
SmokeBomb: Effective Mitigation Against Cache Side-channel
Attacks on the ARM Architecture

Haehyun Cho1, Jinbum Park3, Donguk Kim3, Ziming Zhao2,
Yan Shoshitaishvili1, Adam Doupé1, Gail-Joon Ahn1,3

1Arizona State University 2Rochester Institute of Technology 3Samsung Research
{haehyun, yans, doupe, gahn}@asu.edu, zhao@mail.rit.edu, {jinb.park, donguk14.kim}@samsung.com

ABSTRACT

Cache side-channel attacks abuse microarchitectural designs meant
to optimize memory access to infer information about victim pro-
cesses, threatening data privacy and security. Recently, the ARM
architecture has come into the spotlight of cache side-channel at-
tacks with its unprecedented growth in the market.

We propose SmokeBomb, a novel cache side-channel mitigation
method that functions by explicitly ensuring a private space for
each process to safely access sensitive data. The heart of the idea
is to use the L1 cache of the CPU core as a private space by which
SmokeBomb can give consistent results against cache attacks on the
sensitive data, and thus, an attacker cannot distinguish specific data
used by the victim. Our experimental results show that SmokeBomb
can effectively prevent currently formalized cache attack methods.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures; Mobile platform security.
ACM Reference Format:

Haehyun Cho, Jinbum Park, Donguk Kim, Ziming Zhao, Yan Shoshitaishvili,
Adam Doupeé, Gail-Joon Ahn. 2020. SmokeBomb: Effective Mitigation
Against Cache Side-channel Attacks on the ARM Architecture. In The 18th

Annual International Conference on Mobile Systems, Applications, and Services

(MobiSys ’20), June 15–19, 2020, Toronto, ON, Canada. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3386901.3388888

1 INTRODUCTION

Cache side-channel attacks exploit time differences between a cache
hit and a cache miss to infer sensitive data [51]. These attacks
are very effective in stealing cryptographic keys (e.g., the secret
keys used in AES) from victim programs and even other virtual
machines, in tracing the execution of programs, and in performing
other malicious actions [5, 25, 46, 49, 52, 55, 59, 60, 63–65].

The bulk of research into cache attacks was started on, and has
continued on, the Intel architecture. However, as mobile devices
(e.g., smartphones and watches) experience unprecedented growth,
the mitigation of cache attacks on non-Intel architectures has dras-
tically risen in importance. Thus, our community needs a defense

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7954-0/20/06. . . $15.00
https://doi.org/10.1145/3386901.3388888

against cache side-channel attacks that can protect against both
shared cache (L2) attacks and dedicated cache (L1) attacks, and
can do so regardless of the specific architecture in question. While
cache attacks are, generally, more difficult to carry out on the ARM
architecture, new techniques have been developed to make them
more effective on mobile platforms [31, 46, 61, 62].

The fundamental causes of cache side-channel attacks are two-
fold: (1) a cache is a hardware resource shared by multiple pro-
cesses; and (2) there is a noticeable difference in access time be-
tween a cache hit and a cache miss. Therefore, to fundamentally
solve this problem, a new architecture or cache design is needed.
Such hardware-based approaches can provide strong security fea-
tures against cache attacks with relatively small performance over-
head [28, 43, 45, 48, 57]. Hardware-based solutions, however, require
considerable cost and time to be deployed in a practical manner,
and no such concerted effort has yet been undertaken. Thus, current
systems remain vulnerable to current cache attacks, and even if a
hardware solution is undertaken, legacy devices will not be secured.

However, software-based approaches are relatively cheap and
easily deployable: we can deploy them quickly and broadly through
software patches. Therefore, understandably, many software solu-
tions have been proposed to mitigate cache attacks [34, 41, 44, 47,
66, 67]. Some techniques target the protection of the shared CPU
cache (i.e., L2 cache in the ARM architecture), meaning that they fail
to protect programs from emergent attacks against the dedicated
core cache (i.e., L1 cache) [31, 41, 44, 46, 47, 61, 66, 67]. Crane et
al. [26] reduce, but does not eliminate, side-channel information
leakage by randomizing the program’s control flow. Other tech-
niques, including recent work targeting the protection of L1 cache,
use specific hardware features available only on certain Intel pro-

cessors and have uncertain efficacy under heavy system load [34].
In analyzing these techniques, we realized that most current cache
side-channel protection mechanisms attempt to mitigate attacks
by implicitly creating a private space—not shared with any other
process—in which constant-time (and thus, side-channel-immune)
access to sensitive data is assured.

