many roles. Each session relates
one user to possibly many roles. Intuitively, a user
establishes a session during which the user acti-
vates some subset of roles that he or she is a
member of the permissions available to the users
are the union of permissions from all roles acti-
vated in that session. Each session is associated
with a single user. This association remains con-
stant for the life of a session. A user may have
multiple sessions open at the same time, each in a

CONSTRAINTS

PERMISS-

IONS

PU

USERS

PERMISSION

ASSIGNMENT

PA

USER

ASSIGNMENT

UA

.

.

.

SESSIONS

S

user roles

ROLES

R

ROLE

HIERARCHY

RH

Fig. 3. RBAC model.

1180 G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184

di�erent window on the workstation screen for
instance. Each session may have a di�erent com-
bination of active roles. The concept of a session
equates to the traditional notation of a subject in
access control. A subject is a unit of access control,
and a user may have multiple subjects (or sessions)
with di�erent permissions active at the same time.

4. Integration with RBAC

In this section we outline one approach to en-
forcing RBAC in DCOM. For some applications,
a single component-wide access control list which
is described in Section 2.2 is not su�cient. Some
methods in a component may be accessible only to
certain users. For example, an accounting business
component may have a method for registering new
transactions and another method for retrieving
existing transactions. Only members (such as Bob)
of the accounting department (user group ``Ac-
counting'') should be able to add new transactions,
while only members (such as Alice) of transaction
management (user group ``Transaction'') should
be able to view the transactions. And members of

top management (user group ``Top Management'')
should be able to add and view the transaction.
How can an application use DCOM security to
implement the selective security required in this
example?

We can approach this example with program-
matic control using DCOM [11]. This approach is
shown in Fig. 4. When a method call comes in, the
component asks DCOM to impersonate the client.
After this, the called thread can perform only
those operations on secured objects, that the client
is permitted to perform. The component can then
try to access a secured object, such as a registry
key, that has an ACL on it. If this access fails, the
client was not contained in the ACL, and the
component rejects the method call. By choosing
di�erent registry keys according to the method
that is being called, the component can provide
selective security in a simple way.

We can simulate RBAC in DCOM along the
lines of this example 1. Fig. 5 shows a conceptual
abstraction of a role-based access control model.
With this abstraction we can see that RBAC can
be inserted into DCOM architecture (in Fig. 1) as
a part of security provider.

In order to use RBAC96, we should accom-
modate role hierarchies. Roles would map to NT
user group(s) (which do not support hierarchies).
For example, user group ``Accounting'' would
map to role ``Accounting''. We can represent the

ComponentDCOM

Client

Client

User: Alice

User: Bob

IView

IAdd

for "Add":

for "View":

Access Control List
for Component:

Access Control List

Access Control List
Bob

Alice

Bob

Registry

Fig. 4. Security using Registry Key.

ROLES

USER

TARGETSUBJECT

Role

COMPONENTS

ACCESS CONTROL(RBAC)

Fig. 5. Conceptual abstraction of RBAC.

Top Management

TransactionAccounting

Fig. 6. An example of role hierarchy.

1 We assume that the assignment is done by Sandhu and Ahn

[13,14], including the simulation of role hierarchies.

G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184 1181

role-relationship as role hierarchy. The role hier-
archy of this example would be as shown in Fig. 6.
The Accounting role can have permission to add
new transactions, while only the Transaction role
can have permission to view the transactions. The
Top Management role is senior to Accounting and
Transaction and thereby inherits all permissions
from junior roles.

In Fig. 4, the DCOM checks the ACL of com-
ponent and then the component checks the ACL
of methods. Whenever the component is accessed
the ACL of the component should be checked.
Instead of doing this two-step process, we can have
a uni®ed checking mechanism using RBAC as
shown in Fig. 7. For ease of reference, we call the
portion of security provider that enforces role-
based access control as RBAC monitor. At the
role hierarchy checking step, the client's all roles
that he or she is a member of (by means of role
hierarchies) should be checked. After this step
RBAC monitor decides whether the client can
have permission(s) to access the component ac-
cording to given role(s) during the role-permission
checking. 2 For example, assume that a client
Chris has a role Top Management in Fig. 6 and
tries to access an accounting business component.
During role hierarchy check, we can know Chris's
role membership: {Accounting, Transaction, Top

Management}. After the role permission check, he
can have all permissions from junior roles such as
Accounting and Transaction using Registry Key.
This means Chris can add new transactions and
also view the transaction. Let us consider that Bob
has a role Accounting in Fig. 6 and tries to access
an accounting business component. We can simply
know that Bob can only add new transactions but
he cannot view the transaction. Using an approach
with RBAC we can have the same result as the
previous approach illustrated in Fig. 4. The RBAC
approach can also reduce the interactions between
a component and secure object such as Registry.

In order to enforce our framework described in
this paper, we also need to construct role-permis-
sion relation. For example, consider the medical
system which has role-permission table illustrated
in Table 2, and deals with critical information such
as medical records. Prescription, Test-Result,
Medical Record, and Financial Record are objects
which include the information accessed by users
who have permissions to access those objects. And
each permission is an interface for each object.
Table 2 implies that Physician role can have read
and write permissions to objects such as Pre-
scription and Medical Record, and he/she can just
read the object Test-Result. And Patient role can
just read only his/her objects such as Prescription,
Medical Record, and Test-Result. That is, this
table displays the relation between roles and per-
missions. Even though this table is not the real
example, it is su�cient to show the need of role-

Registry

Client

User: Bob

DCOM

IView

IAdd

User: Alice

Client

1

2

3 4

5

6

COMPONENT

Security Provider
(RBAC Monitor)

a. Role Hierarchy Checking
(obtaining all roles based on

b. Role-Permission Checking
(checking permissions for object

 role-hierarchy)

access based on Role-Permission table)

Fig. 7. Integration with RBAC.

