
Role-based Authorization Constraints Specification
 Using Object Constraint Language

Gail-Joon Ahn

Department of Computer Science
University of North Carolina at

Charlotte
gahn@uncc.edu

Michael. E. Shin
Department of Information and Software

Engineering
George Mason University

eshin@gmu.edu

Abstract

The purpose of access control is to limit the actions
on a computer system that a legitimate user can
perform. The role-based access control (RBAC) has
generated great interest in the security community as
a flexible approach in access control. One of
important aspects in RBAC is constraints that
constrain what components in RBAC are allowed to
do. Although researchers have identified useful
constraints using formal specification languages such
as RCL2000, there still exists a demand to have
constraints specification languages for system
developers who are working on secure systems
development. In this paper we discuss another
approach to specify constraints using a de facto
constraints specification language in software
engineering arena. We use a declarative language,
Object Constraints Language (OCL) that is part of
the Unified Modeling Language (UML) and has been
used in object-oriented analysis and design. We
describe how to specify previously identified role-
based authorization constraints and future direction
of this work is also addressed.

1. Introduction
The role-based access control (RBAC) is a flexible
approach that has generated great interest in the
security community [1]. RBAC has emerged as a
widely accepted alternative to classical discretionary
and mandatory access controls [2]. Several models of
RBAC have been published and several commercial
implementations are available. RBAC regulates the
access of users to information and system resources
on the basis of activities that users need to execute in
the system. It requires the identification of roles in
the system. A role can be defined as a set of actions
and responsibilities associate with a particular
working activity. Then, instead of specifying all the
accesses each individual user is allowed, access
authorizations on objects are specified for roles.
Since roles in an organization are relatively persistent

with respect to user turnover and task re-assignment,
RBAC provides a powerful mechanism for reducing
the complexity, cost, and potential for error in
assigning permissions to users within the
organization. Because roles within an organization
typically have overlapping permissions RBAC
models include features to establish role hierarchies,
where a given role can include all of the permissions
of another role. Another fundamental aspect of
RBAC is authorization constraints (also simply called
constraints). Although the importance of constraints
in RBAC has been recognized for a long time, they
have not received much attention in the research
literature, while role hierarchies have been practiced
and discussed at considerable length.

In this paper our focus is on constraints specification,
i.e., on how constraints can be expressed. Constraints
can be expressed in natural languages, such as
English, or in more formal languages. Natural
language specification has the advantage of ease of
comprehension by human beings, but may be prone
to ambiguities. Recently Ahn and Sandhu [3]
proposed a formal language called RCL2000 (Role-
based constraints specification language 2000) and
identified useful role-based authorization constraints
such as prohibition and obligation constraints. The
users of RCL2000 are security researchers and
security policy designers who have to understand
organizational objectives and articulate major policy
decisions to support theses objectives. RCL2000 also
provides n-ary expressions and more flexibility,
sharing a great deal of common semantics about
expressing access control constraints [4].

Next, we may face the following question: How can
we put these useful constraints into system design
tasks? The idea of our approach is to inject
constraints specification into a UML-representation
of RBAC accomplished by [5]. The constraints in
RBAC may be one of the most important components
that enforce the principal motivations of RBAC
model. Using OCL that has been used to express

constraints in analysis and design as an industrial
standard constraints specification language, we
demonstrate that OCL can help us specify previously
identified constraints at the system design step. The
constraints include separation of duty constraints,
prerequisite constraints, and cardinality constraints.
This approach is comparatively convenient for
system developers to specify and to understand
constraints of RBAC model.

The rest of this paper is organized as follows. In
section 2, we briefly describe role-based access
control, UML and OCL. Section 3 discusses
authorization constraints that are involved in role-
based access control. In section 4, we specify
previously identified role-based authorization
constraints using OCL. Section 5 concludes this
paper.

2. Related Technologies

2.1 Role-based Access Control
RBAC has recently received considerable attention as
a promising alternative to traditional discretionary
(DAC) and mandatory (MAC) access controls (see,
for example, [2,5,6,7]). As MAC is used in the
classical defense arena, the policy of access is based
on the classification of objects such as top-secret
level. The main idea of DAC is that the owner of an
object has discretionary authority over who else can
access that object. But RBAC policy is based on the
roles of the subjects and can specify security policy
in a way that maps to an organization's structure.

