
Role-Based Privilege Management
Using Attribute Certificates and Delegation

Gail-Joon Ahn, Dongwan Shin, and Longhua Zhang

University of North Carolina at Charlotte, Charlotte, NC 28232, USA
{gahn,doshin,lozhang}@uncc.edu

Abstract. The Internet provides tremendous connectivity and immense
information sharing capability which the organizations can use for their
competitive advantage. However, we still observe security challenges in
Internet-based applications that demand a unified mechanism for both
managing the authentication of users across enterprises and implement-
ing business rules for determining user access to enterprise applications
and their resources. These business rules are utilized for privilege man-
agement or authorization in a security context. In this paper, we design
a role-based privilege management leveraging access control models and
X.509 attribute certificate. We attempt to develop an easy-to-use, flex-
ible, and interoperable authorization mechanism. Also, we demonstrate
the feasibility of our architecture by providing the proof-of-concept pro-
totype implementation using commercial off-the-shelf technologies.

1 Introduction

Many organizations have transited from their old and disparate business models
based on ink and paper to a new, consolidated ones based on digital information
on the Internet. The Internet is uniquely and strategically positioned to address
the needs of a growing segment of population in a very cost-effective way. It
provides tremendous connectivity and immense information sharing capability
which the organizations can use for their competitive advantage. However, we
still observe security challenges in Internet-based applications that demand a
unified mechanism for both managing the authentication of users across enter-
prises and implementing business rules for determining user access to enterprise
applications and their resources. These business rules are utilized for privilege
management or authorization in a security context [13]. In this paper, we often
use the term authorization and access control as an identical notion of privilege
management. Authentication mechanisms have been practiced at considerable
length and various authentication schemes such as SSL, LDAP-based, or secure
cookies-based have been widely accepted. Unlike authentication mechanisms,
authorization mechanisms which can conveniently enforce various business rules
from different authorization domains among various applications still need to be
investigated.

Role-based access control (RBAC) has been acclaimed and proven to be a
simple, flexible, and convenient way of managing access control [6, 15]. This ex-
tremely simplifies management of privileges, reducing complexity and potential

S. Katsikas, J. Lopez, and G. Pernul (Eds.): TrustBus 2004, LNCS 3184, pp. 100–109, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Role-Based Privilege Management 101

errors in directly assigning privileges to users. Another issue is to support such
a simplified privilege management among distributed Internet-based enterprise
applications. Privilege management infrastructure (PMI) [4, 5] has recently been
introduced allowing us to establish the trustworthiness among different autho-
rization domains as long as each of them keeps the meaning of attributes intact.

Our objective in this paper is to design a role-based privilege management
leveraging RBAC features and X.509 attribute certificate in PMI. We attempt to
develop an easy-to-use, flexible, and interoperable authorization mechanism. We
also seek to address the issue of how to advocate selective information sharing in
internet-based enterprise applications while minimizing the risks of unauthorized
access.

The rest of this paper is organized as follows. Section 2 shows previous re-
searches related to our work. Section 3gives an overview of background tech-
nologies. Section 4 describes our approach to designing a role-based privilege
management with attribute certificates and delegation including system archi-
tecture and authorization policies. Implementation details are described in Sec-
tion 5. Section 6 discusses lessons learned from our experiment and concludes
the paper.

2 Related Works

Several researchers have been trying to accommodate RBAC features into large-
scale systems of intranet or extranet focusing on various applications such as
database systems, web servers, or web-based workflow systems. At the same
time, delegation has been studied by a number of researchers as an important
factor for secure distributed computing environment [7].

In the OSF/DCE environment [11], privilege attribute certificate (PAC) that
a client can present to an application server for authorization was introduced.
PAC provided by a DCE security server contains the principal and associated
attribute lists, which are group memberships. This approach focused on the
traditional group-based access control.

Similarly, Thompson et al. [18] developed a certificate-based authorization
system called Akenti for managing widely distributed resources. It was especially
designed for system environments where resources have multiple stakeholders
and each stakeholder wants to impose conditions for access. Their approach
emphasized the policy-based access control in a distributed environment.

