
Role-based Privilege and Trust Management

Dongwan Shin1 and Gail-Joon Ahn2

1 Department of Computer Science
New Mexico Tech, 801 Leroy Place

Socorro, NM 87801, USA
doshin@nmt.edu

2 Department of Software and Information Systems
University of North Carolina at Charlotte

Charlotte, NC 28223, USA
gahn@uncc.edu

Abstract. The Internet provides tremendous connectivity and informa-
tion sharing capability which organizations can use for their competitive
advantage. However, we still observe security challenges in Internet-based
applications, especially in terms of their limited support for controlled
access to organizational resources and information for unknown users.
Roles can be a convenient construct for expressing entitled privileges and
trust degree alike, based upon which further specification of responsibil-
ity and capability is made so as to facilitate trust-based authorization
for such an environment. In this article, we design a role-based privi-
lege and trust management by leveraging a role-based trust model and a
privilege management infrastructure, as an attempt to develop an easy-
to-use, flexible, and interoperable authorization mechanism for unknown
users. Also, we demonstrate the feasibility of our mechanism by pro-
viding a proof-of-concept prototype implementation using commercial
off-the-shelf technologies.

1 Introduction

The Internet is uniquely and strategically positioned to address the needs of a
growing segment of population in a very cost-effective way. It provides tremen-
dous connectivity and immense information sharing capability which organiza-
tions can use for their competitive advantage. However, we still observe security
challenges in this open environment, especially in terms of controlled access to
organizational resources and information for unknown users.

Conventional access control policies rest on the principle that a user request-
ing access should be known a priori. As a result, it is assumed that the user’s
identity should exist within policy-effective domain(s) where an access control
decision can be made. Discretionary access control (DAC), mandatory access
control (MAC), and role-based access control (RBAC) all remain in line with
the principle; they regulate access based on the known identity or some at-
tributes associated with it such as groups, security clearances, and roles. We
call this type of attribute assignment identity-based attribute assignment (IAA).

TravelRUs

.com

HotelRUs

.com

AttrService

.com

Cross-domain

Capability delegation

(A to B)

BizPartnersTravAgent

TravAgent

MarketingAsst

AB

Alice in

MarketingAsst role (C1)

(C2)

(C3)

CredentialsC1, C2, C3, C4

PrefInfoSrv assigned to

BizPartners role

(C4)

Fig. 1. An example illustrating the usage of roles for capability delegation in cross-
domain environments

However, those conventional access control approaches based on IAA alone are
often inadequate to meet all the requirements that today’s Internet environments
usually set out [15, 24]. This is especially true when the aforementioned principle
does not hold any more.

Trust management (TM) has attracted growing attention as a generalized
access control mechanism for lowering the bar on the limitation of conventional
access control approaches. Central to understand the concept of TM is capability
delegation, which is incorporated into a credential chain from a resource owner
to an access requester; access is granted if a chain of credentials proves that a
requested action complies with local access control policies. Hence, it provides
an authorization framework for unknown users, whereby it is possible to express
and evaluate decentralized access control policies and credentials in an open and
distributed network environment such as the Internet [5].

1.1 A Motivating Example

Considering their indirect and bilateral characteristics, roles can be a conve-
nient construct enabling trust-based authorizations. Roles provide an indirection
mechanism for relating users with permissions, thereby reducing complexity and
potential errors in permission management. In addition, roles can represent abili-
ties and groups of trusted users in cross-domain environments, which often derive
from bilateral agreements between organizations. Let us walk through a simple
example aimed at illustrating the usage of roles in a cross-domain environment,
and we will use it throughout this paper.

Example 1. Assume that a company AttrService.com provides its customers’
travelling preferences information to its business partners through a PrefInfoSrv
service; a permission to access PrefInfoSrv is associated with its BizPartners role
(permission assignment or PA in RBAC jargon)3. As a result of its recent part-
3 We assume that access control policies in the example are based on RBAC.

nership agreement with a company TravelsRUs.com, AttrService.com allows the
members of TravAgent role in TravelsRUs.com to have the permission to access
PrefInfoSrv. Additionally, AttrService.com consents the permission to be further
delegated by TravelsRUs.com. As a result, TravelsRUs.com further delegates the
delegated permission of its TravAgent role to the MarketingAsst role in its sub-
sidiary, HotelsRUs.com.

Assuming that Alice is an employee of the company HotelsRUs.com and her
job title is MarketingAsst, how can she be allowed to access PrefInfoSrv based
on conventional RBAC approaches? Since AttrService.com does not have Alice
in its user-role assignment database, access control approaches relying on IAA
alone cannot be much helpful in this situation. Instead, a possible scenario in
TM approach could be like this; upon Alice’s access request, AttrService.com
may request her of a chain of credentials which can prove that she is authorized
to access the service. For instance, the chain may include C1 that states Alice is
a member of MarketingAsst in HotelsRUs.com (user assignment or UA in RBAC
jargon), C2 that the capability of TravAgent in TravelsRUs.com is delegated to
MarketingAsst, C3 that the capability of BizPartners in AttrService.com is dele-
gated to TravAgent, and C4 that the permission to access PrefInfoSrv is associated
with the role of BizPartners within AttrService.com (permission assignment or PA
in RBAC jargon). Therefore, the chain (C1, C2, C3, C4) helps AttrService.com
make an access control decision for Alice’s request. This is illustrated in Figure 1.

