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Abstract-Numerous cryptographic techniques have been developed 
to be used on mobile devices for various security and privacy 
protections. However, these cryptographic primitives, working under 
different mathematical assumptions, tend to become more and more 
complex and intricate, which makes it increasingly more difficult 
for proper implementation and management. Thus, it is desired to 
simplify management and improve efficiency by means of designing 
a general function family to meet a variety of security requirements. 
In this paper, we present such a family of square functions, including 
SqHash, SqMAC and SqPRF, based on a specially truncated function 
(MSB or LSB). We further improve the efficiency of these algorithms 
by using "circular convolution with carry bits" which makes parallel 
processing possible. We prove the security of these functions based 
on the privacy in hidden number problem and hard-core predicate of 
one-way function. We also show that the proposed schemes achieve 
better performance with a complexity reduction from O(n2) to 
O(knjw) for n·bit message, k·bit output and w·bit word size. 

Index Terms-Algorithm, Cryptography, Hash, MAC, Pseudo· 
random, Hidden Number Problem 

I. INTRODUCTION 
The explosive growth of wireless systems coupled with the 

proliferation of laptop and palmtop computers indicates a bright 
future for wireless and mobile computing. Smart mobile devices 
(such as iPad, iPhone, Android, and Blackberry devices) have 
experimented exponential growth over the last several years 
and there are currently around 1.2 billion users worldwide 1. 

Unfortunately, wireless systems are susceptible to a variety of 
security attacks due to the openness of the underlying transmission 
media. Mobile device security has become a major concern to 
not only mobile clients but also their service providers. To solve 
this issue, numerous cryptographic techniques (e.g., signature, 
encryption, identification, etc.) have been developed to provide 
security protection for these mobile devices. Especially, some 
basic cryptographic primitives, like Hash, message authentication 
code (MAC), pseudorandom function (PRF), have been widely 
employed in a variety of applications and services [1] for various 
security purposes, including warehouse inventory control, public 
transportation passes, anti-counterfeiting tags for medicines, se­
cure identification, etc. 

In general, these cryptographic primitives are computed fre­
quently on inputs which are usually thousands of bytes long. 
Computation is typically done through software implementation 
on relatively weak platforms with meager resources. Additionally, 
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computation is often required to be performed in real time. There­
fore, developing optimization techniques for these cryptographic 
primitives while retaining the appropriate level of security is 
crucial to improve their performance on mobile devices. We 
notice that computing power on Arithmetic Logic Unit (ALU) 
of microprocessors of mobile devices is hardly fully utilized 
when running these primitives since they were designed based 
on the simplest hardware construction. Hence, runtime overheads 
of these primitives could be greatly decreased if we have a 
reasonable and effective design of cryptographic primitives based 
on the practical construction in ALU hardware, such as parallel 
processing units or algebra operation units. 

More importantly, there exist too many cryptographic algo­
rithms (or standards) that can be used to implement these primi­
tives. For example, general hash algorithms have MD5, RIPEMD-
160, SHA-l, and SHA-256. This often leads to a large number 
of different algorithms stored in the system, which is a waste 
of limited storage space, and sometime even causes confusion. 
Therefore, it is necessary to provide a common method to unify 
a variety of primitives into a family of cryptographic functions, 
so that we can use a common core algorithm to construct various 
cryptographic functions. If so, special hardwares can be designed 
for the core algorithm to achieve optimal performance. In fact, 
we expect to design an elaborate and efficient core algorithm by 
taking full advantage of computation power in mobile devices. 

In this paper, we analyze the security and performance features 
of existing Square Hash function [2]. We show several short­
comings of this function. In response to these shortcomings, we 
present a new hash scheme (called SqHash) based on a specially 
truncated function (most significant bits, MSB). We further im­
prove the performance of SqHash by using "circular convolution" 
which makes parallel processing on output bits possible. Similarly, 
we present a new MAC scheme (called SqMAC) and a new PRF 
scheme (called SqPRF), as well as their corresponding improved 
schemes. We also prove that the security of these constructions 
based on the privacy properties in the hidden number problem 
and Hard-core predicate of one-way function. We show that the 
proposed schemes have better performance as their complexity 
is reduced from O(n2) to O(kn/w) for n-bit messages, k-bit 
outputs and w-bit word-size of mobile devices. The proposed 
schemes as well as their respective performance and security 
parameters are summarized in Table I. 

