
Globecom 2012 - Communication and Information System Security Symposium

Secure and Efficient Constructions of Hash,
MAC and PRF for Mobile Devices

DiMa Yan Zhu, Shanbiao Wang
Peking University,

Beijing, 100871, China
{yan.zhu,sbwang}@pku.edu.cn

University of Michigan-Dearborn,
Dearborn, Michigan, 48128

dmadma@umich.edu

Hongxin Hu
Delaware State University,

Dover, Delaware, 19901
hxhu@asu.edu

Gail-Joon Ahn
Arizona State University,

Tempe, Arizona, 85287
gahn@asu.edu

Abstract-Numerous cryptographic techniques have been developed
to be used on mobile devices for various security and privacy
protections. However, these cryptographic primitives, working under
different mathematical assumptions, tend to become more and more
complex and intricate, which makes it increasingly more difficult
for proper implementation and management. Thus, it is desired to
simplify management and improve efficiency by means of designing
a general function family to meet a variety of security requirements.
In this paper, we present such a family of square functions, including
SqHash, SqMAC and SqPRF, based on a specially truncated function
(MSB or LSB). We further improve the efficiency of these algorithms
by using "circular convolution with carry bits" which makes parallel
processing possible. We prove the security of these functions based
on the privacy in hidden number problem and hard-core predicate of
one-way function. We also show that the proposed schemes achieve
better performance with a complexity reduction from O(n2) to
O(knjw) for n·bit message, k·bit output and w·bit word size.

Index Terms-Algorithm, Cryptography, Hash, MAC, Pseudo·
random, Hidden Number Problem

I. INTRODUCTION
The explosive growth of wireless systems coupled with the

proliferation of laptop and palmtop computers indicates a bright
future for wireless and mobile computing. Smart mobile devices
(such as iPad, iPhone, Android, and Blackberry devices) have
experimented exponential growth over the last several years
and there are currently around 1.2 billion users worldwide 1.

Unfortunately, wireless systems are susceptible to a variety of
security attacks due to the openness of the underlying transmission
media. Mobile device security has become a major concern to
not only mobile clients but also their service providers. To solve
this issue, numerous cryptographic techniques (e.g., signature,
encryption, identification, etc.) have been developed to provide
security protection for these mobile devices. Especially, some
basic cryptographic primitives, like Hash, message authentication
code (MAC), pseudorandom function (PRF), have been widely
employed in a variety of applications and services [1] for various
security purposes, including warehouse inventory control, public
transportation passes, anti-counterfeiting tags for medicines, se­
cure identification, etc.

In general, these cryptographic primitives are computed fre­
quently on inputs which are usually thousands of bytes long.
Computation is typically done through software implementation
on relatively weak platforms with meager resources. Additionally,

Y. Zhu works in Beijing Key Laboratory of Internet Security Technology
and Institute of Computer Science and Technology, Peking University,
Beijing, 100080, China. His work was supported by the National Natural
Science Foundation of China (Project No. 61170264 and 109900 II).

The work of Di Ma was partially supported by the grant from US
National Science Foundation (NSF CNS-1l53573).

The work of G.-J. Ahn and H. Hu was partially supported by the grants
from US National Science Foundation (NSF-IIS-0900970 and NSF-CNS-
0831360).

I http://mobithinking.comlmobile-marketing-tools!latest-mobile-stats

978-1-4673-0921-9/12/$31.00 ©2012 IEEE

computation is often required to be performed in real time. There­
fore, developing optimization techniques for these cryptographic
primitives while retaining the appropriate level of security is
crucial to improve their performance on mobile devices. We
notice that computing power on Arithmetic Logic Unit (ALU)
of microprocessors of mobile devices is hardly fully utilized
when running these primitives since they were designed based
on the simplest hardware construction. Hence, runtime overheads
of these primitives could be greatly decreased if we have a
reasonable and effective design of cryptographic primitives based
on the practical construction in ALU hardware, such as parallel
processing units or algebra operation units.

