
Secure Information Sharing Using Role-based Delegation∗

Gail-Joon Ahn and Badrinath Mohan
University of North Carolina at Charlotte

Charlotte, NC, U.S.A.
{gahn,bmohan}@uncc.edu

Abstract

As computing becomes more pervasive, information
sharing occurs in broad, highly dynamic network-based en-
vironments. Such pervasive computing environments pose a
difficult challenge in formally accessing the resources. The
digital information generally represents sensitive and con-
fidential information that organizations must protect and
allow only authorized personnel to access and manipulate
them. As organizations implement information strategies
that call for sharing access to resources in the networked
environment, mechanisms must be provided to protect the
resources from adversaries. In this paper we seek to address
the issue of how to advocate selective information sharing
while minimizing the risks of unauthorized access. We inte-
grate a role-based delegation framework to propose a sys-
tem architecture. We also demonstrate the feasibility of our
framework through a proof-of-concept implementation.

Keywords: Information Sharing, Role-based, Delegation

1. Introduction

Several organizations have transited from their old and
disparate business models based on ink and paper to a new,
consolidated ones based on digital information on the In-
ternet. The Internet is uniquely and strategically positioned
to address the needs of a growing segment of population in
a very cost-effective way. It provides tremendous connec-
tivity and immense information sharing capability which
the organizations can use for their competitive advantage.
However, balancing the competing goals of collaboration
and security is difficult because interaction in collaborative
systems is targeted towards making people, information,
and resources available to all who need it, whereas informa-
tion security seeks to ensure the integrity of these elements
while providing it only to those with proper authorization.

∗This work was supported, in part, by funds provided by National
Science Foundation (NSF-IIS-0242393) and Department of Energy
Early Career Principal Investigator Award (DE-FG02-03ER25565).

Furthermore, as computing becomes more pervasive, infor-
mation sharing occurs in broad, highly dynamic network-
based environments. Such pervasive computing environ-
ments pose a difficult challenge in formally accessing the
resources.

Digital information generally represents sensitive and
confidential information that organizations must protect and
allow only authorized personnel to access and manipulate
them. As organizations implement information strategies
that call for sharing access to resources in the networked
environment, mechanisms must be provided to protect the
resources from adversaries. We seek to address the issue
of how to advocate selective information sharing in perva-
sive computing environments while minimizing the risks
of unauthorized access. We integrate a role-based delega-
tion framework [12] to propose a system architecture. We
also demonstrate the feasibility of our framework through a
proof-of-concept implementation.

The rest of this paper is organized as follows. In section 2
we discuss role-based delegation including details of system
architecture. Section 3 overviews other research and related
technologies. Section 4 describes implementation details.
Section 5 concludes this paper.

2. Role-based Delegation

Ahn et al. [2] recently identified the following issues
in collaborative environments. First, selective information
sharing is necessary. We are dealing with friends, not
enemies, and should provide relevant information expedi-
tiously. Second, the information may be shared across or-
ganizational boundaries. Because sharing a resource across
organizational boundaries often means authorizing a server
to give access to a third party, it implies enabling resource
servers to reason about previously unknown third parties.
This requirement contrasts with many conventional sys-
tems, wherein a server need only reason about the set of
users known inside a given organization. Third, it is impos-
sible to fully predicate what data should be shared, when
and to whom. And another thing is that a mechanism must

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

be provided for revoking the sharing when it is no longer
needed. All these factors have to be considered in order
to formulate the mechanism for information sharing among
collaborating organizations.

In order to deal with the aforementioned issues, our
work, called FRDIS (A Framework of Role-based Delega-
tion for Information Sharing), leverages the existing mod-
els [10, 12]. To illustrate each functional component in our
model, we use the role hierarchy example illustrated in Fig-
ure 1 and Table 1.

To simplify the discussion of delegation, we assume a
user cannot be delegated to a role if the user is already a
member of that role. For example, project leader Deloris
with role PL1 cannot be delegated the role PO1 or PC1 since
he has already been an implicit member of these roles.