In this paper, we propose SmokeBomb, a software cache side-
channel mitigation method for commonly-used CPU cache config-
uration, that explicitly ensures a private space for each process to
safely access critical data—the actual L1 cache of the CPU core on
which the process is executing. SmokeBomb reserves the L1 cache
for a sensitive operation’s exclusive use and denies attackers the

ability to find timing differences between used and unused sensitive

data. Without access to measurable time differences, attackers are
unable to carry out cache-based side-channel attacks.

1

https://doi.org/10.1145/3386901.3388888
https://doi.org/10.1145/3386901.3388888

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Cho, et al.

SmokeBomb employs additional OS-level functionality (unin-
vasively implemented as a kernel module), which has zero per-
formance impact when there is no sensitive data to protect, and
negligible impact on the rest of the system. While SmokeBomb
requires a recompilation of the sensitive code that needs to be pro-
tected, it assists developers in adopting the protection as a compiler
extension, requiring developers to only annotate the sensitive data.

We demonstrate the effectiveness of SmokeBomb by applying
it to two different ARM processors with different instruction set
versions and cache models and carry out an in-depth evaluation
of the efficiency of the protection. Our experimental results show
that SmokeBomb effectively prevents information leakage against
known cache side-channel attacks. To our knowledge, SmokeBomb
is the first cache side-channel defense that functions on the ARM
architecture and covers both the L1 and L2 cache layers. The con-
tributions of this paper are, thus, as follows:
(1) We propose a novel software-based approach to protect against

cache side-channel attacks for inclusive and non-inclusive caches
based on the creation of a private space in the L1 cache.

(2) We implement SmokeBomb using the LLVM compiler infras-
tructure and a kernel module that enables its application tomost
ARM Cortex-A processors. We open source the prototype.1

(3) We show how SmokeBomb provides robust protection against
cache side-channel attacks, andwe demonstrate its effectiveness
and efficiency by evaluating it on devices.

2 ARM CACHE ARCHITECTURE

A cache is low-capacity low-latency memory located between a
CPU and main memory. Because access to the cache is significantly
faster than to main memory, the presence of caches dramatically
improves the runtime performance of a system. Modern processors
usually have two or more levels of hierarchical cache structure. In
the ARM architecture, each core has its own “L1” data and instruc-
tion cache. In addition, all of the cores share a larger, unified “L2”
cache. When the CPU needs data from a specific memory address,
and that data is not in a cache (this is termed a cache miss), a cache
linefill occurs. Otherwise, the CPU loads the data from its own L1
cache, its own L2 cache, or even the L1 cache of other CPUs using
the directory protocol [41].
Set Associativity and Cache Addressing. Operations between
a cache and main memory are done in chunks of a fixed size, called
a cache line, for improved performance. A data memory address is
divided into three parts: tag, index, and offset. The index determines
in which cache set the data should be stored. The tag contains the
most significant bits of an address, which is stored in the cache
along with the data so that the data can be identified by its address
in main memory.

A set-associative cache is divided into several sets that consist
of the same number of cache lines. The cache is called an N-way

associative cache if a set has N cache lines, or ways. The data at a
specific main memory address can be fetched into any cache line
(way) of a particular set. In the ARM architecture, caches are always
set-associative for efficiency reasons [12].

1https://github.com/samsung/smoke-bomb

Either virtual or physical addresses can be used for the tag and
index. In ARMCPUs, the L1 data cache is indexed using the physical
address whereas the L1 instruction cache is indexed with the virtual
address [10, 13]. The L2 cache is usually physically-indexed.
Replacement policy. While the Intel architecture employs the
least-recently-used (LRU) replacement policy [32], the ARM archi-
tecture generally uses a pseudo-random replacement policy [12].
However, some Cortex-A processors support other cache replace-
ment policies, such as LRU policy and round-robin policy, which
can be chosen by the system developer [8, 17, 20, 21].
Inclusiveness. A cache architecture can be categorized based on
whether or not a higher-level cache continues to hold data loaded
into a lower-level cache. In inclusive caches, cache lines of the
L2 cache will not be evicted by new data as long as the data is
stored in the L1 cache, which is called AutoLock in prior work [31].
In non-inclusive caches, a line in L2 cache can be evicted to make
space for new data even if the line is present in L1 cache. In exclusive
caches, there is only one copy of data in the whole cache hierarchy—
that is, when a line is loaded into L1, it is flushed from L2. Most
ARM processors employ a non-inclusive cache [46].