More importantly, there exist too many cryptographic algo­
rithms (or standards) that can be used to implement these primi­
tives. For example, general hash algorithms have MD5, RIPEMD-
160, SHA-l, and SHA-256. This often leads to a large number
of different algorithms stored in the system, which is a waste
of limited storage space, and sometime even causes confusion.
Therefore, it is necessary to provide a common method to unify
a variety of primitives into a family of cryptographic functions,
so that we can use a common core algorithm to construct various
cryptographic functions. If so, special hardwares can be designed
for the core algorithm to achieve optimal performance. In fact,
we expect to design an elaborate and efficient core algorithm by
taking full advantage of computation power in mobile devices.

In this paper, we analyze the security and performance features
of existing Square Hash function [2]. We show several short­
comings of this function. In response to these shortcomings, we
present a new hash scheme (called SqHash) based on a specially
truncated function (most significant bits, MSB). We further im­
prove the performance of SqHash by using "circular convolution"
which makes parallel processing on output bits possible. Similarly,
we present a new MAC scheme (called SqMAC) and a new PRF
scheme (called SqPRF), as well as their corresponding improved
schemes. We also prove that the security of these constructions
based on the privacy properties in the hidden number problem
and Hard-core predicate of one-way function. We show that the
proposed schemes have better performance as their complexity
is reduced from O(n2) to O(kn/w) for n-bit messages, k-bit
outputs and w-bit word-size of mobile devices. The proposed
schemes as well as their respective performance and security
parameters are summarized in Table I.

II. BACKGROUND AND PRELIMINARIES
A. System Model

In this paper, we assume that a wireless device does not have a
dedicated cryptographic hardware. In particular, it does not have
a true random number generator. We assume that the device only
has a short length (16 bits) accumulator and a I-bit multiplication
unit (it can be replaced by I-bit accumulator), as well as a large

949

2

TABLE I
SUMMARY OF OUR PROPOSED SCHEMES.

Name II Equation I Performance I Security

SqHash MSBk((mIIIV) *c (mIIIV)) O(n*k) Preimage resistance and Collision resistance

SqMAC MSBk((m + K) *c (m + K)) O(n*k) Secret-key privacy on Hidden Number Problem

SqPRF LSB;I((X + i + I) *� (x + i + I)) O(n*21) Psudeorandom on Hard-core unpredictability

enough memory. In addition, in MAC and PRF, we assume that
there exists a secure storage unit which can prevent the disclosure
of stored information. It is used to store the user's secret key and
the current value of counter.

B. Preliminaries

We refer to {O, I } * as strings and {O, I } l as I-length strings.
If x is a string or a number then Ixi denotes its length in bits.
For lEN, we denote by 11 the string of I "I" bits. Let II denote
concatenation. For sets X and Y, if f : X --+ Y is a function,
then we call X the domain, Y the range, and the set {f (x) Ix E
X} the image of the function. An adversary is an algorithm. By
convention, all algorithms are required to be efficient, meaning
run in (expected) polynomial-time in the length of their inputs,
and their running-time includes that of any overlying experiment.

• Integer Factoring Problem. Integer factorization is the decom­
position of a composite number into smaller non-trivial divisors.
That is, given N = pq, for any polynomial time (in INI), and
algorithm A and any polynomial FO, for sufficiently large
INI, the factoring assumption holds that Pr[(p, q) = A] ::;
1/ F(IN!), where 1/ F(IN!) denotes a negligible probability
and INI = 1024 is often chosen in practice.

• Square Root Problem. Let N = pq be the public key and
p == q == 3 (mod 4). The Rabin function computes y = x2

(mod N) for x E Z)V. The square root problem says that given
y E ZN, without (p,q), to find x such that y = x2 (mod N)
is as hard as factoring N. Note that there are four distinct roots
x, including two group trivial roots (±x).

• Hidden Number Problem. The goal of square hidden number
problem (SqHNP) [3] is to find a hidden number s, when given
N and access to an oracle that on query (Xl, . . . ,Xm) returns
a value (MSBk((X + S)2 (mod N)) ,'" ,MSBk((Xn + S)2

(mod N))) , where MSBk(Y) denotes the k most significant
bits of y. The SqHNP assumption states that there is no poly­
nomial time algorithm for this problem whenever k = INI/3.

Given a prime p == 3 (mod 4), the square roots of y modulo
p can be computed by xp = ±y(P+l)/4 (mod p). Note that
there is no square root for some numbers. When xp and Xq
are known, the square root problem can be resolved by Chinese
remainder theorem. It has been proved that decoding the Rabin
cryptosystem is equivalent to the integer factorization problem.
The Robin cryptosystem is provably secure (in a strong sense)
against chosen plaintext attacks.