II. BACKGROUND AND PRELIMINARIES 
A. System Model 

In this paper, we assume that a wireless device does not have a 
dedicated cryptographic hardware. In particular, it does not have 
a true random number generator. We assume that the device only 
has a short length (16 bits) accumulator and a I-bit multiplication 
unit (it can be replaced by I-bit accumulator), as well as a large 
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TABLE I 
SUMMARY OF OUR PROPOSED SCHEMES. 

Name II Equation I Performance I Security 

SqHash MSBk((mIIIV) *c (mIIIV)) O(n*k) Preimage resistance and Collision resistance 

SqMAC MSBk((m + K) *c (m + K)) O(n*k) Secret-key privacy on Hidden Number Problem 

SqPRF LSB;I((X + i + I) *� (x + i + I)) O(n*21) Psudeorandom on Hard-core unpredictability 

enough memory. In addition, in MAC and PRF, we assume that 
there exists a secure storage unit which can prevent the disclosure 
of stored information. It is used to store the user's secret key and 
the current value of counter. 

B. Preliminaries 

We refer to {O, I }  * as strings and {O, I } l as I-length strings. 
If x is a string or a number then Ixi denotes its length in bits. 
For lEN, we denote by 11 the string of I "I" bits. Let II denote 
concatenation. For sets X and Y, if f : X --+ Y is a function, 
then we call X the domain, Y the range, and the set {f (x) Ix E 
X} the image of the function. An adversary is an algorithm. By 
convention, all algorithms are required to be efficient, meaning 
run in (expected) polynomial-time in the length of their inputs, 
and their running-time includes that of any overlying experiment. 

• Integer Factoring Problem. Integer factorization is the decom­
position of a composite number into smaller non-trivial divisors. 
That is, given N = pq, for any polynomial time (in INI), and 
algorithm A and any polynomial FO, for sufficiently large 
INI, the factoring assumption holds that Pr[(p, q) = A] ::; 
1/ F(IN!), where 1/ F(IN!) denotes a negligible probability 
and INI = 1024 is often chosen in practice. 

• Square Root Problem. Let N = pq be the public key and 
p == q == 3 (mod 4). The Rabin function computes y = x2 

(mod N) for x E Z)V. The square root problem says that given 
y E ZN, without (p,q), to find x such that y = x2 (mod N) 
is as hard as factoring N. Note that there are four distinct roots 
x, including two group trivial roots (±x). 

• Hidden Number Problem. The goal of square hidden number 
problem (SqHNP) [3] is to find a hidden number s, when given 
N and access to an oracle that on query (Xl, . . .  ,Xm) returns 
a value (MSBk((X + S)2 (mod N)) ,'" ,MSBk((Xn + S)2 

(mod N))) , where MSBk(Y) denotes the k most significant 
bits of y. The SqHNP assumption states that there is no poly­
nomial time algorithm for this problem whenever k = INI/3. 

Given a prime p == 3 (mod 4), the square roots of y modulo 
p can be computed by xp = ±y(P+l)/4 (mod p). Note that 
there is no square root for some numbers. When xp and Xq 
are known, the square root problem can be resolved by Chinese 
remainder theorem. It has been proved that decoding the Rabin 
cryptosystem is equivalent to the integer factorization problem. 
The Robin cryptosystem is provably secure (in a strong sense) 
against chosen plaintext attacks. 

III. CONSTRUCTION OF HASH FUNCTION 
A. Square Hash Function and Its Shortcomings 

A cryptographic hash function Hash: {O, 1}* --+ {O, l}k is a 
function that takes an arbitrary block of data and returns a fixed­
size bit string. A square hash function [2] is a cryptographic hash 
function ZN --+ ZN for an enough large N, where it is hard to 
factorize N. 

Definition I (Basic Construction): The SQH family of hash 
functions from ZN to ZN is defined as: {f : ZN --+ ZN} where 
the functions f are defined as 

j(m) = m2 (mod N). 