A general family of RBAC models called RBAC96
was defined by Sandhu et al [2]. Figure 1 illustrates
the most general model in this family. Motivation and
discussion about various design decisions made in
developing this family of models is given in [2].
Figure 1 shows (regular) roles and permissions that
regulate access to data and resources. Intuitively, a
user is a human being or an autonomous agent, a role
is a job function or a job title within the organization
with some associated semantics regarding the
authority and responsibility conferred on a member
of the role, and a permission is an approval of a
particular mode of access to one or more objects in
the system or some privilege to carry out specified
actions. Roles are organized in a partial order ≥, so
that if x ≥ y then role x inherits the permissions of
role y. Members of x are also implicitly members of
y. In such cases, we say x is senior to y. Each session
relates one user to possibly many roles. The idea is
that a user establishes a session and activates some
subset of roles that he or she is a member of (directly

or indirectly by means of the role hierarchy). The
RBAC model has the following components and
these components are formalized from the above
discussions.

• U is a set of users,
• R is disjoint sets of roles and administrative roles
respectively,
• P is disjoint sets of permissions and
administrative permissions,
• UA ⊆ U × R, is a many-to-many user to role
assignment relation,
• PA ⊆ P × R is a many-to-many permission to
role assignment relation,
• RH ⊆ R × R is partially ordered role hierarchies
(written as ≥ in infix notation),
• S is a set of sessions,
• user : S → U, is a function mapping each session

si to the single user user(si) and is constant for
the session's lifetime,

• roles : S → 2R is a function mapping each
session si to a set of roles roles(si) ⊆ {r (∃r’ ≥
r) [(user(si), r’) ∈ UA]} (which can change with
time) so that session si has the permissions
Ur∈roles (si) {p | (∃r″ ≤ r) [(p, r″) ∈ PA]}.

A user can be a member of many roles and a role can
have many users. Similarly, a role can have many
permissions and the same permissions can be
assigned to many roles. Each session relates one user
to possibly many roles. Intuitively, a user establishes
a session during which the user activates some subset
of roles that he or she is a member of. The
permissions available to the users are the union of
permissions from all roles activates in that session.
Each session is associated with a single user. This
association remains constant for the life of a session.
A user may have multiple sessions open at the same
time, each in a different window on the workstation
screen for instance. Each session may have a
different combination of active roles. The concept of
a session equates to the traditional notation of a
subject in access control. A subject is a unit of access
control, and a user may have multiple subjects (or
sessions) with different permissions active at the
same time. There is a collection of constraints that
allow or forbid values of various components of the
RBAC model.

2.2 Unified Modeling Language (UML)
The Unified Modeling Language (UML) is a general-
purpose visual modeling language in which we can
specify, visualize, and document the components of
software systems. It captures decisions and
understanding about systems that must be constructed

[8,9,10]. The UML has become a standard modeling
language in the field of software engineering.

Figure 1 RBAC Model

U

USERS

R

ROLES

P

PERMISSIONS

USER
ASSIGNMENT

CONSTRAINTS

roles
users

S

SESSIONS

ROLE
HIERARCHY

UA RH

PERMISSION
ASSIGNMENT

PA

The UML consists of functional, static, and dynamic
models. In a functional model, the functional
requirements of systems are specified using use case
diagrams. A use case defines the services that a
system provides to users. A static model provides a
structural view of information in a system. Classes
are defined in terms of their attributes and
relationships. The relationships include association,
generalization/specialization, and aggregation of
classes. A dynamic model shows a behavioral view
of a system. It can be described with collaboration
diagrams, sequence diagrams, and statechart
diagrams. A collaboration diagram and sequence
diagram are developed to capture how objects
collaborate with each other to execute a use case.
State dependent views of objects are defined in
statechart diagrams.

2.3 Object Constraint Language
The Object Constraint Language (OCL) [10,11] is an
expression language that describes constraints on
object-oriented models. A constraint is a restriction
on one or more values of an object-oriented model.
OCL is an industrial standard for object-oriented
analysis and design.