1.2 Our Objective

There has been extensive research on modelling roles for access control in various
dimensions. Interestingly, however, previous RBAC models lend themselves to
the primary use in closed and centralized network environments [10, 22], and
thus do not address a trust-relevant aspect of roles, i.e., suitable for use as the
representation of trust degree. For instance, either the trust relation or the cross-
domain authority delegation shown in C2 and C3 is hard to express in RBAC
jargon4. Hence, it would be desirable to find a component that correlates with
the notion of trust on RBAC. Given such a component, RBAC can be more
flexible and suitable for use in open and decentralized network environments. In
this light, we view our contribution as follows.

– With the introduction of such a component, we improve current RBAC mod-
els to support the notion of trust so that the models can natively support
access control for unknown users.

– We introduce a reference model for designing roles or comparing different
designs of roles in the authorization framework that TM provides.

– We design a mathematical framework in order to instantiate our model by
accommodating an existing framework.

4 Strictly speaking, role-based delegation is analogous, if not identical. However, most
discussions on role-based delegation in the literature have been limited within the
context of easing administrative burdens in a single domain.

– We design an authorization mechanism and implement a security architec-
ture based on our model in order to address access control for unknown
users.

Our primary objective in this paper is 1) to present a formal description of
a trust-enabled RBAC called TRUSTr, and 2) to design a role-based privilege
and trust management by leveraging both the model and the privilege manage-
ment infrastructure (PMI), as an attempt to develop an easy-to-use, flexible, and
interoperable role-based authorization mechanism for open and distributed envi-
ronments. TRUSTr introduces a new component called trust assignment (TA).
TA features trust-based role association among different administrative domains
and supports entrusting or distrusting operations for the management of asso-
ciated roles. We discuss role hierarchies and constraints in conjunction with TA
for their varying semantics. PMI has been introduced in order to support a
simplified privilege management among distributed Internet-based applications
by leveraging X.509 attribute certificates [12, 23]. It enables us to establish the
trustworthiness among different authorization domains as long as each of them
keeps the meaning of attributes intact.

The rest of this paper is organized as follows. Section 2 shows background
technologies and previous research related to our work. Section 3 presents our
TRUSTr model, followed by Section 4 which describes our approach to design-
ing the role-based privilege and trust management. Implementation details are
described in Section 5. Section 6 discusses lessons learned from our experiment
and concludes the paper.

2 Background and Related Works

In this section, we start with the discussion of TM in the context of distributed
environments. Then we discuss previous approaches to using roles in TM systems
or certificate-based authorization systems.

2.1 Trust and Trust Management

A number of TM systems or languages have been implemented or proposed over
the last decade: PolicyMaker, KeyNote, REFEREE, SPKI/SDSI, TPL, and more
recently RT [4–6, 8, 11, 14]. In addition, a mathematical framework for better un-
derstanding those TM systems was proposed in [25]. The framework describes
how to model different types of authorization in a consistent manner by using a
lattice structure, how to model different kinds of credentials by using a monotone
license function, and how to implement TM engines by using the least fixpoint
semantics. As shown in the upper part of Table 1, the framework consists of
five elements; principals, authorizations, authorization maps, licenses, and as-
sertions. A principal is an entity that makes or authorizes access requests. An
authorization pertains to the permission granted by a principal. Authorizations
are organized as a lattice, which is an important characteristic that enables

p ∈ Principal
u ∈ Auth
m ∈ AuthMap = Principal → Auth
l ∈ License = AuthMap →m Auth
a ∈ Assertion = Principal × License

MAssertions : P(Assertion) →m AuthMap
MAssertions(A) = lfp(λm.λp.

F{l(m)|〈p, l〉 ∈ A})

MEngine : Principal ×Auth× P(Assertion) → Bool
MEngine(p, u, A) = u vMAssertions(A)(p)

Table 1. Weeks’ Framework for understanding TM Systems

multiple authorizations made by the same principal into a single authorization.
An authorization map is a function which associates a principal with an autho-
rization. A license is a monotone function (denoted by →m) which associates
an authorization map with an authorization. The monotonicity means that au-
thorizations can only increase by adding other principals’ authorizations in an
authorization map. An assertion pertains to an authorization expression made
by a principal, which can be viewed as credentials or certificates.

The lower part of Table 1 describes the semantics of assertions and TM en-
gines to handle authorization decisions. The semantics of assertions, denoted by
MAssertions, is a function which associates a set of assertions with an autho-
rization map. Simply put, given a set of assertions made by various principals,
MAssertions returns a coherent authorization map that contains the authoriza-
tion granted by each of the principals. A least fixpoint, denoted by lfp, is taken
to find such an authorization map5. A TM engine makes an access control deci-
sion on the basis of an authorizing principal, a request, and a set of assertions.
The engine computes an authorization map from the set of assertions, and de-
termines if the request is less than authorizations granted by the authorizing
principal. As we shall discuss it later in this paper, we use this framework for
the purpose of describing a formal instantiation scheme of our proposed model
and approach.