Where, N - Nl/2 > m > Nl/2 and INI = n. 
If m < 2n/2, we have m2 < 2n < N, which means that m2 

(mod N) = m2 In this case, given a hash value y E ZN, we 
can use the split half method (or logarithmic search) to find m 
such that m2 = y because m2 is a monotone increasing function. 
Similarly, another trivial root of m2 (mod N) is N -m < Nl/2 

due to (N - m)2 = m2 < N. 

This basic construction has the following shortcomings: 

1) Assume that the length of N is n, the computation overhead 
of SQH function are O(n2). When n is large, the factorization 
of N is hard. But O(n2) is too large for frequent operations in 
mobile derives. 

2) The output of SQH function is INI bits. Since we use SQH 
function with at less 1024-bits modulus size for secure integer 
factorization problem, the hash output size is at less 1024 bits. 
But the output of SHA-512/384 is just 512 or 384 bits with 
1024-bit block size. Hence, the output of SQH function is too 
large for applications. Also, this feature is contradictory to the 
compression property of hash functions. 

3) When m is too small (such as m < Nl/2), the output of 
SQH function is predictable in terms of above discussion. This 
predictability is considered as one such possible vulnerability 
that may be insecure for some applications. 

Hence, we will focus on addressing these shortcomings by con­
structing more effective schemes in the remaining of this section. 

B. Hash Function for ZN --+ {O, l}k 

We present a new construction of square hash function to 
resolve the shortcomings in the basic construction. 

Definition 2 (Square Hash Construction): Define a family of 
SqHash functions from ZN to {O, I}k as: SqHash = { !Iv : 
ZN --+ {O, I }kIIV E {O, I } l } where the function f is defined as 

hv(m) = MSBk((mIIIV)2 (mod N»). 

Where, IV denotes an initialization vector and MSBk(t) denotes 
k most significant bits of an integer t. 

Compared with the basic construction, SqHash has several 
advantages. Firstly, the output of SqHash is k bits in that M S Bk 0 
can be considered as a truncation function. For instance, k is 384 
bits like SHA384. Next, let mllIV = m ·  21 + IV. The initial 
vector IV increases the randomness of the output of SqHash 
function as a result of (m·21 +IV? = m2·221+IV2+m·IV·21+1 

(mod N) , especially for the item m . IV . 21+1. Moreover, this 
construction also helps avoid collision, that is, given a value y 
and a square root m (m2 = y (mod N) , we can check IV 
to determine whether this value is a valid pre-image of the four 
square roots of y. 

Unfortunately, this construction does not reduce the computa­
tional complexity because we still need to perform the squaring 
operation. Hence, we make use of "modulo-INI circular convolu­
tion with carry bit" m *c m to replace the multiplication m . m. 
The notation *c for cyclic convolution denotes convolution over 
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Fig. 1. Multiplication and circular convolution. 

the cyclic group of integers modulo INI [1], that is, 

n-l 

(f *c g)[k] = L f[i] · g[(k - i) mod n], 

i=O 

where, n = INI and a rk ] denotes the k-th bit of integer a. 
In order to simulate the multiplication operation, we define 

circular convolution with carry bit as follows: 

r[k] (f *c g)[k] + Ck-l (mod 2) 
((f *c g)[k] + Ck-l - r[k])/2 

where, r[k] is the k-th output bit, Ck denotes the k-th carry bit, and 
Co = 0. In Fig. 1, we show the difference between multiplication 
operation and circular convolution with carry bit. It is obvious that 
the latter is a more efficient process. Let *� denote above circular 
convolution with carry bit. The SqHash function can be redefined 
as 

/Iv(m) = MSBd(mIIIV) *� (mIIIV)). 

Note that we do not need module operations in this construction. 

Furthermore, another advantage of this construction is that we 

only need to calculate k most important bits without having to 

calculate other bits. For example, when N = 1024 bits and 

k = 384 bits, the computational overheads are 3/8 of those of 

multiplication operations. Note that the circular convolution does 

not change the nature of squaring operation in SqHash scheme. 

Thus, this transformation from squaring to convolution does not 

affect the security of SqHash scheme. 