2.1. Role Delegation

We first define a new relation called delegation relation
(DLGT). It includes sets of three elements: original user as-
signments UAO, delegated user assignment UAD, and con-
straints. The motivation behind this relation is to address the
relationships among different components involved in a del-
egation. In a user-to-user delegation, there are four compo-
nents: a delegating user, a delegating role, a delegated user,
and a delegated role. For example, (Deloris, PL1, Cathy,
PL1) means Deloris acting in role PL1 delegates role PL1
to Cathy. A delegation relation is one-to-many relation-
ship on user assignments. The delegation relation supports
role hierarchies: a user who is authorized to delegate a role
r can also delegate a role r′ that is junior to r. For example,
(Deloris, PL1, Lewis, PC1) means Deloris acting in role
PL1 delegates a junior role PC1 to Lewis. A delegation
relation is one-to-many relationship on user assignments. It
consists of original user delegation (ODLGT) and delegated
user delegation (DDLGT). Figure 2 illustrates components
and their relations in FRDIS. We assume each delegation
relation may have a duration constraint associated with it.
If the duration is not explicitly specified, we consider the
delegation as permanent unless another user revokes it. The
function Duration returns the assigned duration-restriction
constraint of a delegated user assignment. If there is no as-
signed duration, it returns a maximum value.

Table 1. Role Membership
ROLES DIR PL1 PL2 PO1 PO2

USERS John Deloris Cathy Michael Mark
David Lewis

FRDIS has the following components and theses compo-
nents are formalized from the above discussions.

Director (DIR)

Lead Officer 1
(PL1)

Project 1
(P1)

Project
Collaborator

1 (PC1)

Patrol Officer
(PTO)

Community
Service Officer

(CSO)

Reserve Officer
(RSO)

Police Officer (PLO)

Lead Officer 2
(PL2)

Project 2
(P2)

Project
Collaborator

2 (PC2)

Participant
Officer 1

(PO2)

Reporter
(RE2)

Participant
Officer 1

(PO1)

Reporter
(RE1)

Director (DIR)

Lead Officer 1
(PL1)

Project 1
(P1)

Project
Collaborator

1 (PC1)

Patrol Officer
(PTO)

Community
Service Officer

(CSO)

Reserve Officer
(RSO)

Police Officer (PLO)Police Officer (PLO)

Lead Officer 2
(PL2)

Project 2
(P2)

Project
Collaborator

2 (PC2)

Participant
Officer 1

(PO2)

Reporter
(RE2)

Participant
Officer 1

(PO2)

Reporter
(RE2)

Participant
Officer 1

(PO1)

Reporter
(RE1)

Figure 1. Role Hierarchy and Membership

UAO

ODLGT

DDLGT

DLGT

UAD

CONSTRAINTS

Figure 2. Delegation Relation

• T is a set of duration-restricted constraint.

• DLGT ⊆ UA × UA is one to many delegation relation.
A delegation relation can be represented by (u, r, u′,
r′) ∈ DLGT, which means the delegating user u with
role r delegated role r′ to user u′.

• ODLGT ⊆ UAO × UAD is an original user delegation
relation.

• DDLGT ⊆ UAD × UAD is a delegated user delegation
relation.

• DLGT = ODLGT ∪ DDLGT.

In some cases, we may need to define whether or not each
delegation can be further delegated and for how many times,
or up to the maximum delegation depth. We introduce two
types of delegation: single-step delegation and multi-step
delegation. Single-step delegation does not allow the del-
egated role to be further delegated; multi-step delegation
allows multiple delegations until it reaches the maximum
delegation depth. The maximum delegation depth is a natu-
ral number defined to impose restriction on the delegation.
Single-step delegation is a special case of multi-step dele-
gation with maximum delegation depth equal to one.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

Also, we have an additional concept, delegation path
(DP) that is an ordered list of user assignment relations gen-
erated through multi-step delegation. A delegation path al-
ways starts from an original user assignment. We use the
following notation to represent a delegation path.

uao0 → uad1 → uadi → uadn

Delegation paths starting with the same original user as-
signment can further construct a delegation tree. A delega-
tion tree (DT) expresses the delegation paths in a hierarchi-
cal structure. Each node in the tree refers to a user assign-
ment and each edge to a delegation relation. The layer of
a user assignment in the tree is referred as the delegation
depth. The function Prior maps one delegated user assign-
ment to the delegating user assignment; function Path re-
turns the path of a delegated user assignment; and function
Depth returns the depth of the delegation path.