2.2 Roles in Trust Management Systems

The usage of roles for access control can be found in various TM systems. One
of them is ISO/IEC’s PMI, based on global namespace, utilizing X.509 attribute
certificate framework [7, 9, 12, 23]. PMI is an extension of public key infrastruc-
ture (PKI) in the light of authorization. The attribute certificate binds entities

5 λ in Table 1 is used as a function in A → B in which λa.e, given a where a ∈ A,
returns the result of expression e where e ∈ B.

to attributes such as roles or groups. Along with attribute certificates, PMI is in-
troduced with its four models: general model, control model, delegation model,
and roles model. General and control models are required, whereas roles and
delegation models are optional. The general model provides the basic entities
which recur in other models. On the other hand, SPKI/SDSI [8, 20] is another
TM system, based on local namespace, supporting the usage of roles.

Recently, the practicality of SPKI/SDSI’s capability-style approach to grant-
ing permissions has been questioned by Li et al [14]. They argued that capability-
style TM systems generally lack the expressive power for role-based or group-
based authorization policies, and thus they frequently result in heavy adminis-
trative burdens on public key management and distribution. As an alternative,
they proposed RT framework, a family of role-based TM languages which are
able to express policies and credentials for distributed authorizations. Although
the RT framework provides the rich expressive power for authorization policies
and authority delegation, it still needs to address some important issues. One
of them is that the distinction between a user and a principal (generally public
key) is not clear in their framework, and thus it seems to be difficult to express
some constraints that should be applied to the user.

There have been also rigorous researches on how to use attribute certificates
with the view of managing privileges on distributed systems. In the OSF/DCE
environment [16, 17], privilege attribute certificate (PAC) that a client can present
to an application server for authorization was introduced. PAC provided by a
DCE security server contains the principal and associated attribute lists, which
are group memberships. The application server works as a reference monitor to
make access control decisions based on the comparison between the client’s at-
tributes and attributes in ACLs. This approach focused on the traditional group-
based access control. Similarly, Thompson et al. [24] developed a certificate-
based authorization system called Akenti for managing widely distributed re-
sources. It was especially designed for system environments where resources
have multiple stakeholders and each stakeholder wants to impose conditions
for access. There are two types of certificates employed for authorization: use-
condition certificate and attribute certificate. The stakeholders assert their access
requirements in use-condition certificates and an attribute authority issues at-
tribute certificates that bind a user to attributes. Their approach emphasized
the policy-based access control in a distributed environment.

Also, several studies have been carried out to make use of RBAC features
with the help of public-key certificates [3, 18, 19]. Public-key certificates were
used to contain attribute information such as role in their extension field. Two
architectures have been identified in [19]: user-pull and server-pull. [3] demon-
strated how RBAC can be injected to secure a web-based workflow system using
the user-pull style architecture whereas [18] described the server-pull style archi-
tecture for role-based authorization, adopting an LDAP-oriented approach. To
add role information into public key certificates, however, may cause problems
such as shortening of certificates’ lifetime and complexity of their management.
A user’s role memberships are dynamic entities even though roles themselves are

persistent, compared to the user’s identity. Whenever role memberships change,
a new public key certificate binding the user’s identity and new roles needs to be
issued. Subsequently, it leads unnecessary revocation of a public-key certificate
which could be still valid for identity affirmation purposes.

R
Roles

RH

S
Sessions

user roles

Role Hierarchy

Constraints

TDR

Trusted

Domain

Roles

LR

Local

Roles

UA
User

Assignment

PA
Permission
Assignment

TA
Trust Assignment

P
Permissions

U

Users

Fig. 2. The TRUSTr model as an extension of RBAC96 model

3 The Model

In this section, we discuss an extension of RBAC models, called TRUSTr, and
its formal definition. With a view to leveraging roles as a convenient construct
for expressing the degree of trust in trust-based authorization, we introduce a
new component called trust assignment (TA).

3.1 Basic Components

As shown in Figure 2, TRUSTr subsumes existing RBAC components from
[22], also following the conventional approach to defining them using the sets,
relations, and functions.

Definition 1. The basic components of TRUSTr consist of existing RBAC com-
ponents as follows.

- U, R, P, and S, representing the set of users, roles, permissions, and sessions,
respectively.
- UA, PA, and RH, representing the relation of user-to-role assignment, permission-
to-role assignment, and role hierarchy, respectively. RH is partial order on R,
written as ¹.
- user: S → U represents a function mapping each session si to the single user.

- roles: S → 2R represents a function mapping si to a set of roles, where roles
⊆ {r|(∃r′ º r)[(user(si), r

′
) ∈ UA]} and si has permissions

⋃
r∈roles(si)

{p|(∃r′′ ¹
r)[(p, r

′′
) ∈ PA]}.

3.2 Trust Assignment

Similar to assignment relations discussed above, trust assignment (TA) can be
described as a trust-to-role assignment relation. However, the relation does not
seem to be self-explanatory, since the trust assignable to roles is undefined yet.
Hence, we 1) define what the assignable trust is, 2) identify components appro-
priate for representing the trust, and 3) re-define TA based 1) and 2).

We first define authority domains. Each of authority domains in our model
represents a single RBAC domain where RBAC administration and enforcement
can take place.