C. Hash Function for {O, I }* -+ {O, I }k 

A hash function must be able to process an arbitrary-length 

message into a fixed-length output. Usually, this can be achieved 

by breaking the input up into a series of equal-sized blocks, and 

operating on them in sequence using a one-way compression func­

tion. Hence, we define the hash function {O, I }  * -+ {O, I }k based 

on the SQH function as follows: given m = (mn,' " ,ml, mo) , 

0'0 MSBk((moIIIV) *� (moIIIV)); 

O'n 

The final output of hash function is I7n. The last processed block 

should also be unambiguously length padded. This is crucial to 

the security of our construction. Fig. 2 depicts such a construction. 

This kind of construction is also called Merkle-Damgard con­

struction [4], in which any collision for the full hash function can 

be traced back to a collision in the compression function. 

IV. CONSTRUCTION OF MAC FUNCTION 
Message authentication code (MAC), sometimes called keyed 

(cryptographic) hash function, specifies that an authenticated tag 

between two parties that share a secret key in order to validate 

il------------+---I 

Fig. 2. Hash construction for arbitrary-length messages. 

message transmitted between these parties. The MAC value pro­

tects a message's data integrity and its authenticity by allowing 

verifiers (who also possess the secret key) to detect any changes 

in the message content. Typically, MACs are built from hash 

functions. Based on square function, we define the square MAC 

(in short SqMAC) function as follows: 

Definition 3 (Square MAC Construction): Let N be an integer 
to make the factorization attack difficult and kEN. A square 
MAC function from M xX: to {O, I }k is defined as: {SqMA Ck : 
'l'.,N X 'l'.,N -+ {O, I }k } where 

SqMACk(K,m) = MSBk((m+K)2 (mod N)). 

Where K is a secret key with IKI = INI. 

In this construction, M SBk 0 is necessary for ensuring security 
because, without this operation, the secret key K can be computed 
by 

K = 0'2 - 0'1 

2(m2 -ml) 
(mod N) 

if we have two pairs (ml,171) and (m2, (72)' where 171 = (ml + 
k)2 and 172 = (m2 + x? (mod N). In addition, we prove that 

the secret key K cannot be revealed in terms of Theorem 1 even 

if the adversary has observed a lot of message-MAC pairs. 
We also make use of circular convolution to replace the square 

operation for obtaining higher efficiency, that is, 

SqMACk(K,m) = MSBk((m+ K) *� (m+ K)). 

Next, we focus on the MAC construction for arbitrary-length 
message to be authenticated. HMAC is such a MAC. HMAC(K,m) 
is mathematically defined by 

HMAC(K,m) = H((K EIlopad)IIH((K EIl ipad)llm)), 

where H (.) denotes a hash function. Based on this construction, 

we present a new MAC function by extending the function 

SqMACk(') and above-mentioned hash function for {O, 1 }* -+ 

{O, I }  k, as follows: 

1) To compute the hash value I7n based on the algorithm in 

Section III-C but the initialization vector IV will be replaced 

by K; and 

2) To output the MAC code by using SqM ACk(K, m') and 

m
' 

= Klll7n . 

In this construction, m' 
= Klll7n is used to expand the length of 

authenticated message. 
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V. CONSTRUCTION OF PSEUDORANDOM FUNCTION 
A pseudorandom function, abbreviated as PRF, is an efficiently­

computable function which generates a sequence of {a, I }  that 

approximates the properties of random string. Strictly speaking, 

no efficient algorithm can distinguish this sequence from a random 

sequence with significant advantage. Although there exists some 

practical PRF algorithms, such as, linear congruential generators 

(LCG), lagged Fibonacci generators (LFG), and linear feedback 

shift registers (LFSR), we present a fast PRF construction based 

on square problem with a simple counter. 

A. Secure Square-PRF 

In this subsection, we present a new PRF function on the mod­

ular square root (MSR) problem. Although we have constructed 

secure Hash and MAC scheme based on the MSR problem, it 

is still a challenging task for constructing secure PRF function 

due to its higher security requirements. Strictly speaking, PRF 

function can be constructed on the Hard-core predicate of a one­

way function, but Hash/MAC function only needs the one-way 

property [5]. Hence, we first focus on the Hard-core predicate of 

MSR problem. 
To generate pseudorandom number, we assume that a secret x is 

stored in the device and a counter mi is used to produce different 
output of PRF function for each PRF query, that is, mi+1 = 
mi + 1 should be updated automatically. Note that the value mi 
should be kept secret. Based on these assumptions, we define a 
one-way function as 

!x(mi) = (x + mi)2 (mod N). 