III. CONSTRUCTION OF HASH FUNCTION
A. Square Hash Function and Its Shortcomings

A cryptographic hash function Hash: {O, 1}* --+ {O, l}k is a
function that takes an arbitrary block of data and returns a fixed­
size bit string. A square hash function [2] is a cryptographic hash
function ZN --+ ZN for an enough large N, where it is hard to
factorize N.

Definition I (Basic Construction): The SQH family of hash
functions from ZN to ZN is defined as: {f : ZN --+ ZN} where
the functions f are defined as

j(m) = m2 (mod N).

Where, N - Nl/2 > m > Nl/2 and INI = n.
If m < 2n/2, we have m2 < 2n < N, which means that m2

(mod N) = m2 In this case, given a hash value y E ZN, we
can use the split half method (or logarithmic search) to find m
such that m2 = y because m2 is a monotone increasing function.
Similarly, another trivial root of m2 (mod N) is N -m < Nl/2

due to (N - m)2 = m2 < N.

This basic construction has the following shortcomings:

1) Assume that the length of N is n, the computation overhead
of SQH function are O(n2). When n is large, the factorization
of N is hard. But O(n2) is too large for frequent operations in
mobile derives.

2) The output of SQH function is INI bits. Since we use SQH
function with at less 1024-bits modulus size for secure integer
factorization problem, the hash output size is at less 1024 bits.
But the output of SHA-512/384 is just 512 or 384 bits with
1024-bit block size. Hence, the output of SQH function is too
large for applications. Also, this feature is contradictory to the
compression property of hash functions.

3) When m is too small (such as m < Nl/2), the output of
SQH function is predictable in terms of above discussion. This
predictability is considered as one such possible vulnerability
that may be insecure for some applications.

Hence, we will focus on addressing these shortcomings by con­
structing more effective schemes in the remaining of this section.

B. Hash Function for ZN --+ {O, l}k

We present a new construction of square hash function to
resolve the shortcomings in the basic construction.

Definition 2 (Square Hash Construction): Define a family of
SqHash functions from ZN to {O, I}k as: SqHash = { !Iv :
ZN --+ {O, I }kIIV E {O, I } l } where the function f is defined as

hv(m) = MSBk((mIIIV)2 (mod N»).

Where, IV denotes an initialization vector and MSBk(t) denotes
k most significant bits of an integer t.

Compared with the basic construction, SqHash has several
advantages. Firstly, the output of SqHash is k bits in that M S Bk 0
can be considered as a truncation function. For instance, k is 384
bits like SHA384. Next, let mllIV = m · 21 + IV. The initial
vector IV increases the randomness of the output of SqHash
function as a result of (m·21 +IV? = m2·221+IV2+m·IV·21+1

(mod N) , especially for the item m . IV . 21+1. Moreover, this
construction also helps avoid collision, that is, given a value y
and a square root m (m2 = y (mod N) , we can check IV
to determine whether this value is a valid pre-image of the four
square roots of y.

Unfortunately, this construction does not reduce the computa­
tional complexity because we still need to perform the squaring
operation. Hence, we make use of "modulo-INI circular convolu­
tion with carry bit" m *c m to replace the multiplication m . m.
The notation *c for cyclic convolution denotes convolution over

950

3

B B B B B B-- B B
B B B � B B B B

;
B B B B
B B

[;] [;] [J D [;] [;] [;] [J D

Fig. 1. Multiplication and circular convolution.

the cyclic group of integers modulo INI [1], that is,

n-l

(f *c g)[k] = L f[i] · g[(k - i) mod n],

i=O

where, n = INI and a rk] denotes the k-th bit of integer a.
In order to simulate the multiplication operation, we define

circular convolution with carry bit as follows:

r[k] (f *c g)[k] + Ck-l (mod 2)
((f *c g)[k] + Ck-l - r[k])/2

where, r[k] is the k-th output bit, Ck denotes the k-th carry bit, and
Co = 0. In Fig. 1, we show the difference between multiplication
operation and circular convolution with carry bit. It is obvious that
the latter is a more efficient process. Let *� denote above circular
convolution with carry bit. The SqHash function can be redefined
as

/Iv(m) = MSBd(mIIIV) *� (mIIIV)).