Also, several studies have been carried out to make use of RBAC features
with the help of public-key certificates [1, 12]. Public-key certificates were used
to contain attribute information such as role in their extension field. To add role
information into public key certificates, however, may cause problems such as
shortening of certificates’ lifetime and complexity of their management [17].

In general, delegation is referred to as one active entity in a system delegates
its authority to another entity to carry out some functions. In role-based sys-
tems, the delegated authorities are roles. The requirements related to role-based
delegation have been identified in the literature [2, 8, 21]. A work closely related



102 Gail-Joon Ahn, Dongwan Shin, and Longhua Zhang

to ours is RBDM0 model proposed by Barka and Sandhu [2]. They developed
a simple role-based delegation model. They explored some issues including re-
vocation, delegation with hierarchical roles, partial delegation, and multi-step
delegation. One limitation of RBDM0 is that this work does not address the re-
lationships among each component of a delegation, which is a critical notion to
the delegation model. A number of researchers have looked at the semantics of
authorization, delegation, and revocation. Li et al. proposed a logic for authoriz-
ing delegation in large-scale, open, distributed systems [3, 10]. But in their logic,
role-based concepts were not fully adopted; neither did they address revocation
adequately.

3 Background Technologies

3.1 Role-Based Access Control

RBAC is an alternative policy to traditional mandatory access control (MAC)
and discretionary access control (DAC). As MAC is used in the classical defense
arena, the policy of access is based on the classification of objects such as top-
secret level [14]. The main idea of DAC is that the owner of an object has
discretionary authority over who else can access that object [9]. But RBAC
policy is based on the role of the subjects and can specify security policy in a
way that maps to an organization’s structure. A general family of RBAC models
called RBAC96 was defined by Sandhu et al [15]. Motivation and discussion
about various design decisions made in developing this family of models is given
in [15, 16]. Also, there are variations regarding distributed systems [20].

Figure 1(a) shows (regular) roles and permissions that regulate access to data
and resources. Intuitively, a user is a human being or an autonomous agent, a
role is a job function or job title within the organization with some associated
semantics regarding the authority and responsibility conferred on a member of
the role, and a permission is an approval of a particular mode of access to one
or more objects in the system or some privilege to carry out specified actions.
Roles are organized in a partial order ≥, so that if x ≥ y then role x inherits the
permissions of role y. Members of x are also implicitly members of y. In such
cases, we say x is senior to y. Each session relates one user to possibly many
roles. The idea is that a user establishes a session and activates some subset
of roles that he or she is a member of (directly or indirectly by means of the
role hierarchy). A user may have multiple sessions open at the same time, each
in a different window on the workstation screen for instance. Each session may
have a different combination of active roles. The concept of a session equates
to the traditional notation of a subject in access control. A subject is a unit of
access control, and a user may have multiple subjects (or sessions) with different
permissions active at the same time.

3.2 Privilege Management Infrastructure

PMI is based on the ITU-T Recommendation of directory systems specification
[4], which introduced PKI in its earlier version. Public-key certificates are used



Role-Based Privilege Management 103

in PKI while attribute certificates are a central notion of PMI. Public-key cer-
tificates are signed and issued by certification authority (CA), while attribute
certificates are signed and issued by attribute authority (AA). PMI is to develop
an infrastructure for access control management based on attribute certificate
framework. Attribute certificates bind attributes to an entity. The types of at-
tributes that can be bound are role, group, clearance, audit identity, and so on.
Attribute certificates have a separate structure from that of public key certifi-
cates.

PMI consists of four models: general model, control model, delegation model,
and roles model. General and control models are required, whereas roles and
delegation models are optional. The general model provides the basic entities
which recur in other models.

CONSTRAINTS

PERMISS-

IONS

PU

USERS

PERMISSION

ASSIGNMENT

PA

USER

ASSIGNMENT

UA

.

.