Next, we find out the Hard-core predicate of this function accord­

ing to the following theorem: 

Theorem 1: The two least significant bits (LSB) of next func­

tion output MSBk (fx (mi)) can only be guessed with 1/3 
probability if mi is an unknown counter. 

Proof Let mi+1 = mi + 1. Given two continuous values 
!x(mi) and !x(mi+1) , we have the following equation 

(x +mi +2)2 

(x + mi)2 +4(x + mil + 4 

2(x + mi + 1)2 -(x + mi)2 + 2 
2!x(mi+l) -!x(mi) + 2. 

Assume that e and e' are two I = INI - k bits numbers. Let 
!x(mi+1) = MSBk(fx(mi+1)) - 21+e (mod N) and !x(mi) = 
MSBk(fx(mi))· 21+e' (mod N), so that we have the following 
equation 

MSBd2!x(mi+1) -!x(m;) + 2) 
2· MSBd!x(mi+1))­
MSBk(fx(mi)) + 

MSBk(2e -e' + 2) (mod N). 

In terms of 0::; e,e' < 21, we have _ 21 < 2e - e' + 2 < 21+1. 
This means that { 1 2e -e' + 2 < 0 

MSBk(2e -e'+2) = � O::;2e -e'+2<21 

+ 1 21 ::; 2e -e' + 2 

Hence, MSBk(fx(mi+2)) has three possible values and each 

value can be guessed with the same probability 1/3 according to 

the difference of LSB2(MSBk (fx (mi+2))). • 
This theorem indicates the Hard-core predicate of !x(m) is 

LSB2(MSBk(fx(m))). Further, it means that we can guess 21-

bits in the l-th next value with the probability it. Hence, in order 
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to improve efficiency, the successive 2l bits can be outputted 

LSB21(MSBk(fx(mi+1))) , where mi is the counter of previous 

output value. Thus, we define a new square PRF function as 

follows: 

Definition 4 (Secure Square-PRF): Given a counter i, a fam­
ily of square PRF functions with 21-bits output is defined as: 
{SqP RFx,i,k : 121 --+ {a, 1 }21Ix, i E '£N, kEN }, where the 
function SqP RF is defined as 

SqPRFx,i,k(121) = LSB21(MSBk«X + i * 1)2 (mod N))). 

Where, MSBk(t) and LSBk(t) denote k most and least signif­

icant bits of an integer t, the counter is updated to i * I after this 

process, and N - N1/2 > X > N1/2 . 

B. Efficient Implementation 

To implement SqP RF function, we can still use the "circular 

convolution with carry bit" to reduce the computational overheads, 

but we must deal with how to compute a particular bit (specially 

for LSB bits) correctly in m2 (mod N). More precisely, in order 

to be certain about the effect of the carry entering this bit (or 

LSB1) position, we have to compute all earlier bits in the worst 

case. Fortunately, it is easy to show that the carry into each 

bit position in the computation of m2 can be at most 11 bits 

long 2 for INI between 1024 and 2048. Thus, if we add u = 32 

additional low order bits to the computed window, we have only 

a small (negligible) probability of less than 211 /232 = 1/221 of 

computing an incorrect carry into the 33-th bit we compute. We 

call it "least significant bits with window" (LSB�). We present 

this process in Fig. 3. 

g B 
B B 

BB 
BB 

Br;:;] 
[:;::::JB 

Fig. 3. Circular convolution for least significant bits with window. 

So that we can replace the above SqP RF function by using 

SqPRFx,i,k(121) = fSB�I«X + i + I) *c (x + i+ 1)). 

This can guarantee an extremely small error probability while 

keeping the average running time only slightly higher than always 

computing I + 32 bits. 

VI. SECURITY ANALYSIS 
A. Security analysis of SqHash functions 

The SQH function hv(m) is a cryptographic hash function 

with preimage resistance and collision resistance [6]. The latter 

property also means that this function is second-preimage resis­

tance. The preimage resistance stems from the fact that Square 

function y = x2 (mod N) is a trap-door one-way function in 

that given y, without (p, q), to find x such that y = x2 (mod N) 
is as hard as factoring N. 