Note that we do not need module operations in this construction.

Furthermore, another advantage of this construction is that we

only need to calculate k most important bits without having to

calculate other bits. For example, when N = 1024 bits and

k = 384 bits, the computational overheads are 3/8 of those of

multiplication operations. Note that the circular convolution does

not change the nature of squaring operation in SqHash scheme.

Thus, this transformation from squaring to convolution does not

affect the security of SqHash scheme.

C. Hash Function for {O, I }* -+ {O, I }k

A hash function must be able to process an arbitrary-length

message into a fixed-length output. Usually, this can be achieved

by breaking the input up into a series of equal-sized blocks, and

operating on them in sequence using a one-way compression func­

tion. Hence, we define the hash function {O, I } * -+ {O, I }k based

on the SQH function as follows: given m = (mn,' " ,ml, mo) ,

0'0 MSBk((moIIIV) *� (moIIIV));

O'n

The final output of hash function is I7n. The last processed block

should also be unambiguously length padded. This is crucial to

the security of our construction. Fig. 2 depicts such a construction.

This kind of construction is also called Merkle-Damgard con­

struction [4], in which any collision for the full hash function can

be traced back to a collision in the compression function.

IV. CONSTRUCTION OF MAC FUNCTION
Message authentication code (MAC), sometimes called keyed

(cryptographic) hash function, specifies that an authenticated tag

between two parties that share a secret key in order to validate

il------------+---I

Fig. 2. Hash construction for arbitrary-length messages.

message transmitted between these parties. The MAC value pro­

tects a message's data integrity and its authenticity by allowing

verifiers (who also possess the secret key) to detect any changes

in the message content. Typically, MACs are built from hash

functions. Based on square function, we define the square MAC

(in short SqMAC) function as follows:

Definition 3 (Square MAC Construction): Let N be an integer
to make the factorization attack difficult and kEN. A square
MAC function from M xX: to {O, I }k is defined as: {SqMA Ck :
'l'.,N X 'l'.,N -+ {O, I }k } where

SqMACk(K,m) = MSBk((m+K)2 (mod N)).

Where K is a secret key with IKI = INI.

In this construction, M SBk 0 is necessary for ensuring security
because, without this operation, the secret key K can be computed
by

K = 0'2 - 0'1

2(m2 -ml)
(mod N)

if we have two pairs (ml,171) and (m2, (72)' where 171 = (ml +
k)2 and 172 = (m2 + x? (mod N). In addition, we prove that

the secret key K cannot be revealed in terms of Theorem 1 even

if the adversary has observed a lot of message-MAC pairs.
We also make use of circular convolution to replace the square

operation for obtaining higher efficiency, that is,

SqMACk(K,m) = MSBk((m+ K) *� (m+ K)).

Next, we focus on the MAC construction for arbitrary-length
message to be authenticated. HMAC is such a MAC. HMAC(K,m)
is mathematically defined by

HMAC(K,m) = H((K EIlopad)IIH((K EIl ipad)llm)),

where H (.) denotes a hash function. Based on this construction,

we present a new MAC function by extending the function

SqMACk(') and above-mentioned hash function for {O, 1 }* -+

{O, I } k, as follows:

1) To compute the hash value I7n based on the algorithm in

Section III-C but the initialization vector IV will be replaced

by K; and

2) To output the MAC code by using SqM ACk(K, m') and

m
'

= Klll7n .

In this construction, m'
= Klll7n is used to expand the length of

authenticated message.

951

V. CONSTRUCTION OF PSEUDORANDOM FUNCTION
A pseudorandom function, abbreviated as PRF, is an efficiently­

computable function which generates a sequence of {a, I } that

approximates the properties of random string. Strictly speaking,

no efficient algorithm can distinguish this sequence from a random

sequence with significant advantage. Although there exists some

practical PRF algorithms, such as, linear congruential generators

(LCG), lagged Fibonacci generators (LFG), and linear feedback

shift registers (LFSR), we present a fast PRF construction based

on square problem with a simple counter.