Constraints are an important aspect of RBAC and can
lay out higher-level organizational policies. In theory, the
effects of constraints can be achieved by establishing pro-
cedures and sedulous actions of security administrators. In
FRDIS, the constraints are enforced by a set of integrity
rules that provide management and regulators with the con-
fidence that critical security policies are uniformly and con-
sistently enforced. In the framework, when a user delegates
a role, all context constraints that are assigned to the user
and anchored to the delegated role are delegated as well.

2.2. Role Revocation

Several different semantics are possible for user revo-
cation. Hagstrom and others [8] categorized revocations
into three dimensions in the context of owner-based ap-
proach : global and local (propagation), strong and weak
(dominance), and deletion or negative (resilience). Barka
and Sandhu [3] further identified user grant-dependent and
grant-independent revocation (grant-dependency) . Since
negative authorization is not considered in FRDIS, we
articulate user revocation in the following dimensions:
grant-dependency, propagation, and dominance. Grant-
dependency refers to the legitimacy of a user who can re-
voke a delegated role. Grant-dependent revocation means
only the delegating user can revoke the delegated user from
the delegated role membership. Grant-independent revoca-
tion means any original user of the delegating role can re-
voke the user from the delegated role. Dominance refers to
the effect of a revocation on implicit/explicit role member-
ships of a user. A strong revocation of a user from a role
requires that the user be removed not only from the explicit
membership but also from the implicit memberships of the
delegated role. A weak revocation only removes the user
from the delegated role (explicit membership) and leaves
other roles intact. Strong revocation is theoretically equiva-
lent to a series of weak revocations. To perform strong revo-

cation, the implied weak revocations are authorized based
on revocation policies. However, a strong revocation may
have no effect if any upward weak revocation in the role
hierarchy fails. Propagation refers to the extent of the re-
vocation to other delegated users. A cascading revocation
directly revokes a delegated user assignment in a delega-
tion relation and also indirectly revokes a set of subsequent
propagated user assignments. A non-cascading revocation
only revokes a delegated user assignment.

Our preliminary study shows grant-dependent revocation
for brevity. Suppose the revocation in Figure 3 is weak
non-cascading, for John to revoke Cathy from role PL1, it
is important to note that only Cathy’s membership of role
PL1 is changed; other role memberships of Cathy and all
the delegated user assignments propagated by Cathy are
still valid. If the revoked node is not a leaf node, non-
cascading revocation may leave a ”hole” in the delegation
tree. A solution might be the revoking user takes over
the delegating user’s responsibility. In this example, John
takes over the delegating user’s responsibility from Cathy,
and changes all delegation relations: (Cathy, PL1, u, r) ∈
DLGT to (John, DIR, u, r) ∈ DLGT. In this case, John
takes over Cathy’s delegating responsibility for Mark and
Lewis.

2.3. Rule-Based Policy Specification Language

FRDIS defines policies that allow regular users to del-
egate their roles. It also specifies the policies regarding
which delegated roles can be revoked. A rule-based lan-
guage is adopted to specify and enforce these policies. It is
a declarative language in which binds logic with rules. The
advantage is that it is entirely declarative so it is easier for
security administrator to define policies.

A rule takes the form:
H ← F1&F2& . . . &Fn
where H, F1, F2,. . . , Fn are Boolean functions.
There are three sets of rules in the framework: basic au-

thorization rules specify organizational delegation and revo-
cation policies; authorization derivation rules enforce these
policies in collaborative information systems; and integrity
rules specify and enforce role-based constraints.

For example, a user-user delegation authorization rule
forms as follows:

can delegate(r, cr, n) ← .
where r, cr, and n are elements of roles, prerequisite condi-
tions, and maximum delegation depths respectively.