Each OCL expression is written in the context of an
instance of a specific type. In an OCL expression, the
reserved word self is used to refer to the contextual
instance. The type of the context instance of an OCL
expression is written with the context keyword,
followed by the name of the type. The label inv:
declares the constraint to be an invariant constraint.
For example, suppose that employees work for a
company and they are involved in projects. These
relationships can be modeled using the class model of
the UML. If the context is Company, then self refers
to an instance of Company. The following shows an

example of OCL constraint expression describing a
company that has more than 200 employees:

context Company inv:
self.employee->size > 200

The self.employee is a set of employees that is
selected by navigating from Company class to
Employee class though an association. The “.” stands
for a navigation. A property of a set is accessed by
using an arrow “->” followed by the name of the
property. A property of the set of employees is
expressed using a keyword “size” in this example.

The following shows another example describing that
an employee can join a project A only if the
employee is already involved in a project B:

context Employee inv:
self.project->includes(`A`) implies
self.project->includes(`B`)

The self.project->includes(`A`) means that the
project A is an element of projects in which an
employee is involved. The “implies” statement is
true if self.project->includes(`A`) is false, or if
self.project->includes(`A`) and self.project-
>includes(`B`) are true.

An OCL expression delivers a subset of a collection.
That is, the OCL has special constructs to specify a
selection from a specific collection. For example, the
following OCL expression specifies that the
collection of employees whose age is over 50 is not
empty:

context Company inv:
self.employee->select(age > 50) ->notEmpty

The “select” takes an employee from self.employee
and evaluates an expression (age > 50) for the
employee. If this evaluation result is true, then the
employee is in the result set.

3. Role-based Constraints
Constraints are an important aspect of access control
and are a powerful mechanism for laying out a
higher-level organizational policy. Consequently the
specification of constraints needs to be considered.
This issue has received surprisingly little attention in
the research literature. There is some work such as
[12,13] that deal with constraints in the context of
role-based access control. This work, however, is
preliminary and tentative, and need substantial
further development. Most prior work has focused

on separation of duty constraints. Chen and Sandhu
[12] suggested how constraints could be specified.
Giuri and Iglio [13] defined a new model to provide
the capability of defining constraints on roles. In their
model, a role is defined as a named set of constrained
protection domains (NSCPD) that is activatable only
if the corresponding constraint is satisfied. Their
description focused on the activation of roles. But we
should also consider that constraints be applied to
other components in RBAC. Ahn and Sandhu [3]
introduced a formal language, called RCL2000 and
identified the major classes of constraints in RBAC
such as prohibition constraints and obligation
constraints, including cardinality constraints.

Permission
*

Administrative
Permission

User
Permission

Role

Administrative
Role

User
Role

*
1 0..*

Inherits

Assigned to
(PA relation)User

Assigned to
(UA relation)* *

Session

1

1..*

Establishes
(user)

1..*

Activates
(roles)

Fig.2: Conceptual Class Model for RBAC - entity classes

name
name

name

name 1..*

4. Constraints Specification
The conceptual static model for RBAC is depicted in
Figure 2. It contains classes, their attributes, and their
relationships [14]. The basic entities are user, role,
permission, constraint, and session classes. The role
can be specialized to user and administrative roles.
The permission can also be specialized to user and
administrative permissions. Each class has an
attribute, that is, a name, which can be an
identification of instance of the class. In the class
model, the UA and PA relations indicate that users
can be assigned to roles and permissions can be
assigned to roles, respectively. Next, we need to
express constraints that regulate the construction and
the activities of each class from this UML
representation. Our expression includes separation of
duty constraints, prerequisite constraints, and
cardinality constraints.

4.1 Separation of duty constraints
Separation of duty is a well-known principle for
preventing fraud by identifying conflicting roles—

such as Purchase Manager and Accounts Payable
Manager—and ensuring that the same individual can
belong to at most one conflicting role. We may apply
this conflicting notion to other components such as
user and permission in role-based access control. The
concept of conflicting permissions defines conflict in
terms of permissions rather than roles. Thus the
permission to issue purchase orders and the
permission to issue payments are conflicting,
irrespective of the roles to which they are assigned.
Conflict defined in terms of roles allows conflicting
permissions to be assigned to the same role by error
(or malice). Conflict defined in terms of permissions
eliminates this possibility. In the real world, we may
also have a notion of conflicting users based on
organizational policy. The following examples show
how we can specify this type of constraints using
OCL.