A. Secure Square-PRF

In this subsection, we present a new PRF function on the mod­

ular square root (MSR) problem. Although we have constructed

secure Hash and MAC scheme based on the MSR problem, it

is still a challenging task for constructing secure PRF function

due to its higher security requirements. Strictly speaking, PRF

function can be constructed on the Hard-core predicate of a one­

way function, but Hash/MAC function only needs the one-way

property [5]. Hence, we first focus on the Hard-core predicate of

MSR problem.
To generate pseudorandom number, we assume that a secret x is

stored in the device and a counter mi is used to produce different
output of PRF function for each PRF query, that is, mi+1 =
mi + 1 should be updated automatically. Note that the value mi
should be kept secret. Based on these assumptions, we define a
one-way function as

!x(mi) = (x + mi)2 (mod N).

Next, we find out the Hard-core predicate of this function accord­

ing to the following theorem:

Theorem 1: The two least significant bits (LSB) of next func­

tion output MSBk (fx (mi)) can only be guessed with 1/3
probability if mi is an unknown counter.

Proof Let mi+1 = mi + 1. Given two continuous values
!x(mi) and !x(mi+1) , we have the following equation

(x +mi +2)2

(x + mi)2 +4(x + mil + 4

2(x + mi + 1)2 -(x + mi)2 + 2
2!x(mi+l) -!x(mi) + 2.

Assume that e and e' are two I = INI - k bits numbers. Let
!x(mi+1) = MSBk(fx(mi+1)) - 21+e (mod N) and !x(mi) =
MSBk(fx(mi))· 21+e' (mod N), so that we have the following
equation

MSBd2!x(mi+1) -!x(m;) + 2)
2· MSBd!x(mi+1))­
MSBk(fx(mi)) +

MSBk(2e -e' + 2) (mod N).

In terms of 0::; e,e' < 21, we have _ 21 < 2e - e' + 2 < 21+1.
This means that { 1 2e -e' + 2 < 0

MSBk(2e -e'+2) = � O::;2e -e'+2<21

+ 1 21 ::; 2e -e' + 2

Hence, MSBk(fx(mi+2)) has three possible values and each

value can be guessed with the same probability 1/3 according to

the difference of LSB2(MSBk (fx (mi+2))). •
This theorem indicates the Hard-core predicate of !x(m) is

LSB2(MSBk(fx(m))). Further, it means that we can guess 21-

bits in the l-th next value with the probability it. Hence, in order

4

to improve efficiency, the successive 2l bits can be outputted

LSB21(MSBk(fx(mi+1))) , where mi is the counter of previous

output value. Thus, we define a new square PRF function as

follows:

Definition 4 (Secure Square-PRF): Given a counter i, a fam­
ily of square PRF functions with 21-bits output is defined as:
{SqP RFx,i,k : 121 --+ {a, 1 }21Ix, i E '£N, kEN }, where the
function SqP RF is defined as

SqPRFx,i,k(121) = LSB21(MSBk«X + i * 1)2 (mod N))).

Where, MSBk(t) and LSBk(t) denote k most and least signif­

icant bits of an integer t, the counter is updated to i * I after this

process, and N - N1/2 > X > N1/2 .

B. Efficient Implementation

To implement SqP RF function, we can still use the "circular

convolution with carry bit" to reduce the computational overheads,

but we must deal with how to compute a particular bit (specially

for LSB bits) correctly in m2 (mod N). More precisely, in order

to be certain about the effect of the carry entering this bit (or

LSB1) position, we have to compute all earlier bits in the worst

case. Fortunately, it is easy to show that the carry into each

bit position in the computation of m2 can be at most 11 bits

long 2 for INI between 1024 and 2048. Thus, if we add u = 32

additional low order bits to the computed window, we have only

a small (negligible) probability of less than 211 /232 = 1/221 of

computing an incorrect carry into the 33-th bit we compute. We

call it "least significant bits with window" (LSB�). We present

this process in Fig. 3.

g B
B B

BB
BB

Br;:;]
[:;::::JB

Fig. 3. Circular convolution for least significant bits with window.

So that we can replace the above SqP RF function by using

SqPRFx,i,k(121) = fSB�I«X + i + I) *c (x + i+ 1)).

This can guarantee an extremely small error probability while

keeping the average running time only slightly higher than always

computing I + 32 bits.