Definition 2. Let D denote a set of authority domains. D = {d1, ..., do}.
In our model, the degree of trust determines the amount of capability del-

egable from one authority domain to another. That is, how much di can trust
dj can be defined as how much capability to do some tasks within di is given
to dj by di. Since roles generally represent capability, we believe that roles and
role hierarchy are a good means to specify the degree of trust; since roles are
hierarchically organized (mathematically partially ordered), their hierarchy can
be naturally viewed as such. We call these roles local roles (LR), and LR is used
to represent the authority to be delegated to other authority domains. On the
other hand, roles in trusted authority domains are useful in two aspects; they
help avoid listing all users in the trusted authority domains that will be given
the delegated authority and also facilitate cascading authority delegation. We
call these trusted domain roles (TDR). Central to our model is the idea of trust-
based role association between LR and TDR, which enables authority delegation
from a local domain to trusted domains. This is backed by TA, which is shown
in Figure 2.

Definition 3. Roles R are either local roles (LR) or trusted domain roles (TDR).
Suppose TDRdi denotes the subset of trusted roles from authority domain di in
the local domain, TDR =

⋃
TDRdi , where i = 1, ..., n. We let R = LR ∪ TDR

denote the set of all roles.

Definition 4. Trust assignment TA is a many-to-many LR to TDR assignment
relation.

We call entrusting a role to refer to the association of an element of LR with
an element of TDR. Similarly, we call distrusting a role to refer to the break-
up of their association. Roles can entrust or can be entrusted by other roles
only across authority domains. That is to say, a role cannot entrust another role
in the same authority domain. We consider trust assignment relation to be role
dominance relation but in a reverse order. For the role entrusting and distrusting

operations, we use the notation A ⇒C B to represent that role A entrusts role B
under the condition of satisfying a set of constraints C, and A ; B to represent
that role A distrusts role B. A ⇒C B means that role B is at least as powerful as
role A; role B inherits all or partial permissions associated with role A depending
upon C, and role A inherits all users assigned to role B. It should be noted that
one type of constraints in C may specify the degree of authority delegation on
role B. We will discuss different types of constraints in a later section.

Definition 5. Suppose we are given the relation A ⇒C B, we call A as an
entrusting role and B as an entrusted role. Similarly, when we are given A ; B,
we call A as a distrusting role and B as a distrusted role. Local roles cannot be
either an entrusted role or a distrusted role.

TA involves two types of assignment relation: explicit and implicit. Trust
assignment is explicit when a role from LR entrusts a role from TDR. On the
other hand, trust assignment can be made implicitly between LR and TDRdj

when a role from TDRdi , which is entrusting a role from TDRdj , is entrusted by
a role from LR, where domains di and dj are different.

Definition 6. As we discussed earlier, trust relation is a role dominance rela-
tion, i.e., a partially ordered set. Suppose there is a trust assignment, ta = (lr, nlr)
where lr ∈ LR, nlr ∈ TDR, and lr ⇒C nlr. We say ta is explicit if and only if
lr is covered by nlr, i.e., lr ⇒C x and x ⇒C nlr implies lr = x. Otherwise, ta is
implicit.

Local Domain

Dom A

Dom B

Dom C

Cross Domain Role

Hierarchy (CDRH)
Trust

Assignment

Fig. 3. Cross domain role hierarchy (CDRH) constructed by trust assignment (TA)
and examples of its path

3.3 Role Hierarchies with Trust Assignment

Since TA introduces another type of role dominance relation, the need for its
discussion in terms of RH is apparent when we come to deal with its semantics.
We call this as a trust aspect of role hierarchy. We also refer to this as cross
domain role hierarchy (CDRH)6. Figure 3 shows CDRH which is constructed
as a result of TA. We believe that the inclusion of CDRH into RH as distinct
is unnecessary since CDRH is the subset of the union of TA and RH. However,
CDRH deserves further discussion for its merits; it is dynamically constructed
in an order-preserving way, as the determination of its path is dependent upon
the discovery of credentials expressing TA. In Figure 3, there are two distinct
cross domain role hierarchies. One encompasses an entrusted role, its senior role
in domain B and an entrusting role, its junior role in local domain, while the
other covers an entrusted role (by an entrusting role in domain C) in domain
A, an entrusted role (by an entrusting role in local domain) in domain C, and
the entrusting role, its junior role in local domain. For instance, assume that
Alice in our earlier example is the member of the entrusted role in domain A,
she can take up two roles in the local domain in CDRH by presenting a chain
of credentials similar to the one that we discussed in the earlier section.

In TRUSTr, role hierarchies are extended to trusted domains without a loss
of their generality. Sandhu discusses two types of role hierarchies, permission
inheritance RH and activation RH [21]. Permission inheritance RH concerns
that a member of a senior role in the hierarchy inherits permissions from juniors,
whereas activation RH means that a member of a senior role in the hierarchy
is authorized to activate juniors for the purpose of least privilege. We already
discussed CDRH enabling permission inheritance RH. CDRH can also be used
for the purpose of the activation RH gracefully. However, the activation of junior
roles needs to be considered only if they belong to LR. Role activation is closely
related to a session, which associates a user with possibly many roles. It seems
to be unreasonable that in such a session, a user from a trusted domain can
activate roles from other trusted domains than local domain. Accordingly, roles,
which is the component concerning the roles activated in a session, should be
modified, while user remains unchanged.