This is the basic user-to-user delegation authorization
rule. It means that a member of the role r (or a member of
any role that is senior to r) can assign a user whose current
membership satisfies prerequisite condition cr to role r (or
a role that is junior to r) without exceeding the maximum
delegation depth n.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

Mark, PC1 Lewis, PC1 Mark, PC1

David, PC2

John, DIR

Cathy, PL1Cathy, DIR

John, DIR

Cathy, DIR David, PC2

Lewis, PC1

Cathy, PL1

WNDR

Figure 3. Weak Non-cascading Revocation

A user delegation request is further authorized by the
user-user delegation authorization derivation rule that
takes the form:

der can delegate(u, r, u′, r′, dlg opt) ←
can delegate(r′′, cr, n)&
active(u, r, s)&
delegatable(u, r)&
senior(r, r′′)&
in(u′, cr)&
junior(r′, r′′)&
in(depth(u, r), n).

where u and u′ are elements of users; r, r′, and r′′ are
elements of roles; cr and s are elements of prerequisite con-
dition and sessions respectively; dlg opt is a Boolean term,
if it is true, then further delegation is allowed. This argu-
ment is used as Boolean control of delegation propagation.

This rule means that a user u with a membership of a role
r senior to r′′ activated in session s can delegate a user u′

whose current role membership satisfies prerequisite condi-
tion cr to role r′ (r′ is junior to role r′′) without exceeding
the maximum delegation depth n. Similar rules are also de-
fined for role-based revocations and are applied to specify
constraints.

2.4. Architectural Framework

Our system is designed to provide access control and
delegation in collaborative environments. We use the term
Hive to describe its system architecture. In a bee hive, hon-
eybees collect nectar and pollen and store them for other
bees to use to make honey; in the Hive, any legitimate users
can access resources at anytime and anywhere. To do so,
access control services should be provided to users who
have access privileges that can be originally assigned by
a security officer or can be delegated by other legitimate
user(s). The notions described in Hive are designed to be
utilized within an administrative-directed delegation man-
agement architecture. An overview of the preliminary ar-
chitecture is shown in Figure 4. It consists of a number
of services and management agents together with the ob-
jects to be managed. The enforcement agents are based on a
combination of roles and rules for specifying and interpret-
ing policies. Since delegation and revocation services are

only part of a security infrastructure, we choose a modular
approach to our architecture that allows the delegation and
revocation services to work with current and future authen-
tication and access control services. The modularity enables
future enhancements of our approach. The role service is
provided by a role server, which is an implementation of
the RBAC and Hive components. A role server maintains
RBAC database and provides user credentials, role mem-
berships, associated permissions, and delegation relations
of the system. The rule service is provided by a rule server,
which manages delegation and revocation rules. These rules
are always associated with a role, which specifies the role
that can be delegated. They are implemented as authoriza-
tion policies that authorize requests from users. The delega-
tion agent is an administrative infrastructure, which autho-
rizes delegation and revocation requests from users by ap-
plying derivation authorization rules and processes delega-
tion and revocation transactions on behalf of users. The im-
plementation requirements related to the delegation frame-
work are not only a delegation agent, but also authentication
and access control agents. The authentication agent is used
to authenticate users during their initial sign-on and supply
them with an initial set of credentials. The reference mon-
itor makes access control decisions based on information
supplied by the access control agent. In large role-based
system, there may be tens or hundreds of delegation and re-
vocation rules. The rule editor is developed to simplify the
management of these rules. As a portion of an integrated
RBAC administration platform to manage various RBAC
and Hive components, the rule editor is used to view, cre-
ate, edit, and delete delegation and revocation rules.

Rule Service

Security
Officer

Role Service

Attribute
Certificate

Server

AC Storage

Role Database

Cert.