VI. SECURITY ANALYSIS
A. Security analysis of SqHash functions

The SQH function hv(m) is a cryptographic hash function

with preimage resistance and collision resistance [6]. The latter

property also means that this function is second-preimage resis­

tance. The preimage resistance stems from the fact that Square

function y = x2 (mod N) is a trap-door one-way function in

that given y, without (p, q), to find x such that y = x2 (mod N)
is as hard as factoring N.

The collision resistance is based on the infeasibility of integer

factoring problem [7]. Assume that given y, there exist two values

2The value of carry bit is at most 211 -1, so it can effect at most
log2 (211 -1) � 11 bits long.

952

Xl and X2 for (xIIIIV)2 = (x21IIV? (mod N) and Xl i= X2,

such that we have (xIIIIV? - (x21IIV? = (Xl - X2)((XI +
x2)21 + 2 . IV) . 21 = 0 (mod N). This means that NI(XI -
X2)((XI +x2)21-I +IV). Thus, we can find a factor of N by using

gCd((Xl -X2), N) only if not NI((XI +x2)21-I+IV). Otherwise,

we can repeat this process to find out the factor of N. Further,

given a fragment MSBk(y) of y, it is harder to find a valid X
which includes IV, that is, y = (xIIIV)2 (mod N). Even if

with (p,q), it is hard to find a valid e with y = MSBk(y)lle
such that y = (xIIIV)2 (mod N).

B. Security analysis of SqMAC functions

Given the function SqM A Ck(K, x), we prove that the secret

key K cannot be revealed even if the adversary obtains sufficient

message-MAC pairs. In this proof, we consider a hidden number

problem: Let K be a random hidden element of Z,N. We are given

N,k = INI/3, INI = n, and (Xi, MSBk((Xi +K? (mod N)))
for random values Xl, . . . , Xt. The problem is to find K. That is,

we assume that MSBk((Xi + K)2 (mod N))) = Yi, so that we

have

x; + K2 + 2XiK = Yi . 2k + ei (mod N), i = 1" , . , t
where ei are variables that correspond to unknown low order bits
and leil :::; 2n-k = 22 INI /3 . We are therefore forced to eliminate
unknown K2 from the above relation by using the equation:

x; - xi + 2(Xi - xI)K = (Yi - yI)2k + (ei - ell (mod N).

Next, we also eliminate K by the equation:

(x; - xi)(xi - xI) - (x; - xi)(xj - xI)
(Xi - Xl)(Xj - Xl)(Xi - Xj)
(Xi - XI)(Yi - YI)2k - (Xj - XI)(Yj - YI)2k +

(Xi - XI)(ei - ell - (Xj - xI)(ej - ell (mod N).

Also, we rewrite this equation as a polynomial in the unknown
ei,ej,el, namely:

f;(ei, ej, ell := Ai,lei + Bj,lej + Ci,jel - Xi,j (mod N).

where Ai = Xi - Xl, Bj = Xl - Xj, Cj = Xj - Xi, and

Xi = ((Xi - XI)(Yi - YI) - (Xj - X 1)(Yj - YI))2k - (Xi -
XI)(Xj - XI)(Xi - Xj). Based on this function, we setup a lattice
of dimension 2t - 1 as a real matrix M:

1 0 0 0 0 X3,2 Xt,2
0 2k-n 0 0 0 C3,2 Ct,2
0 0 2k-n 0 0 B2,l B2,1
0 0 0 2k-n 0 A3,l 0

0 0 0 0 2k-n 0 At,l
0 0 0 0 0 N 0

0 0 0 0 0 0 N

Next, we set v = (l,el,e2,'" ,e t,k2, . . · ,k t). It follows that
for this integer vector v we get:

v·M = (l � ... � 0 .. · ,0). , 2n-k ' , 2n-k' ,

Thus, the lattice point v . M has only t + 1 non-zero entries, and

each of these is less than 1. And its Euclidean norm is less than v'f+l
. On the other hand, it is easy to see that the determinant of

the lattice L(M) equals Nt-2. 2(k-n)t. In addition, making using

of the Gaussian heuristic for short lattices vectors, we expect that

5

our vector is the shortest point in this lattice L(M) as long as v'f+l « V'2f=1.
(N t-2 . 2(k-n)t)I/(2t-I). Let N � 2n and

ignoring low-order terms, this condition is simplified to J it�\ �

2-1 /2 « 2k/2-n/t < 2k/2 = 2n/6. Therefore, the Lattice-based
reduction methods cannot find the secret K [8].