.

SESSIONS

S

user roles

ROLES

R

ROLE

HIERARCHY

RH

 
UAO 

ODLGT 

DDLGT 

DLGT 

UAD 

CONSTRAINTS 

(a) RBAC Model (b) Delegation Relation

Fig. 1. RBAC and Delegation.

4 Role-Based Privilege Management

4.1 Adopting Attribute Certificate

Our approach is based on basic entities in PMI. It consists of three founda-
tion entities: the object, the privilege asserter, and the privilege verifier. The
control model explains how access control is managed when privilege asserters
request services on object. When the privilege asserter requests services by pre-
senting his/her privileges, the privilege verifier makes access control decisions
based upon the privilege presented, privilege policies, environmental variables,
and object methods. PMI roles model also introduces two additional compo-
nents: role assignment and role specification. Role assignment is to associate
privilege asserters with roles, and its binding information is contained in at-
tribute certificate called role assignment attribute certificate. The latter is to
associate roles with privileges, and it can be contained in attribute certificate
called role specification attribute certificate or locally configured at a privilege
verifier’s system. Our approach is based upon PMI roles model. Accordingly, two
different attribute certificates are employed: role assignment attribute certificate
(RAAC ) and role specification attribute certificate (RSAC ). The integrity of
the bindings is guaranteed through digital signature in attribute certificate.



104 Gail-Joon Ahn, Dongwan Shin, and Longhua Zhang

4.2 Constrained Role-Based Delegation

Zhang et al. [21] introduced RDM2000 (role delegation model 2000) for user-
to-user delegation in role-based systems. Our work is based on RDM2000. It
formalizes the relationship between two user assignments that form a delega-
tion relation (DLGT), as shown in Figure 1(b). We first define a new relation
called delegation relation (DLGT). It includes sets of three elements: original
user assignments UAO, delegated user assignment UAD, and constraints. The
motivation behind this relation is to address the relationships among different
components involved in a delegation. In a user-to-user delegation, there are four
components: a delegating user, a delegating role, a delegated user, and a dele-
gated role. A delegation relation is one-to-many relationship on user assignments.
It consists of original user delegation (ODLGT) and delegated user delegation
(DDLGT). We assume each delegation relation may have a duration constraint
associated with it. If the duration is not explicitly specified, we consider the
delegation as permanent unless another user revokes it. The function Duration
returns the assigned duration-restriction constraint of a delegated user assign-
ment. If there is no assigned duration, it returns a maximum value. Our delega-
tion model has the following components and theses components are formalized
from the above discussions.

– T is a set of duration-restricted constraint.
– DLGT ⊆ UA × UA is one to many delegation relation. A delegation relation

can be represented by (u, r, u′, r′) ∈ DLGT, which means the delegating
user u with role r delegated role r′ to user u′.

– ODLGT ⊆ UAO × UAD is an original user delegation relation.
– DDLGT ⊆ UAD × UAD is a delegated user delegation relation.
– DLGT = ODLGT ∪ DDLGT.

In some cases, we may need to define whether or not each delegation can be fur-
ther delegated and for how many times, or up to the maximum delegation depth.
We introduce two types of delegation: single-step delegation and multi-step del-
egation. Single-step delegation does not allow the delegated role to be further
delegated; multi-step delegation allows multiple delegations until it reaches the
maximum delegation depth. The maximum delegation depth is a natural num-
ber defined to impose restriction on the delegation. Single-step delegation is a
special case of multi-step delegation with maximum delegation depth equal to
one.

Also, we have an additional concept, delegation path (DP) that is an or-
dered list of user assignment relations generated through multi-step delegation.
A delegation path always starts from an original user assignment. We use the
following notation to represent a delegation path.

uao0 → uad1 → uadi → uadn

Delegation paths starting with the same original user assignment can further
construct a delegation tree. A delegation tree (DT) expresses the delegation
paths in a hierarchical structure. Each node in the tree refers to a user assignment
and each edge to a delegation relation. The layer of a user assignment in the tree



Role-Based Privilege Management 105

is referred as the delegation depth. The function Prior maps one delegated user
assignment to the delegating user assignment; function Path returns the path
of a delegated user assignment; and function Depth returns the depth of the
delegation path.