Rule Editor
(PMI Attribute

Authority)

Applications/
Resources

Delegation
Agent

Access Control
Agent

Authentication
Agent

Reference
Monitor

Access
Decision

Access/
delegation
Request

Access

Hive

Tablet
PCs

Wearable
computers

PDAs

Wireless/wired
connectivity

Figure 4. FRDIS Architecture: Hive

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

3. Related Works

Pervasive computing enables users to access services and
information at anytime and anywhere. Under such comput-
ing environments, the information sharing tends to be very
dynamic and often ad hoc. Hence, the traditional manage-
ment approach is not appropriate to such environments be-
cause the workload on a security officer (or a small group
of security officers) will be overwhelming. Since the very
goal of our research is to enable users to access and selec-
tively share resources in distributed systems, we assume
that users can be trusted to exercise their discretions on
resources: if Alice explicitly shares a resource with Bob,
she trusts Bob to use the resource. We also consider en-
hancing the scalability of information sharing. Some of the
projects that address this issue are UC Baltimore’s eBiq-
uity [9], UC Berkely’s Ninja project [7], Stanford’s In-
teractive Workspace Project [5], and Matt Blaze’s Policy-
Maker [4] with the notion of Role-Based Access Control
(RBAC). We have found that delegation is one of promis-
ing approaches to rectify the above-mentioned issue. There
are many definitions and different types of delegation in the
literature [1, 6]. In general, it is referred to as the process
whereby one active entity in a system authorizes another
entity to act on behalf of the former by transferring a set of
rights. Through delegation, individual user is trusted and
empowered to share resources to which they have access.

3.1. Privilege Management Infrastructure

PMI is based on the ITU-T Recommendation of direc-
tory systems specification, which introduced PKI in its ear-
lier version. Public-key certificates are used in PKI while
attribute certificates are a central notion of PMI. Public-key
certificates are signed and issued by certification authority
(CA), while attribute certificates are signed and issued by
attribute authority (AA). PMI is to develop an infrastructure
for access control management based on attribute certificate
framework [11]. Attribute certificates bind attributes to an
entity. The types of attributes that can be bound are role,
group, clearance, audit identity, and so on. Attribute cer-
tificates have a separate structure from that of public key
certificates.

PMI consists of four models: general model, control
model, delegation model, and roles model. General and
control models are required, whereas roles and delegation
models are optional. The general model provides the ba-
sic entities which recur in other models. It consists of three
foundation entities: the object, the privilege asserter, and
the privilege verifier. The control model explains how ac-
cess control is managed when privilege asserters request
services on object. When the privilege asserter requests
services by presenting his/her privileges, the privilege ver-

ifier makes access control decisions based upon the privi-
lege presented, privilege policies, environmental variables,
and object methods. The delegation model handles a situ-
ation when privilege delegation is necessary. It introduces
two additional components: source of authority (SOA) and
other attribute authorities (AAs). When delegation is used,
SOA assigns privilege to AAs, and AAs delegate privileges
to an end-entity privilege asserter. Lastly, PMI roles model
also introduces two additional components: role assignment
and role specification. Role assignment is to associate privi-
lege asserters with roles, and its binding information is con-
tained in attribute certificate called role assignment attribute
certificate. The latter is to associate roles with privileges,
and it can be contained in attribute certificate called role
specification attribute certificate or locally configured at a
privilege verifier’s system.

4 Implementation Details

Our implementation leverages Hive features and X.509
attribute certificate. We attempt to implement the proof-
of-concept prototype implementation of Hive on privilege
management infrastructure (PMI). PMI provides certificate-
based authorization with attribute certificates while public-
key infrastructure (PKI) does certificate-based authentica-
tion with public-key certificates, so called identity certifi-
cates.

Three components are identified for managing attribute
certificates: privilege asserter, privilege verifier, and PMI
attribute authority. Two different attribute certificates are
employed: role assignment attribute certificate (RAAC) for
assigning roles to a user and role specification attribute cer-
tificate (RSAC) to assign specific permissions to a role. Our
implementation is divided into two components. The first
component is to build APIs for both a role-based decision
making engine and attribute certificates. Those APIs are
the core building blocks for constructing an access control
policy server and an attribute certificate server. The sec-
ond component is to implement each entity integrating with
APIs. Some of PMI modules in [11] were utilized to con-
struct the above-mentioned components.

We also developed an application working as an access
control policy server. This application has been developed
in C++. An engine for making access control decisions is a
major component in this application. After receiving a valid
RAAC and requested objects (with operation type) from the
server, the engine extracts permissions from the RSAC and
checks if the requested object (with operation type) is in the
list of permissions. The programming library, called RBAC
API, was developed to facilitate such procedures.