By reviewing the technical reference manuals of the Cortex-A
series [6–9, 11, 14–18, 20–23] and performing experiments on our
test environments shown in Table 1, we confirmed the inclusiveness
of the following Cortex-A CPUs: (1) only A55 is exclusive;2 (2) A15,
A57, and A72 are inclusive;3 and (3) A53 is non-inclusive.4 Judging
from the manuals, the other CPUs also would use the non-inclusive
cache as the Cortex-A53.

3 CACHE SIDE-CHANNEL ATTACKS

Cache side-channel attacks are possible because (1) the cache is a
shared resource by multiple processes and (2) there is a noticeable
difference in access time between a cache hit and a cache miss. The
specific techniques to attack the cache differs based on the attacker’s
capabilities in three main areas: whether or not the attacker can
reliably control the scheduling of the attack process relative to
the victim process, the level of the CPU cache that the attack is
targeting, and whether or not the attacker process shares memory
with the victim process.
Cache Attack Terminology. In cache side-channel attacks, the
attacker uses side-channel information, such as access time, to
infer which data has been accessed by the victim. Throughout the
paper, we use the term sensitive data to denote data that is secret or
could be used to infer secrets. For instance, the T-tables of the AES
algorithm are sensitive data because the access pattern of T-tables
can be used to infer the secret key. Because only a (key-dependent)
subset of T-table entries are actually used during encryption, not
all of the entries will be put into the cache during an encryption
operation. We call the subset of sensitive data that is actually put
into the cache during execution key data. Thus, the attacker’s goal
is to use a cache side-channel attack to infer which sensitive data
is key data. In addition, we refer to the code that uses sensitive

2 The Cortex-A55 technical reference manual states that “L2: Strictly exclusive with
L1-D caches [22].” Also, the Cortex-A55 uses the private per-core unified L2 cache [22].
3 The Cortex-A15, 57, 72 technical reference manuals state that “L2: Strictly enforced
inclusion property with L1-D caches [8, 16, 17].”
4 The Cortex-A53 technical reference manual and the other ones do not state the
inclusiveness of the L2 cache [6, 7, 9, 11, 14, 15, 18, 20, 21, 23].

2

https://github.com/samsung/smoke-bomb

SmokeBomb: Effective Mitigation Against Cache Side-channel Attacks on the ARM Architecture MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Table 1: Test Environments.

CPU (# of cores) Instruction Set L1-D Cache L2 Cache Inclusiveness Cache Replacement Policy Kernel

Cortex-A72 (4) ARMv7 32-bit 32 KB, 2-way, 256 sets 2 MB, 16-way, 2048 sets Inclusive Least-recently-used Linux Kernel 4.1.10
Cortex-A53 (4) ARMv8 64-bit 32 KB, 4-way, 128 sets 512 KB, 16-way, 512 sets Non-inclusive Psuedo-random Linux Kernel 4.6.3

data as sensitive code. For example, the implementation of the AES
algorithm would be sensitive code.
Attacker Memory Access. Shared memory increases memory ef-
ficiency of the system by allowing one copy of the memory contents
to be shared by many processes. In addition, this feature enables
the system to deploy the cache efficiently. For example, the cache
addressing scheme described in § 2 ensures that if one process has
loaded data of a shared library, other processes using the same
library are able to get the data from the cache quickly [12]. Unfor-
tunately, this feature makes shared libraries inherently vulnerable

to cache side-channel attacks by allowing an attacker to measure
the loading time of sensitive data in shared memory.
Attack Scheduling. Cache attacks generally include a setup phase
and a measurement phase carried out by the attacker process. Con-
trol over the timing of these phases in relation to the execution of
sensitive code by a victim process sorts these attacks into two cate-
gories: synchronous and asynchronous attacks [54]. Synchronous
attacks are possible when the attacker is able to schedule the victim
process’s sensitive code between the setup and measurement phase.
By doing so, the attacker can significantly reduce measurement
noise and increase the accuracy of the attack. In an asynchronous

attack, however, the attacker tries to leak information by relying on
the expected execution time of the victim process without control
over its execution. The accuracy of such attacks, thus, is much lower
than that of synchronous ones.
Attacks on Different Cache Levels. Attackers can target differ-
ent levels of the CPU cache, depending on the specific circum-
stances of the attack. Traditional techniques targeted the L2 cache,
which is shared by multiple cores in a CPU [44, 47, 66, 67]. Thus,
side-channel attacks against the L2 cache can be carried out both
synchronously and asynchronously.