Constraints are an important aspect of RBAC and can lay out higher-level
organizational policies. In theory, the effects of constraints can be achieved by
establishing procedures and sedulous actions of security administrators [6]. Con-
straints are enforced by a set of integrity rules that provide management and
regulators with the confidence that critical security policies are uniformly and
consistently enforced. In the framework, when a user delegates a role, all context
constraints that are assigned to the user and anchored to the delegated role are
delegated as well.

Rule-Based Policy Specification Language. We also define policies that
allow regular users to delegate their roles. It also specifies the policies regarding
which delegated roles can be revoked. A rule-based language is adopted to specify
and enforce these policies. It is a declarative language in which binds logic with
rules. The advantage is that it is entirely declarative so it is easier for security
administrator to define policies.

A rule takes the form:
H ← F1&F2& . . .&Fn
where H, F1, F2,. . . , Fn are Boolean functions.

There are three sets of rules in the framework: basic authorization rules specify
organizational delegation and revocation policies; authorization derivation rules
enforce these policies in collaborative information systems; and integrity rules
specify and enforce role-based constraints. For example, a user-user delegation
authorization rule forms as follows:
can delegate(r, cr, n)← .

where r, cr, and n are elements of roles, prerequisite conditions, and maxi-
mum delegation depths respectively.
This is the basic user-to-user delegation authorization rule. It means that a mem-
ber of the role r (or a member of any role that is senior to r) can assign a user
whose current membership satisfies prerequisite condition cr to role r (or a role
that is junior to r) without exceeding the maximum delegation depth n.

Constraints Specification. In order to represent role-based privilege man-
agement constraints, we define rules that are extremely suited for constraints
specification as well as enforcement. We articulate several constraints and spec-
ify them using a rule-based language introduced in [21].

A static separation of duty (SSOD): incompatible roles assignment
constraint states that no common user can be assigned to conflicting roles in
the incompatible role set ira = {r1, r2, ... }. This constraint can be represented
as:



106 Gail-Joon Ahn, Dongwan Shin, and Longhua Zhang

cannot assign(u, r)←
senior(r, one element(ira))&
member of(u, one element(all other(ira, one element(ira)))).
where u ∈ U, r ∈ R, and ira ∈ IRA.

The rule says if r equals one element of a set of the incompatible role assign-
ments ira, and a user u is already member of another role other than r in the
incompatible role set, then u cannot be assigned role r.

An incompatible users constraint states that two conflicting users in the
incompatible user set iu={u1, u2, ...} cannot be assigned to the same role. This
constraint can be represented as:
cannot assign(u, r)←

equals(u′, one element(all other(iu, u)))&
member of(u′, r).

An incompatible permissions constraint states that two conflicting permis-
sions in the incompatible user set ip={p1, p2, ...} cannot be assigned to the same
role. This constraint can be represented as:
cannot assignp(r, p)←

equals(p′, one element(all other(ip, p)))&
in(p′, permissions role(r)).

A role cardinality constraint states that a role can have a maximum number
N of user members. This constraint can be represented as:
cannot assign(u, r)←

greater than(cardi(r), maxcardi(r) − 1).

A user cardinality constraint states that a user can be member of a maximum
number N of roles. This constraint can be represented as:
cannot assign(u, r)←

greater than(cardi(u), maxcardi(u) − 1).
We have demonstrated how different constraints can be specified using rules.

5 Implementation Details

Our implementation leverages role-based delegation features and X.509 attribute
certificate. We attempt to implement the proof-of-concept prototype implemen-
tation of our architecture. An overview of the preliminary architecture is shown
in Figure 2.