The collision resistance is based on the infeasibility of integer 

factoring problem [7]. Assume that given y, there exist two values 

2The value of carry bit is at most 211 -1, so it can effect at most 
log2 (211 -1) � 11 bits long. 
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Xl and X2 for (xIIIIV)2 = (x21IIV? (mod N) and Xl i= X2, 

such that we have (xIIIIV? - (x21IIV? = (Xl - X2)((XI + 
x2)21 + 2 . IV) . 21 = 0 (mod N). This means that NI(XI -
X2)((XI +x2)21-I +IV). Thus, we can find a factor of N by using 

gCd((Xl -X2), N) only if not NI((XI +x2)21-I+IV). Otherwise, 

we can repeat this process to find out the factor of N. Further, 

given a fragment MSBk(y) of y, it is harder to find a valid X 
which includes IV, that is, y = (xIIIV)2 (mod N). Even if 

with (p,q), it is hard to find a valid e with y = MSBk(y)lle 
such that y = (xIIIV)2 (mod N). 

B. Security analysis of SqMAC functions 

Given the function SqM A Ck(K, x), we prove that the secret 

key K cannot be revealed even if the adversary obtains sufficient 

message-MAC pairs. In this proof, we consider a hidden number 

problem: Let K be a random hidden element of Z,N. We are given 

N,k = INI/3, INI = n, and (Xi, MSBk((Xi +K? (mod N))) 
for random values Xl, . . .  , Xt. The problem is to find K. That is, 

we assume that MSBk((Xi + K)2 (mod N))) = Yi, so that we 

have 

x; + K2 + 2XiK = Yi . 2k + ei (mod N), i = 1" , . , t 
where ei are variables that correspond to unknown low order bits 
and leil :::; 2n-k = 22 INI /3 . We are therefore forced to eliminate 
unknown K2 from the above relation by using the equation: 

x; - xi + 2(Xi - xI)K = (Yi - yI)2k + (ei - ell (mod N). 

Next, we also eliminate K by the equation: 

(x; - xi)(xi - xI) - (x; - xi)(xj - xI) 
(Xi - Xl )(Xj - Xl )(Xi - Xj) 
(Xi - XI)(Yi - YI)2k - (Xj - XI)(Yj - YI)2k + 

(Xi - XI)(ei - ell - (Xj - xI)(ej - ell (mod N). 

Also, we rewrite this equation as a polynomial in the unknown 
ei,ej,el, namely: 

f;(ei, ej, ell := Ai,lei + Bj,lej + Ci,jel - Xi,j (mod N). 

where Ai = Xi - Xl, Bj = Xl - Xj, Cj = Xj - Xi, and 

Xi = ((Xi - XI)(Yi - YI) - (Xj - X 1)(Yj - YI))2k - (Xi -
XI)(Xj - XI)(Xi - Xj). Based on this function, we setup a lattice 
of dimension 2t - 1 as a real matrix M: 

1 0 0 0 0 X3,2 Xt,2 
0 2k-n 0 0 0 C3,2 Ct,2 
0 0 2k-n 0 0 B2,l B2,1 
0 0 0 2k-n 0 A3,l 0 

0 0 0 0 2k-n 0 At,l 
0 0 0 0 0 N 0 

0 0 0 0 0 0 N 

Next, we set v = (l,el,e2,'" ,e t,k2, . .  · ,k t). It follows that 
for this integer vector v we get: 

v·M = ( l � ... � 0 .. · ,0). , 2n-k ' , 2n-k' , 

Thus, the lattice point v . M has only t + 1 non-zero entries, and 

each of these is less than 1. And its Euclidean norm is less than v'f+l
. On the other hand, it is easy to see that the determinant of 

the lattice L(M) equals Nt-2. 2(k-n)t. In addition, making using 

of the Gaussian heuristic for short lattices vectors, we expect that 

5 

our vector is the shortest point in this lattice L(M) as long as v'f+l « V'2f=1.
(N t-2 . 2(k-n)t)I/(2t-I). Let N � 2n and 

ignoring low-order terms, this condition is simplified to J it�\ � 

2-1 /2 « 2k/2-n/t < 2k/2 = 2n/6. Therefore, the Lattice-based 
reduction methods cannot find the secret K [8]. 