C. Security analysis for SqPRF function

The security requirement for PRF function is that the output

of pseudorandom sequences should be computationally indistin­

guishable from truly random sequences. For practicality, such

pseudorandom generators can be constructed easily on the hard­

core predicates. In fact, we have proved that our SqPRF function

is constructed on the hard-core predicates with the probability

1/31 for 21-bits outputs in Theorem 1.

VII. PERFORMANCE OF ALGORITHMS
We use two different approaches (i.e., the truncated function and

circular convolution) to improve the performance of all proposed

schemes. To evaluate the performance, we use Mathematica to

realize our schemes (INI = 1024 and k = 384) and some

standard hash functions, such as, MDS, SHAI, SHA384, SHASI2.

We find that our SqHash, SqMAC, SqPRF schemes and these

standards have almost comparable overheads.

Usually, long-size cryptographic algorithms are not suitable

for providing security on wireless devices due to their limited

computation and communication capabilities. In a cryptosystem,

key length is usually much longer than the "word size" of mobile

devices, typically 16 or 32 bits. Using short ALU to deal with

long data often leads to more complex programs for cryptography

algorithms. Moreover, traditional Hash/MACIPRF functions do

not contain algebra operations thus ALU computing power would

normally not be fully utilized. However, the algorithms proposed

in this paper are easy to implement, and can take advantage of

ALU computing power. We will give basic construction on MSB

and convolution, on which SqHash/SqMAC/SqPRF can be easily

constructed.

First, our basic construction (called "Convol-MSB" algorithm in

Fig.4) can be implemented easily on mobile devices. We improve

the computation by replacing integer multiplication with circular

convolution. The advantage of this method is that each output bit

is calculated from right to left, while traditional multiplication is

from top to bottom, then right to left (see Fig. 1). In addition, we

also use MSB operation (with window) to further reduce com­

putation overheads. Based on them, the computation complexity

of "Convol-MSB" is O(kn) instead of O(n2) in the traditional

multiplication way. It is about k/n of the original overhead.

The basic "Convol-MSB" algorithm is constructed on bit­

AND operator. Thus, it does not take full advantage of the

ALU computing resources. Taking into account of bit-parallel

processors in ALU hardware, we improve the above-mentioned

algorithm to a new "Convol-MSB-IMP" algorithm in Fig. S. In

this algorithm, we make use of CyclicLeftShift(x, k) to cycles

k positions to the left for the elements in x. Furthermore, we use

a *.b to give the bitwise AND of a and b, and Sum(x) to give the

total number of elements in list x. Based on these improvements,

the computation overhead is further reduced to O(kn/w) since

the actual scale is the word size of mobile devices w in each

parallel processing. Note that above pseudo-codes are not real

ALU calls and we need to expand these calls according to actual

input length.

953

6

TABLE II
COMPARISONS AMONG SQHASH, SQMAC, SQPRF AND THEIR IMPROVED SCHEMES.

Name II Equation I Performance II Improved Equation Performance

SqHash MSBk«mIIIV)" (mod N)) O(n") MSBk«mIIIV) *� (mIIIV)) O(n*k)
SqMAC MSBk«m + K)" (mod N)) O(n") MSBk«m + K) *� (m + K)) O(n*k)
SqPRF LSB21(MSBd(x + i + 1)2 (mod N))) O(n2) LSB;I((X + i + l) *� (x + i + I)) O(n * (21 + u))

Algorithm Convol-MSB(x, n, k)
Require: x is an input integer, n is the length of x, and k

is the length of output result.

s = 0;

for i = n - k + 1 to n do
for j = 1 to n do

r = x[j] · x[(i - j) (mod n)] ;
S = S + r;

end for
idx = i - n + k;
r[idx] = s (mod 2);
s = (s - r[idx])j2;

end for
Return r;

Fig. 4. Basic convolution-MSB algorithm.