The current work is focused on the multimedia informa-
tion sharing between a server in Hive and handheld devices.
A user of a handheld device can communicate directly with

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

the server and also send commands to the server applica-
tion. The communication channel has been supported by
Microsoft Windows Sockets (WinSock). The management
of multimedia information is handled by Microsoft Win-
dows Media Control Interface (MCI). We also used a library
such as Victor Image processing library for the conversion
between BMP files to JPEG files. In order to enhance the
performance, our application is capable of zipping files in
both the server and handheld devices developed by Visual
Studio 6.0 (VC++ version 6.0) and Embedded Visual Tools
3.0 (EVC++ 3.0), respectively.

To support the above-mentioned features, our implemen-
tation consists of following modules:

• Communication channel establishment: The commu-
nication link is established through the socket connec-
tion. It includes creation and listen modes.

• Controlling messages and commands: Both parties
need to exchange messages and a client needs to send
commands to a server.

• Information sharing between both parties: Once the
communication is set up both parties are ready to share
information.

5. Conclusion

Sharing information and resources in collaborative envi-
ronments entails addressing several requirements not raised
by traditional single-user environments in part due to the
unpredictability of users and the unexpected manners in
which users and applications interact in collaborative ses-
sions. In this paper, we have discussed issues of informa-
tion sharing introducing an architecture, Hive. We also at-
tempted to utilize an existing delegation framework and at-
tribute certificates in PMI. In addition, we demonstrated the
feasibility of our architecture through a proof-of-concept
implementation. Currently we are investigating how this
technology can be applied to K-12 education environment
supporting some of features.

References

[1] M. Abadi, M. Burrows, B. Lampson and G. Plotkin.
A calculus for Access Control in Distributed Systems.
ACM Transaction on Programming Languages and
Systems, Vol.15 No. 4, Sept 1993, pages 706-734.

[2] Gail-J. Ahn, Longhua Zhang, Dongwan Shin and Bill
Chu. Authorization Management for Role-based Col-
laboration. In IEEE International Conference on Sys-
tem, Man and Cybernetic (SMC2003), pages 4128-
4214, Washington, DC, October 2003.

[3] E. Barka and R. Sandhu. Framework for role-based del-
egation model. In Proceedings of 23rd National Infor-
mation Systems Security Conference, pages 101–114,
Baltimore, MD, October 16-19 2000.

[4] M. Blaze, J.Feigenbaum, and J.Lacy. Decentralized
trust management. In Proceedings 1996 IEEE Sym-
posium on Security and Privacy, pages 164–173, May
1996, 1996.

[5] G. Candea and A. Fox. Using Dynamic Mediation to In-
tegrate COTS Entities in a Ubiquitous Computing En-
vironment. In Proc. Second International Symposium
on Handheld and Ubiquitous Computing, 2000.

[6] M. Gasser and E. McDermott. An Architecture for
Practical Delegation a Distributed System. In Pro-
ceedings of IEEE Computer Society Symposium on Re-
search in Security and Privacy, Oakland, CA, May 7-
9,1990.

[7] S. D. Gribble et al. The Ninja architecture for robust
Internet-scale systems and services. Computer Net-
works, 2001.

[8] A. Hagstrom, S. Jajodia, F. P. Presicce, and D. Wije-
sekera. Revocations - a classification. In Proc. 14th
IEEE Computer Security Foundations Workshop, pages
44–58, Nova Scotia, Canada, June 2001.

[9] L. Kagal, T. Finin, and A. Joshi. Trust-based Security in
Pervasive Computing Environments. IEEE Computer,
pages 2-5, December 2001.

[10] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, February 1996.

[11] D. Shin, Gail-J. Ahn, and S. Cho. Role-based EAM
Using X.509 Attribute Certificate. In Proceedings of
Sixteenth Annual IFIP WG 11.3 Working Conference on
Data and Application Security, King’s College, Univer-
sity of Cambridge, UK July 29-31, 2002.

[12] L. Zhang, Gail-J. Ahn and B. Chu. A Rule-Based
Framework for Role-Based Delegation and Revocation.
ACM Transactions on Information and System Security,
Vol.6, No.3, August 2003.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