Example 1: Conflicting roles cannot be assigned to
the same user.
Consider two mutually exclusive roles such as
accounts payable manager and purchasing manager.
Mutual exclusion in terms of UA specifies that one
individual cannot have both roles. This constraint on
UA can be specified using the OCL expression as
follows:

context User inv:
let M : Set = {{accounts payable manager,
purchasing manager}, ….} in
M->select(m | self.role ->
intersection(m)>size > 1) -> isEmpty

This constraint expression selects all mutually
exclusive sets, checks all roles assigned to each user,
and enforces above requirements. In other words, a
user can have at most one of mutually exclusive
roles.

Example 2: Conflicting permissions cannot be
assigned to the same role.
This example says that a user can have, at most, one
conflicting permission acquired through roles
assigned to the user. This constraint is a stronger
formulation than example 1, which prevents mistakes
in role-permission assignment. In retrospect, this
constraint is an obvious property but there is no
mention of this property in over a decade of SOD
literature. Ahn and Sandhu [3] have recently
identified this property. Suppose we have two
conflicting permission such as `prepare check` and
`issue check`. The OCL expression is as follows.

context Role inv:
let M : Set = {{prepare check, issue check},
….} in
M->select(m | self.permission ->
intersection(m)->size > 1) -> isEmpty

Example 3: Conflicting users cannot be assigned to
the same role.
Conflicting users should be also considered. For
example, for the process of preparing and approving
purchase orders in the purchase manager role, it
might be company policy that members of the same
family should not prepare the purchase order, and
also be a user who approves that order. The
following expression ensures that two conflicting
users, user α and user β, cannot be assigned to the
same role.

context Role inv:
let M : Set = {{user α, user β}, ….} in
M->select(m | m->intersection(self.user->
select(self.name = `purchase manager`))
->size > 1) -> isEmpty

Example 4: Conflicting roles cannot be activated in
the same session.
This example is a simple dynamic separation of duty
constraint. Suppose that a user has the supervisor
roles and inherits permissions from both accounts
payable manager role and purchasing manager role. It
may be acceptable for the user not to activate these
two conflicting roles at the same time. The following
is OCL expression about this constraint.

context User inv:
let M : Set = {{accounts payable manager,
purchasing manager}, ….} in
M ->
select(m | m->intersection(self.session.role)
->size > 1) -> isEmpty

4.2 Prerequisite constraints
This constraint is based on the concept of prerequisite
roles introduced in [2]. For example, a user can be
assigned to the engineer role only if the user already
is assigned to the employee role. It ensures that only
users who are already assigned to the employee role
can be assigned to the engineer role. We call this kind
of constraint as prerequisite-role constraints. The
following examples demonstrate that OCL can also
specify prerequisite constraints.

Example 5: A user can be assigned to role r1 only if
the user is already a member of role r2.
Mostly, the prerequisite role is junior to the new role
being assumed. Consider only those users who are
already members of the project_team role can be
assigned to the tester role within that project. This
constraint can be specified as follows:

context User inv:
self.role ->includes(`tester`) implies
self.role->includes(`project_team`)

Example 6: A permission p can be assigned to a role
only if the role already possesses permission q.
This constraint is the dual form of example 5. For
instance, in many systems permission to read a file
requires permission to read the directory in which the
file is located. Assigning the former permission
without the latter would be incomplete. This
constraint on PA can be specified using the OCL
expression as follows:

context Permission inv:
self.role ->includes(`read file`) implies
self.role->includes(`read directory`)

4.3 Cardinality constraints
Another constraint type is a numerical limitation for
classes in a role-based system. This numerical
limitation may vary depending upon the
organizational policy. We show that OCL can specify
these constraints without any extension of language.