Algorithm Convol-MSB-IMP(x, n, k)
Require: x is an input integer, n is the length of x, and k

is the length of output result.

tx = CyclicLeftShift(x, n - k);
s = 0;

for i = 1 to k do
tx = CyclicLeftShift(x, 1);
t=x *.tx;
r[i] = sum(t + s) (mod 2);
s = (sum(t + s) - r[i])j2;

end for
Return r;

Fig. 5. Improved convolution-MSB algorithm.

In Table II, we give a summary of the performance estimate of

SqHash, SqMAC, and SqPRF compared with corresponding im·

proved schemes. Obviously, the improved scheme achieves a com·

putational overhead (O(nk») smaller than the original schemes

(O(n2»). The ratio between them is about kjn = O(nk)jO(n2).
This result is benefited from the use of truncated function !vIS B
or LSB, as well as circular convolution operation. In addition,

these truncated functions also increase the difficulty of attacks

against the improved schemes. Moreover, the overhead O(nk)
means that the scheme is less sensitive than the original scheme

for data length n. For example, when we want to double the

length of processed message, the overhead of improved schemes

will increase by about 100% (from O(nk) to O(2nk»), but those

of original schemes increase by about 400% (from O(n2) to

O(4n2»).

To validate the efficiency of our approach, we implemented

several algorithms in the Mathematica 7.0 environment. In Fig.

6, we show a comparison of experimental results among Square,

convolution-MSB and improved convolution-MSB algorithms. In

this figure, the total length of N is changed from 512 to 1024-bits

and the size of output results is about 1/3 of length of N. The com­

putation cost is proportional to INI for the square algorithm and

the convolution·MSB algorithm and the length of N has a greater

impact on the Square algorithm. However, the computation cost

0.5

V-
0.4

H
__ Square /
--+- Convol-MSB V � -A- Convol·MSB·IMP I / 0 i 0.3 ----"

� -E
g c: 0.2

V t I� E 0.1
0 u roo-

0.0

500 600 700 800 900 1000
The length of N (bits)

(lhe oulput bils is 1/3 of IN!)

Fig. 6. Comparison of experimental results among Square, convo lution-
MSB and improved convolution-MSB algorithms.

is independent to the length of N in the improved convolution­

MSB algorithm. In summary, the experimental results show that

our improved convolution-MSB method has better performance

than general square algorithm.

VIII. CONCLUSIONS
In this paper, we prompt the idea of constructing various basic

cryptographic primitives (such as hash, MAC, and PRF) from a

common core algorithm to simplify the management and improve

the efficiency of current cryptographic implementation practices

on mobile devices. For this purpose, we present the design of

a family of cryptographic primitives based on the common core

squaring operation. Our design takes advantage of the practical

construction in ALU hardware, such as parallel processing units

or algebra operation units, so that the proposed schemes can

be efficiently realized on resource-constrained mobile devices.

Moreover, the proposed schemes are provably secure under the

hidden number problem and hard-core predicate.

REFERENCES
[l] A. Shamir, "SQUASH - a new MAC with provable security properties

for highly constrained devices such as RFID tags," in FSE, 2008.
[2] M. Etzel, S. Patel, and Z. Ramzan, "Square hash: Fast message

authenication via optimized universal hash functions," in CRYPTO,
1999.

[3] D. Boneh, S. Halevi, and N. Howgrave-Graham, "The modular
inversion hidden number problem," in ASIA CRYPT, 2001.

[4] I.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, "Merkle-damgard
revisited: How to construct a hash function," in CRYPTO, 2005.

[5] C. Berbain, H. Gilbert, and 1. Patarin, "Quad: A practical stream
cipher with provable security," in EUROCRYPT, ser. Lecture Notes
in Computer Science, S. Vaudenay, Ed., vol. 4004. Springer, 2006,
pp. 109-128.

[6] K. Ouafi and S. Vaudenay, "Smashing squash-O," in EUROCRYPT,
2009, pp. 300-312.

[7] Y. Dubois, P'-A. Fouque, A. Shamir, and 1. Stern, "Practical cryptanal­
ysis of sftash," in CRYPTO, ser. Lecture Notes in Computer Science,
A. Menezes, Ed., vol. 4622. Springer, 2007, pp. 1-12.

[8] D. Boneh and R. Venkatesan, "Rounding in lattices and its crypto­
graphic applications," in SODA, M. E. Saks, Ed. ACMlSIAM, 1997,
pp. 675-681.

954