It consists of a number of services and management agents together with the
objects to be managed. The enforcement agents are based on a combination of
roles and rules for specifying and interpreting policies. Since delegation and re-
vocation services are only part of a security infrastructure, we choose a modular
approach to our architecture that allows the delegation and revocation services
to work with current and future authentication and access control services. The



Role-Based Privilege Management 107

Security
Officer

Role Service

Attribute
Certificate

Server

AC Storage

Role Database

Cert.

Rule Editor

Delegation
Agent

Access Control
Agent

Authentication
Agent

Reference
Monitor

Access/
delegation
Request &
Decision

Privilege Verifier

Rule Service

PMI Attribute Authority

Privilege Asserter
Client

Request/Issue RAAC

Request/Issue RSAC

Policy Database

Access/delegation
Request & Decision

Server

Fig. 2. Operational architecture for role-based EAM.

modularity enables future enhancements of our approach. The role service is
provided by a role server and a role server maintains RBAC database and pro-
vides user credentials, role memberships, associated permissions, and delegation
relations of the system. The rule service is provided by a rule server, which man-
ages delegation and revocation rules. These rules are always associated with a
role, which specifies the role that can be delegated. They are implemented as
authorization policies that authorize requests from users. The rule editor is de-
veloped to simplify the management of these rules. As a portion of an integrated
RBAC administration platform to manage various components, the rule editor
is used to view, create, edit, and delete delegation and revocation rules. The del-
egation agent is an administrative infrastructure, which authorizes delegation
and revocation requests from users by applying derivation authorization rules
and processes delegation and revocation transactions on behalf of users. We
implement these components as the delegation/revocation service: users’ del-
egation/revocation requests are interpreted, authorized, and processed by the
service; it creates RDM2000 elements based upon users’ requests and maintains
the integrity of the database by checking and enforcing consistency rules. The
core of this service is a rule engine. We implemented the rule inference engine by
extending SWI-Prolog [19] using its C++ interface. The rule engine has three
functional units: a pre-processor, an inference engine, and a post-processor.

In Figure 2, three components are identified for managing attribute certifi-
cates: privilege asserter, privilege verifier, and PMI attribute authority as we
described in Section 4. A privilege asserter is developed by using ActiveX con-
trol, named attribute certificate manager. The manager enables a user to import
downloaded BER-encoded RAACs into Windows registry. Internet Information
Server (Version 5.0) is used as a privilege verifier. An HTTP raw data filter,
called AC filter, was developed using Microsoft ISAPI (Internet Server API)
technology. An attribute certificate server was developed to generate RAAC s



108 Gail-Joon Ahn, Dongwan Shin, and Longhua Zhang

and RSAC s. The programming library, called AC SDK, was built for supporting
the functionality related to the generation of the attribute certificates. Netscape
Directory Service 5.0 was used for both a role database and an AC storage. We
also developed an application working as an access control policy server. This
application has been developed in C++. An engine for making access control
decisions is a major component in this application.

6 Conclusion and Future Works

Authentication mechanisms have been practiced at considerable length and var-
ious authentication schemes have been widely accepted. Unlike authentication
mechanisms, privilege management which can conveniently enforce various busi-
ness rules from different authorization domains among various applications still
need to be investigated. In this paper, we have discussed issues of privilege man-
agement. We also attempted to utilize an existing delegation framework and
attribute certificates in PMI. In addition, we demonstrated the feasibility of our
architecture through a proof-of-concept implementation. We believe that this
work would lead Internet-based applications to consider privilege management
as a core component in their design and deployment.

Acknowledgements

This work was partially supported at the Laboratory of Information of Inte-
gration, Security and Privacy at the University of North Carolina at Char-
lotte by the grants from National Science Foundation (NSF-IIS-0242393) and
Department of Energy Early Career Principal Investigator Award (DE-FG02-
03ER25565).

References

1. G. Ahn, R. Sandhu, M. Kang, and J. Park. “Injecting RBAC to secure a Web-
based workflow system,” In Proceedings of 5th ACM Workshop on Role-Based
Access Control. Berlin, Germany, July 2000.