Example 7: Numerical limitation N that exists for the
number of users authorized for a role cannot be
exceeded.
Example 7 limits the number of users to be assigned
to a role. For example, there is only one person in the
role of chairman of a department. The chairman role
should be assigned to only one user. The OCL
expression for this constraint on UA can be as
follows:

context Role inv:
self.user ->select(u | self.name = `chairman`)
-> size = 1

Example 8: Numerical limitation N that exists for the
number of sessions a user can have active a t the
same time.
This example limits the number of sessions to be
activated by a user. For example, a user is allowed to
activate only two sessions at the same time. This
constraint can be specified using OCL as follows.

context User inv:
self.session -> size <= 2

We have shown how authorization constraints for
role-based systems can be specified using OCL. The
OCL constraints specification can be validated by an
OCL parser. Currently the OCL parser [15] does
support syntax and type checking. The parsed result
can be feedback to OCL constraints specifications.
A case study for validating our specifications is
currently under investigation.

5. Conclusion
In this paper, we have demonstrated that we can
specify role-based authorization constraints using an
industrial standard constraints specification language,
OCL. We have specified separation of duty
constraints, prerequisite constraints and cardinality
constraints. As a result, we can utilize constraints
identified by a formal language such as RCL2000
when we design and analyze role-based systems. We
believe that this work helps system developer
understand constraints and requirements on secure
systems development. There is room for much
additional work with our approach. Validation of
OCL specifications and time-based constraints can be
studied. A unified way to specify authorization
constraints can be investigated so that we can apply
our approach to other access control models such as
MAC and DAC.

References
[1] James Joshi, Arif Ghafoor, Walid Aref, and Eugene
Spafford, “Digital Government security infrastructure
design challenges,” IEEE Computer, Volume 34, Number
2, pages 66-72, February 2001.

[2] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman, “Role­based access control models,”
IEEE Computer, Volume 29, Number2, pages 38-47,
February 1996.

[3] Gail-Joon Ahn and Ravi Sandhu, “Role-based
Authorization Constraints Specification,” ACM
Transactions on Information and Systems Security, Volume
3, Number 4, November 2000.

[4] Trent Jaeger and Jonathon Tidswell, “Practical Safety in
Flexible Access Control Models.” ACM Transactions on
Information and Systems Security, Volume 4, Number 3,
August 2001, to appear.

[5] David Ferraiolo and Richard Kuhn, “Role­based access
controls,” In Proceedings of 15th NIST­NCSC National
Computer Security Conference, pages 554-563, Baltimore,
MD, October 13­16 1992.

[6] M.Y. Hu, S.A. Demurjian, and T.C. Ting, “User­role
based security in the ADAM object­oriented design and
analyses environment,” In J. Biskup, M. Morgernstern, and
C. Landwehr, editors, Database Security VIII: Status and
Prospects, North­Holland, 1995.

[7] Imtiaz Mohammed and David M. Dilts, “Design for
dynamic user­role­based security,” Computers & Security,
Volume 13, Number 8, pages 661-671, 1994.

[8] J. Rumbaugh, G. Booch, and I. Jacobson, “The Unified
Modeling Language Reference Manual,” Addison Wesley,
Reading MA, 1999.

[9] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified
Modeling Language User Guide,” Addison Wesley, 1999.

[10] OMG Web site. Unified Modeling Language Notation
Guide, Version 1.3, September 2000.

[11] Jos Warmer and Anneke Kleppe, “The Object
Constraint Language: Precise Modeling with UML,”
Addison-Wesley, 1999

[12] Chen, F. and Sandhu, R., “Constraints for role based
access control,” In Proceedings of the 1st ACM Workshop
on Role-Based Access Control, pages 39-46, Gaithersburg,
MD, November 30-December 1 1995.

[13] Giuri, L. and Iglio, P., “A formal model for role-based
access control with constraints,” In Proceedings of 9th
IEEE Computer Security Foundations Workshop, pages
136-145, Kenmare, Ireland, June 1996.

[14] Michael E. Shin and Gail-Joon Ahn, “UML-based
Representation of Role-Based Access Control,” Fifth
International Workshop on Enterprise Security (WETICE
2000), Gaithersburg, MD, June, 2000

[15] IBM Web site, “OCL Parser,” Version 0.3, 1999