Definition 7. roles: S → 2R is a function mapping each session si to a set of
roles, where roles ⊆ {r|(∃r′ º r)[((user(si), r

′
) ∈ UA) ∧ (r ∈ LR)]} and session

si has the permissions
⋃

r∈roles(si)
{p|(∃r′′ ¹ r)[(p, r

′′
) ∈ PA]}.

3.4 Constraints with Trust Assignment

Continuing efforts have been made to identify and specify different types of
constraints in RBAC models [2, 13]. In general, constraints previously identified
in [2] can be used in our model without losing their original motivation and

6 Note that the relation⇒ in CDRH could be rewritten as ¹ for the sake of consistency
in dominance relation, where all associated users and permissions are inherited. In
such a case, A ⇒ B is rewritten as A ¹ B.

intention. What we are particularly interested in this section is some types of
constraints that can regulate the behavior of TA, and thus they can be expressed
as various security policy constructs. As we discussed earlier, TA involves au-
thority delegation in cross-domain environments. Therefore, we strongly believe
that stricter constraints should be applied to the authority delegation enabled
by TA. This is why we reason about some important properties related to TA
as follows.

Bilaterality - Roles from different domains are associated based on trust re-
lations between those domains. Our assumption is that the trust relation
is established by a mutual agreement between those domains, and such an
agreement should be negotiated bilaterally. two companies from the earlier
example, AttrService.com and TravelsRUs.com, will agree bilaterally that At-
trService delegates its BizPartners role’s authority to TravelsRUs’s TravAgent
role.

Variability - Trust is subject to change with environmental conditions such as
time and location. That is, any change in a trust relation should be reflected
on the delegated authority of a role involved in the relation. For instance,
assume the mutual agreement between AttrService.com and TravelsRUs.com
should hold only for one year. As a result, the delegated authority of Trav-
Agent will be valid only within the specified time frame.

Granularity - Trust varies in degree. That is, the granularity of authority dele-
gation should be determined depending on the trust degree of a trusting do-
main upon a trusted one. For example, if the trust degree of AttrService.com
on TravelsRUs.com’s TravAgent role is high enough to allow all authority of
BizPartners to be delegated to TravAgent, every permission associated with
BizPartners will be delegated to TravAgent.

Transitivity - Trust relations can be transitive. That is, authority delegation
using roles may be cascaded through one or more trust relations among
domains. The cascading authority delegation should be managed by a con-
trollable mechanism such as a boolean or an integer approach; the boolean
control simply specifies an ability to delegate, while the integer control spec-
ifies the number of possible delegation. For instance, the trust relation be-
tween AttrService.com and TravelsRUs.com should be transitive so that the
authority delegated to the TravAgent role in TravelsRUs.com can be further
delegated to the MarketingAss role in HotelRUs.com.

Based upon the properties above, we can identify some possible constraints
relevant with TA. The variability can be expressed by temporal or spacial con-
straints. The temporal constraint pertains to the specification of the validity
period of TA, while the spacial constraint concerns the specification of the effec-
tive domain. For example, assume that TA should be constrained by both, the
temporal constraint can be expressed as a variety of formats such as ValidNot-
Before and ValidNotAfter, and the spacial constraint can be expressed various
formats such as Targeting.

Similarly, TA needs to be constrained by the granularity. It is commonly
believed that the level of trust is different depending on trusted entities. Granu-

larity can be expressed as an ordinal constraint in trust assignment. The ordinal
constraint is related to the specification of the magnitude of authority delegation
in TA. The typical expression of the ordinal constraint might be, for example,
(High, Medium, Low). This can be used for specifying further which permissions
with assigned ordinal values can be delegated. On the other hand, the depth of
trust is another factor having an effect on TA. Trust depth can be articulated
by boolean control or integer control constraint, which we discussed above.

4 Designing Role-based Privilege and Trust Management

In this section, we discuss our approach to designing a role-based privilege and
trust management for access control in open and distributed environments.
Firstly, we start with the discussion of how we adopt attribute certificates in
PMI to encapsulate role-based privileges. Then we give full details of how we
define principals and identifiers based on which credentials and policies can be
expressed. Note that we are using both attribute certificates and credentials in-
terchangeably. Finally, we describe our instantiation scheme by extending Weeks’
mathematical framework based on which credentials and policies can be evalu-
ated.

4.1 Adopting Attribute Certificate

Our approach is based on basic entities in PMI. It consists of three foundation
entities: the object, the privilege asserter, and the privilege verifier. The control
model explains how access control is managed when privilege asserters request
services on objects. When the privilege asserter requests services by presenting
his/her privileges, the privilege verifier makes access control decisions based on
the privileges presented and local security policies associated with those priv-
ileges. In PMI, two additional components are introduced for the purpose of
articulating RBAC: role assignment and role specification. Role assignment is
to associate privilege asserters with roles, and its binding information is con-
tained in attribute certificate called role assignment attribute certificate. The
latter is to associate roles with privileges, and it can be contained in attribute
certificates called role specification attribute certificate or locally configured at a
privilege verifier’s system. Our approach is based upon and extended from these
attribute certificates. We employ two additional attribute certificates along with
one public key certificate, which we will discuss in the next section.