2 These permissions can easily be con®gured using DCOM

con®guration tool (addressed in Section 2.2).

1182 G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184

permission table. This kind of access policy allows
us to prevent an unauthorized user from doing
malicious thing on (with) the critical information.

Integrating with RBAC, we just showed that we
can simplify access control in DCOM. Using our
approach, we can enforce role-based access control
that can authorize each access to objects in
DCOM. In further study, we will investigate the
details how RBAC can be achieved in the end-to-
end mechanism of DCOM.

5. Conclusion

In this paper, we have described the architecture
and security mechanism of DCOM. Also, we
brie¯y looked at the RBAC model as a security
speci®cation model. Finally, we have shown that
RBAC can be accommodated in DCOM. Also we
can see that the adoption of RBAC as a part of
security provider can simplify access control and
provide administrative convenience. This frame-
work was just based on DCOM's access security
policy. In the future work, we also would investi-
gate whether DCOM has su�cient ¯exibility to
accommodate administrative access control mod-
els such as URA97 [17].

References

[1] P.E. Ammann, J.C. Knight, Data diversity: an approach to

software fault-tolerance, IEEE Transactions on Computers

37 (4) (1988) 418±425.

[2] C. Adams, S. Lloyd, Understanding Public-key Infrastruc-

ture: Concepts, Standards, and Deployment Consider-

ations, Macmillan, New York, November 1999.

[3] K.P. Birman, Building Secure and Reliable Network

Applications, Manning Publications, 1996.

[4] Microsoft Corporation, DCOM architecture, in: Proceed-

ings of Microsoft Professional Developers Conference,

September 1997.

[5] Department of Defense National Computer Security Cen-

ter, Department of Defense Trusted Computer Systems

Evaluation Criteria, DoD 5200.28-STD, December 1985.

[6] D. Rogerson, Inside COM, Micosoft Press, 1996.

[7] J. Gray, A. Reuter, Transaction Processing: Concepts and

Techniques, Morgan Kaufman, Los Altos, CA, 1993.

[8] R. Grimes, Professional DCOM Programming, Wrox

Press, 1997.

[9] S. Jajodia, P. Samarati, V.S. Subrahmanian, E. Bertino, A

uni®ed framework for enforcing multiple access control

policies, in: Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data Pages, 1997,

pp. 474±485.

[10] M. Moriconi, et al., Secure software architectures, in:

Proceedings of IEEE Symposium on Research in Security

and Privacy, IEEE Press, New York, 1997.

[11] Microsoft Corporation, Microsoft Windows NT Server:

DCOM Technical Overview 1995, www.microsoft.com/

com/dcom95.

[12] B. Randell, System structure for software fault tolerance,

IEEE Transactions on Software Engineering SE-1 (12)

(1995) 220±232.

[13] R. Sandhu, G.-J. Ahn, Decentralized group hierarchies in

UNIX: an experiment and lessons learned, in: Proceedings

of 21st NIST-NCSC National Information Security Con-

ference, Crystal City, VA, October 1998, pp. 486±502.

[14] R. Sandhu, G.-J. Ahn, Group hierarchies with decentral-

ized user assignment in Windows NT, in: Proceedings of

IASTED Conference on Software Engineering, Las Vegas,

NV, October 1998, pp. 352±355.

[15] R.S. Sandhu, Lattice-based access control models, IEEE

Computer 26 (11) (1993) 9±19.

[16] R. Sandhu, Rationale for the RBAC96 family of access

control models, in: Proceedings of the First ACM Work-

shop on Role-Based Access Control, ACM, New York,

1997.

[17] R. Sandhu, V. Bhamidipati, The URA97 model for role-

based administration of user-role assignment, in: T.Y. Lin,

X. Qian (Eds.), Database Security XI: Status and Pros-

pects, North-Holland, Amsterdam, 1997.

[18] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman,

Role-based access control models, IEEE Computer 29 (2)

(1996) 38±47.

Table 2

An example of role-permission table

Prescription Test-Result Medical Record Financial Record

Physician R W R R W ±

Nurse ± ± R ±

Pharmacist R ± ± ±

Accountant ± ± ± R W

Patient R R R ±

G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184 1183

[19] R. Sandhu, Q. Munawer, How to do discretionary access

control using roles, in: Proceedings of the Third ACM

Workshop on Role-Based Access Control, 1998, pp. 47±

54.

[20] R.S. Sandhu, P. Samarati, Access control: principles and

practice, IEEE Communications 32 (9) (1994) 40±48.

[21] R. Sandhu, P. Samarati, Authentication, access control

and intrusion detection, in: E. Bertino (Ed.), The Com-

puter Science and Engineering Handbook, CRC press,

Boca Raton, 1997, pp. 1929±1948.

[22] N. Yialelis, E. Lupu, M. Sloman, Role-based security for

distributed object systems, in: Proceedings of the IEEE

Fifth Workshops on Enabling Technology: Infrastructure

for Collaborative Enterprise, IEEE, New York, 1996.

Gail-Joon Ahn is an assistant professor
of Computer Science Department at
University of North Carolina, Char-
lotte, North Carolina. His principal
research and teaching interests are in
information and systems security. He
received his Ph.D. and M.S. degrees
from George Mason University, Fair-
fax, Virginia, and B.S. degree in
Computer Science from SoongSil
University, Seoul, Korea. He was a
research associate at the Laboratory
for Information Security Technology,

George Mason University. His research interests include access
control, security architecture for distributed objects, and secure
e-commerce systems. He is a member of ACM and IEEE
Computer Society.

1184 G.-J. Ahn / Journal of Systems Architecture 46 (2000) 1175±1184