C. Security analysis for SqPRF function 

The security requirement for PRF function is that the output 

of pseudorandom sequences should be computationally indistin­

guishable from truly random sequences. For practicality, such 

pseudorandom generators can be constructed easily on the hard­

core predicates. In fact, we have proved that our SqPRF function 

is constructed on the hard-core predicates with the probability 

1/31 for 21-bits outputs in Theorem 1. 

VII. PERFORMANCE OF ALGORITHMS 
We use two different approaches (i.e., the truncated function and 

circular convolution) to improve the performance of all proposed 

schemes. To evaluate the performance, we use Mathematica to 

realize our schemes (INI = 1024 and k = 384) and some 

standard hash functions, such as, MDS, SHAI, SHA384, SHASI2. 

We find that our SqHash, SqMAC, SqPRF schemes and these 

standards have almost comparable overheads. 

Usually, long-size cryptographic algorithms are not suitable 

for providing security on wireless devices due to their limited 

computation and communication capabilities. In a cryptosystem, 

key length is usually much longer than the "word size" of mobile 

devices, typically 16 or 32 bits. Using short ALU to deal with 

long data often leads to more complex programs for cryptography 

algorithms. Moreover, traditional Hash/MACIPRF functions do 

not contain algebra operations thus ALU computing power would 

normally not be fully utilized. However, the algorithms proposed 

in this paper are easy to implement, and can take advantage of 

ALU computing power. We will give basic construction on MSB 

and convolution, on which SqHash/SqMAC/SqPRF can be easily 

constructed. 

First, our basic construction (called "Convol-MSB" algorithm in 

Fig.4) can be implemented easily on mobile devices. We improve 

the computation by replacing integer multiplication with circular 

convolution. The advantage of this method is that each output bit 

is calculated from right to left, while traditional multiplication is 

from top to bottom, then right to left (see Fig. 1). In addition, we 

also use MSB operation (with window) to further reduce com­

putation overheads. Based on them, the computation complexity 

of "Convol-MSB" is O(kn) instead of O(n2) in the traditional 

multiplication way. It is about k/n of the original overhead. 

The basic "Convol-MSB" algorithm is constructed on bit­

AND operator. Thus, it does not take full advantage of the 

ALU computing resources. Taking into account of bit-parallel 

processors in ALU hardware, we improve the above-mentioned 

algorithm to a new "Convol-MSB-IMP" algorithm in Fig. S. In 

this algorithm, we make use of CyclicLeftShift(x, k) to cycles 

k positions to the left for the elements in x. Furthermore, we use 

a *.b to give the bitwise AND of a and b, and Sum(x) to give the 

total number of elements in list x. Based on these improvements, 

the computation overhead is further reduced to O(kn/w) since 

the actual scale is the word size of mobile devices w in each 

parallel processing. Note that above pseudo-codes are not real 

ALU calls and we need to expand these calls according to actual 

input length. 
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TABLE II 
COMPARISONS AMONG SQHASH, SQMAC, SQPRF AND THEIR IMPROVED SCHEMES. 

Name II Equation I Performance II Improved Equation Performance 

SqHash MSBk«mIIIV)" (mod N)) O(n") MSBk«mIIIV) *� (mIIIV)) O(n*k) 
SqMAC MSBk«m + K)" (mod N)) O(n") MSBk«m + K) *� (m + K)) O(n*k) 
SqPRF LSB21(MSBd(x + i + 1)2 (mod N))) O(n2) LSB;I((X + i + l) *� (x + i + I)) O(n * (21 + u)) 

Algorithm Convol-MSB(x, n, k) 
Require: x is an input integer, n is the length of x, and k 

is the length of output result. 

s = 0; 

for i = n - k + 1 to n do 
for j = 1 to n do 

r = x[j] ·  x[(i - j) (mod n)] ; 
S = S + r; 

end for 
idx = i - n + k; 
r[idx] = s (mod 2); 
s = (s - r[idx] )j2; 

end for 
Return r; 

Fig. 4. Basic convolution-MSB algorithm. 