4.2 Principals, Identifiers, and Credentials

We follow the conventional approach to defining principals as entities making or
authorizing access requests; principals are public keys. An authority domain is
represented by a set of public keys; one or more public keys may be bound to an
authority domain if they belong to the same authority domain. We typically use
KAttrService, K

′
di

, and K
′′
di

for denoting specific public keys bound to authority

domains. We interpret the binding between an authority domain and a public
key as an assertion of a speak-for relation, 7, borrowed from [1]. For example,
whenever a public key K

′
d1 speaks for d1, that means if K

′
d1 makes a statement

then d1 makes the same statement. Multiple-key binding is required in some
situations where, for example, public key revocation or transition is necessary.
Similarly, one or more public keys are bound to a user if they belong to the same
user. ; KA, K

′
Alice, and K

′′
Alice are typically used for denoting specific public keys

bound to users.
An identifier is an arbitrarily long sequence of alphabetic and numeric char-

acters that is used to identify the following components: roles, users, and permis-
sions. In this work, we borrowed the concept of local namespace from SPKI/SDSI [8,
20] except for compound names8. Roles, users, and permissions can be ex-
pressed by a principal representing an authority domain followed by their iden-
tifier whose typical example is their names. For instance, the BizPartners role
from our earlier example is a local role in AttrService.com, which can be rep-
resented by KAttrService BizPartners, and the TravAgent role represented by
KTravelsRUs TravAgent is a trusted domain role in AttrService.com. Similarly,
users and permissions can be expressed by a sequence of length two consisting
of a principal representing an authority domain followed by their corresponding
identifier. For example, a user Alice and a permission to access PrefInfoSrv in
the example can be expressed by KHotelsRUs Alice and KAttrService PrefInfoSrv,
respectively.

Based on the expressions of roles, users, and permissions, five different types
of credentials can be expressed as a form of A → B, which can be read as “B
is at least as powerful as A.” Their types and syntactical examples are shown in
Table 2. The semantics of all credential types except for UI are clear. The cre-
dential involving user identification (UI) can be understood as something similar
to X.509 identity certificate or SPKI/SDSI’s name certificate: a user’s public key
is bound to her identifier within an authorization domain. All credential types
except for PA are used in our implementation scheme, which will be discussed
in the next section.

4.3 The Scheme

The scheme, described in Table 3, should be read along with Table 1 in the
previous section. The upper part of the table describes various components in
TRUSTr. It also defines the authorization lattice of TRUSTr. The lower part of
the table describes the semantics of various assertions used in the scheme.

An ident is a function mapping principals to users that describes users iden-
tified by each principal. For instance, i(KA) = Alice where KA ∈ Principal and

7 The speak-for relation is not symmetric. That is, assuming two public keys K
′
d1 and

K
′′
d1 are bound to an authority domain d1, both K

′
d1 and K

′′
d1 may speak for d1,

but that does not mean that d1, K
′
d1, and K

′′
d1 are equal.

8 Though compound names have some merits, we do not consider them in this paper
since they are likely to require ontology-based name agreement between entities.

User identification (UI): KHotelsRUs Alice → KA

User assignment (UA): KHotelsRUs MarketingAsst → KHotelsRUs Alice
Perm. assignment (PA): KAttrService PrefInfoSrv → KAttrService BizPartners
Trust assignment (TA): KAttrService BizPartners → KTravelsRUs TravAgent

KTravelsRUs TravAgent → KHotelsRUs MarketingAsst
Role hierarchy (RH): KHotelsRUs Employee → KHotelsRUs MarketingAsst

Table 2. Credential Types and Examples

s ∈ Users
e ∈ Permissions
r ∈ Roles = LRole + TDRole
〈s, r〉 ∈ UA = Users×Roles
〈p, r〉 ∈ PA = Permissions×Roles

〈r′ , r′′〉 ∈ TA = (LRole× TDRole)

〈r′ , r′′〉 ∈ RH = (LRole× LRole) + (TDRole× TDRole)

i ∈ Ident = Principal → Users
u ∈ Auth = Principal → P(Permissions)

UAssertion = Principal × UA
RHAssertion = Principal ×RH
TAssertion = Principal × TA

MUALicense : UA×AuthMap → Auth

MUALicense(〈s, r〉, m) = λp
′
.{e | i(p

′
) = s and 〈e = m(p)(p

′
), r〉 ∈ PA}

MUAssertion : UAssertion → Assertion
MUAssertion(p, 〈s, r〉) = 〈p, λm.{MUALicense(〈s, r〉, m)}}