2. E. Barka and R. Sandhu. Framework for role-based delegation model. In Proceed-
ings of 23rd National Information Systems Security Conference, pages 101–114,
Baltimore, MD, October 16-19 2000.

3. E. Bertino, E. Ferrari and V. Atluri. The specification and enforcement of au-
thorization constraints in workflow management systems. ACM Transactions on
Information and System Security, Vol.2 No.1, p.65-104, Feb. 1999

4. ITU-T Recommendation X.509. Information Technology: Open Systems Intercon-
nection - The Directory: Public-Key And Attribute Certificate Frameworks, 2000.
ISO/IEC 9594-8:2001.

5. S. Farrell and R. Housley. An Internet Attribute Certificate Profile for Authoriza-
tion, PKIX Working Group, June 2001.



Role-Based Privilege Management 109

6. D. Ferraiolo, J. Cugini, and D.R Kuhn. “Role Based Access Control: Features
and Motivations,” In Annual Computer Security Applications Conference, IEEE
Computer Society Press, 1995.

7. M. Gasser and E. McDermott. An Architecture for Practical Delegation a Dis-
tributed System. In Proceedings of IEEE Computer Society Symposium on Re-
search in Security and Privacy, Oakland, CA, May 7-9,1990.

8. A. Hagstrom, S. Jajodia, F. P. Presicce, and D. Wijesekera. Revocations - a
classification. In Proc. 14th IEEE Computer Security Foundations Workshop, pages
44–58, Nova Scotia, Canada, June 2001.

9. S. Jajodia, P. Samarati, V. Subrahmanian, and E. Bertino. A unified framework
for enforcing multiple access control policies. In Proceedings of the ACM SIGMOD
international conference on management of data, pages 474–485, 1997.

10. N. Li and B. N. Grosof. A practically implementation and tractable delegation
logic. In Proceedings of IEEE Symposium on Security and Privacy, May 2000.

11. OSF DCE 1.0 Introduction to DCE, Open Software Foundation, Cambridge, MA,
1999.

12. J. Park, R. Sandhu, and G. Ahn. “Role-based Access Control on the Web,” ACM
Transactions on Information and System Security, 4(1), February 2001.

13. John Pescatore. Extranet Access Management Magic Quadrant, Gartner Research
Note (ID: M-13-6853), Gartner INC., May 2001.

14. R. S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–19,
November 1993.

15. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, February 1996.

16. R. Sandhu. Rationale for the RBAC96 family of access control models. In Pro-
ceedings of the 1st ACM Workshop on Role-Based Access Control. ACM, 1997.

17. D. Shin, Gail-J. Ahn, and S. Cho. Role-based EAM Using X.509 Attribute Certifi-
cate. In Proceedings of Sixteenth Annual IFIP WG 11.3 Working Conference on
Data and Application Security, King’s College, University of Cambridge, UK July
29-31, 2002.

18. M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.
“Certificate-based Access Control for Widely Distributed Resources,” In Proceed-
ings of the 8th USENIX Security Symposium, Washington, D.C., August 1999.

19. Wielemaker. “J. SWI-Prolog,” http://www.swi.psy.uva.nl/projects/SWI-Prolog/
20. N. Yialelis, E. Lupu, and M. Sloman. Role-based security for distributed object

systems. In Proceedings of the IEEE Fifth Workshops on Enabling Technology:
Infrastructure for collaborative enterprise. IEEE, 1996.

21. L. Zhang, Gail-J. Ahn and B. Chu. A Rule-Based Framework for Role-Based Del-
egation and Revocation. ACM Transactions on Information and System Security,
Vol.6, No.3, August 2003.


	1 Introduction
	2 Related Works
	3 Background Technologies
	3.1 Role-Based Access Control
	3.2 Privilege Management Infrastructure

	4 Role-Based Privilege Management
	4.1 Adopting Attribute Certificate
	4.2 Constrained Role-Based Delegation

	5 Implementation Details
	6 Conclusion and Future Works
	References