Algorithm Convol-MSB-IMP(x, n, k) 
Require: x is an input integer, n is the length of x, and k 

is the length of output result. 

tx = CyclicLeftShift(x, n - k); 
s = 0; 

for i = 1 to k do 
tx = CyclicLeftShift(x, 1); 
t=x *.tx; 
r[i] = sum(t + s ) (mod 2); 
s = (sum(t + s) - r[i] )j2; 

end for 
Return r; 

Fig. 5. Improved convolution-MSB algorithm. 

In Table II, we give a summary of the performance estimate of 

SqHash, SqMAC, and SqPRF compared with corresponding im· 

proved schemes. Obviously, the improved scheme achieves a com· 

putational overhead (O(nk») smaller than the original schemes 

(O(n2»). The ratio between them is about kjn = O(nk)jO(n2). 
This result is benefited from the use of truncated function !vIS B 
or LSB, as well as circular convolution operation. In addition, 

these truncated functions also increase the difficulty of attacks 

against the improved schemes. Moreover, the overhead O( nk) 
means that the scheme is less sensitive than the original scheme 

for data length n. For example, when we want to double the 

length of processed message, the overhead of improved schemes 

will increase by about 100% (from O(nk) to O(2nk»), but those 

of original schemes increase by about 400% (from O(n2) to 

O(4n2»). 

To validate the efficiency of our approach, we implemented 

several algorithms in the Mathematica 7.0 environment. In Fig. 

6, we show a comparison of experimental results among Square, 

convolution-MSB and improved convolution-MSB algorithms. In 

this figure, the total length of N is changed from 512 to 1024-bits 

and the size of output results is about 1/3 of length of N. The com­

putation cost is proportional to INI for the square algorithm and 

the convolution·MSB algorithm and the length of N has a greater 

impact on the Square algorithm. However, the computation cost 
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Fig. 6. Comparison of experimental results among Square, convo lution-
MSB and improved convolution-MSB algorithms. 

is independent to the length of N in the improved convolution­

MSB algorithm. In summary, the experimental results show that 

our improved convolution-MSB method has better performance 

than general square algorithm. 

VIII. CONCLUSIONS 
In this paper, we prompt the idea of constructing various basic 

cryptographic primitives (such as hash, MAC, and PRF) from a 

common core algorithm to simplify the management and improve 

the efficiency of current cryptographic implementation practices 

on mobile devices. For this purpose, we present the design of 

a family of cryptographic primitives based on the common core 

squaring operation. Our design takes advantage of the practical 

construction in ALU hardware, such as parallel processing units 

or algebra operation units, so that the proposed schemes can 

be efficiently realized on resource-constrained mobile devices. 

Moreover, the proposed schemes are provably secure under the 

hidden number problem and hard-core predicate. 

REFERENCES 
[l] A. Shamir, "SQUASH - a new MAC with provable security properties 

for highly constrained devices such as RFID tags," in FSE, 2008. 
[2] M. Etzel, S. Patel, and Z. Ramzan, "Square hash: Fast message 

authenication via optimized universal hash functions," in CRYPTO, 
1999. 

[3] D. Boneh, S. Halevi, and N. Howgrave-Graham, "The modular 
inversion hidden number problem," in ASIA CRYPT, 2001. 

[4] I.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, "Merkle-damgard 
revisited: How to construct a hash function," in CRYPTO, 2005. 

[5] C. Berbain, H. Gilbert, and 1. Patarin, "Quad: A practical stream 
cipher with provable security," in EUROCRYPT, ser. Lecture Notes 
in Computer Science, S. Vaudenay, Ed., vol. 4004. Springer, 2006, 
pp. 109-128. 

[6] K. Ouafi and S. Vaudenay, "Smashing squash-O," in EUROCRYPT, 
2009, pp. 300-312. 

[7] Y. Dubois, P'-A. Fouque, A. Shamir, and 1. Stern, "Practical cryptanal­
ysis of sftash," in CRYPTO, ser. Lecture Notes in Computer Science, 
A. Menezes, Ed., vol. 4622. Springer, 2007, pp. 1-12. 

[8] D. Boneh and R. Venkatesan, "Rounding in lattices and its crypto­
graphic applications," in SODA, M. E. Saks, Ed. ACMlSIAM, 1997, 
pp. 675-681. 

954 