MRHLicense : RH ×AuthMap → Auth

MRHLicense(〈r′ , r′′〉, m) = λp.
F{∃〈i(p), r〉 ∈ UA,

if(r
′ ¹ r), then MUALicense(〈s, r′〉, m)(p), MUALicense(〈s, r′′〉, m)(p)}

MRHAssertion : RHAssertion → Assertion

MRHAssertion(p, 〈r′ , r′′〉) = 〈p, λm.{MRHLicense(〈r′ , r′′〉, m)}}

MTALicense : TA×AuthMap → Auth

MTALicense(〈r′ , r′′〉, m) = λp.
F{∃〈i(p), r〉 ∈ UA,

if(r
′ ⇒ r), then MUALicense(〈s, r′〉, m)(p), MUALicense(〈s, r′′〉, m)(p)}

MTAssertion : TAssertion → Assertion

MTAssertion(p, 〈r′ , r′′〉) = 〈p, λm.{MTALicense(〈r′ , r′′〉, m)}}

Table 3. Scheme for implementing TRUSTr

Alice ∈ User means that a principal KA belongs to (or identifies) a user Alice.
We define authorizations Auth in our scheme as a function lattice under the
pointwise ordering, where an authorization maps a principal to a set of permis-
sions. For instance, KA → {e1, e2} where e1, e2 ∈ Permission means that the
principal KA has the set of permissions {e1, e2}. For authmap m, if λKA.{e1, e2}
is in m(p), then principal p authorizes KA to have the set of permissions {e1, e2}.

We define three authorization assertion types for our scheme that can rep-
resent the abstraction of authorization certificates: UAssertion, RHAssertion,
and TAssertion. UAssertion pertains to an authorization expression related
to user assignment, whereas RHssertion expresses an authorization relevant to
role hierarchy. TAssertion is an authorization expression concerning trust as-
signment. For the sake of simplicity, we consider that permission assignment is
set as local policies within systems. The semantics of UAssertion can be un-
derstood in light of a given principal. A set of permissions is granted to the
principal by a user-role relation and an authmap. For example, λKA.{e1, e2} ∈
MUALicense(〈Alice, r〉, m) where {e1, e2} ⊆ Permission means that KA be-
longing to Alice can have a set of permissions {e1, e2} that are assigned to a
role r. An UAssertion can be represented by 〈p, 〈s, r〉〉, which illustrates that a
principal p authorizes a principal p

′
identifying a user s to have a set of permis-

sions E that are assigned to a role r, where λp
′
.E ∈ MUALicense(〈s, r〉, m)

and E ⊆ Permission. Given the meaning of UAssertion, the semantics of
role hierarchy can be taken from it when certain conditions, i.e., role domi-
nance relation, are met. The basic idea behind this is that, if there exist some
user-role relations derived from a principal and if a derived role is senior to or
the same that the senior role in a role hierarchy relation, then the principal
can have a set of permission which is a least upper bound of two authoriza-
tions resulting from roles in the role hierarchy relation. For example, assuming
〈e3, r

′〉,〈e4, r
′′〉 ∈ PA, λKA.{e3, e4} ∈ MRHLicense(〈r′ , r′′〉,m) where r

′ º r
′′

represents that if 〈Alice, r〉 ∈ UA and r
′ ¹ r, KA can have a set of permissions

{e3, e4} which is a least upper bound of {e3} and {e4}. An RHssertion can be
represented by 〈p, 〈r′ , r′′〉〉, which means that a principal p authorizes a principal
p
′
to have such a set of permissions if role dominance conditions are met. From

a similar approach for the semantics of role hierarchy, we can give the semantics
of trust assignment by substituting ⇒ for ¹. An TAssertion is represented by
〈p, 〈r′ , r′′〉〉, which means that a principal p authorizes a principal p

′
to have a

set of permissions if trust assignment conditions are met.

Since we defined all the necessary components, let us see how TRUSTr trust
management engine works. Suppose we want to know if principal p authorizes
p
′

to perform the operation denoted by e according to the set of assertions A.
We can express access request as u = λp

′
.E ∈ Auth, where E = {e}. Given

the set of assertions A and the access request u, a TRUSTr trust management
engine computesMEngine(p, u, A), which is equivalent to u ⊆MAssertion(A)(p),
which is equivalent to E ⊆MAssertion(A)(p)(p

′
), and determines if the request

requires less permissions than is granted by p.

RolePartner

Role

Database

Public AC

Storage

Attribute

Certificate

Server

Privilege

Asserter

Privilege

Verifier

PMI Attribute Authority

Request/issue attribute

certificate

Access request with attribute

certificate

Request/issue attribute

certificate containing

authorization policies

Retrieve

role credentials

Role

Administration

 Constraint information

Fig. 4. Operational architecture for enabling role-based privilege and trust manage-
ment.

5 Implementation Details

Our implementation leverages role-based delegation enabled by TRUSTr and
X.509 attribute certificate in PMI. We attempt to implement the proof-of-concept
prototype implementation of our architecture. In Figure 4, three components are
identified for managing attribute certificates: privilege asserter, privilege verifier,
and PMI attribute authority as we discussed in the previous section. A privi-
lege asserter is developed by using ActiveX control, named attribute certificate
manager. The manager enables a user to import downloaded BER-encoded cre-
dentials into Windows registry. It also allows the user to view and select those
credentials in the registry. Internet Information Server (Version 5.0) is used as a
privilege verifier. An HTTP raw data filter, called AC filter, was developed us-
ing Microsoft ISAPI (Internet Server API) technology. Its main task is screening
the incoming raw data from a client to see if the client presents any attribute
certificate. An attribute certificate server was developed to generate attribute
certificates. The programming library, called AC SDK, was built for supporting
the functionality related to the generation of the attribute certificates. Netscape
Directory Service 5.0 was used for both a role database and an AC storage.
RolePartner was implemented in Java. It enables a role administrator in PMI
attribute authority manage and configure TRUSTr components which we dis-
cussed earlier. We also developed an application working as an access control
policy server. This application has been developed in C++. An engine for mak-
ing access control decisions is a major component in this application.

6 Conclusion

While Internet-based applications provide organizations immense information
sharing capability and connectivity, they are still confronted with security chal-

lenges, especially in light of their limited support for controlled access to orga-
nizational resources and information for unknown users. In this paper, we have
discussed issues of privilege and trust management as an answer to those chal-
lenges. We also attempted to utilize a trust-enabled role model called TRUSTr
and X.509 attribute certificates in PMI. In addition, we demonstrated the fea-
sibility of our approach through a proof-of-concept implementation. We believe
that this work would lead Internet-based applications to consider privilege and
trust management as a core component in their design and deployment.

Acknowledgements

This work was partially supported at the Laboratory of Information of Inte-
gration, Security and Privacy at the University of North Carolina at Char-
lotte by the grants from National Science Foundation (NSF-IIS-0242393), and
Department of Energy Early Career Principal Investigator Award (DE-FG02-
03ER25565).

References

1. M. Abadi, M. Burrows, and B. Lampson. A calculus for access control in distributed
systems. ACM Transactions on Programming Languages and Systems, 15(4):706–
734, 1993.

2. G.-J. Ahn and R. Sandhu. Role-based authorization constraints specification. ACM
Transactions on Information and System Security, 3(4), November 2000.

3. G.-J. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting RBAC to secure a web-
based workflow system. In Proceedings of 5th ACM Workshop on Role-Based Access
Control, Berlin, Germany, July 26-27 2000. ACM.

4. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote trust-
management system version 2. RFC 2704, September 1999.

5. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Pro-
ceedings of IEEE Symposium on Security and Privacy, pages 164–173, Oakland,
CA, May 1996.

6. Y. H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REFEREE:
Trust management for web applications. Computer Networks and ISDN systems,
29(8-13), September 1997.

7. N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and K. Moody. Using trust
and risk in role-based access control policies. In Proceedings of 9th ACM Symposium
on Access Control Models and Technologies, Yorktown, NY, June 2004.

8. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory. RFC 2693, September 1999.

9. S. Farrell and R. Housley. An internet attribute certificate profile for authorization.
Technical report, PKIX Working Group, June 2001.

10. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Pro-
posed NIST standard for role-based access control. ACM Transactions on Infor-
mation and System Security, 4(3), August 2001.

11. A. Herzberg, Y. Mass, J. Michaeli, D. Naor, and Y. Ravid. Access control meets
public key infrastructure, or: assigning roles to strangers. In Proceedings of IEEE
Symposium on Security and Privacy, Oakland, CA, May 2000.

12. ITU. ITU-T Recommendation X.509. Information Technology: Open Systems In-
terconnection - The Directory: Public-Key And Attribute Certificate Frameworks,
2000. ISO/IEC 9594-8.

13. T. Jaeger. On the increasing importance of constraints. In Proceedings of 4th ACM
Workshop on Role-Based Access Control, pages 33–42, Fairfax, VA, October 28-29
1999. ACM.

14. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain dis-
covery in trust management. The Journal Of Computer Security, 11(1), February
2003.

15. J. Linn and M. Nystrom. Attribute certification: An enabling technology for dele-
gation and role-based controls in distributed environments. In Proceedings of 4th
ACM Workshop on Role-Based Access Control, Fairfax, VA, October 28-29 1999.
ACM.

16. Open Software Foundation, Cambridge, MA. OSF DCE 1.0 Application Develop-
ment Guide, 1992.

17. Open Software Foundation, Cambridge, MA. OSF DCE 1.0 Introduction to DCE,
1992.

18. J. Park, G. Ahn, and R. Sandhu. Rbac on the web using ldap. In Proceedings of
15th Annual IFIP WG 11.3 Working Conference on Data and Application Security,
Ont., Canada, July 2001.

19. J. Park, R. Sandhu, and G.-J. Ahn. Role-based access control on the web. ACM
Transactions on Information and System Security, 4(1), February 2001.

20. R. L. Rivest and B. Lampson. SDSI - a simple distributed security infrastructure.
Technical report, September 1996.

21. R. Sandhu. Role activation hierarchies. In Proceedings of 3rd ACM Workshop on
Role-Based Access Control, pages 33–40, Fairfax, VA, October 22-23 1998. ACM.

22. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, February 1996.

23. D. Shin, G.-J. Ahn, and S. Cho. Role-based EAM using x.509 attribute certificate.
In Proceedings of Sixteenth Annual IFIP WG 11.3 Working Conference on Data
and Application Security, Cambridge, UK, July 29-31 2002.

24. M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.
Certificate-based access control for widely distributed resources. In Proceedings of
8th USENIX Security Symposium, Washington, D.C., August 23-26 1999.

25. S. Weeks. Understanding trust management systems. In Proceedings of IEEE
Symposium on Security and Privacy, Oakland, CA, May 2001.