To attack the L1 cache, attackers have mostly been confined to
synchronous, same-core attacks, as this reduces the L1 cache to a
shared space between the attacker and victim processes. Recently,
however, Irazoqui et al. [41] demonstrated an attack that uses a
feature that allows the exchange of cached data between L1 caches
(i.e., directory protocol). These techniques allow attackers to target
the L1 cache even on multi-core systems, and they represent a
challenge that SmokeBomb must overcome. The ARM architecture
calls this feature the AMBA Coherent Interconnect [19].

3.1 Attack Methods

Evict+Time. This attack method can determine which cache sets
have been used by the victim process [30, 46]. In the first step, the
attacker measures the execution time of the victim process. Then,
the attacker evicts a target cache set and measures the execution
time of the victim program again. From the difference in the execu-
tion time, the attacker can figure out the cache set and, thus, the
memory that it represents has been used by the victim program.

Prime+Probe. This attack is also used to determine specific cache
sets accessed by the victim. It has been studied and implemented
in various environments [24, 36, 38–40, 46, 49, 53, 61, 64].

In the Prime phase, the attacker occupies a certain range of cache
sets by loading their own data. After the victim process has been
scheduled, the attacker probes which cache sets are used by the
victim. Because the ARM architecture uses a set-associative cache,
a set consists of several ways. For example, the L2 cache of the
Cortex-A53 has 16 ways. Thus, the attacker decides a set has been
used if one of the ways was refilled by other data, which might not
be loaded by the victim. The pseudo-random cache replacement
policy of the ARM architecture makes the Prime+Probe attack
much more difficult [46].
Flush+Reload and Evict+Reload. These attacks operate by mea-
suring the data reload time of the cache, which are available only
when the attacker shares memory with the victim process [37, 41,
60, 62]. The attacker must map a target shared object into its ad-
dress space. Then, the attacker flushes/evicts a cache line within
the shared area. In the Reload phase, attackers reload previously
flushed/evicted data after waiting for the victim to access the shared
object and checks the time it takes to reload. Based on this reloading
time, attackers can infer if the victim accessed the data.

Commonly, attacks can check whether specific data is in the
cache after the execution of the victim process. These attacks are
more accurate and easier to conduct than the Prime+Probe and
Evict+Time attacks. Also, the simplicity of these methods makes
asynchronous attacks possible. The only difference is in the way
for flushing the data from the cache before the victim has been
scheduled. If the flush instruction is available, the attacker could
flush data using the virtual address. Otherwise, the attacker needs
to evict the data by loading other data [35, 46].
Flush+Flush. This attack utilizes the timing difference of the flush
instruction [33, 46]. The execution time of the flush instruction
is different depending on whether data is cached or not. If data
is cached, the flush instruction takes more time to execute. The
first phase is identical to the Flush+Reload attack. In the last step,
however, the attacker flushes the data once again to check whether
the data has been accessed by the victim.

3.2 Our Threat Model

In this paper, we consider multi-core computing environments that
use the inclusive and the non-inclusive caches on the ARM archi-
tecture, in which processes, including malicious ones, use shared
libraries, such as OpenSSL. The attacker can use all of the cache
side-channel attacks mentioned in § 3.1 to extract secret informa-
tion including cryptographic keys. We do not consider recently
proposed Prime+Abort, because the ARM architecture currently
does not support transactional memory, and therefore the attack is
not available [27]. In addition, we assume the worst case scenario
in which attackers can use the flush instruction on ARMv8 CPUs,

3

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Cho, et al.

even though the ARMv8 architecture restricts userland applica-
tions from executing the flush instruction by default. Assuming this
worst-case attack model allows us to develop as strong a defense
as possible, which we present in the rest of the paper.

Throughout this paper, we discuss and perform experiments on
two environments as listed in Table 1.

4 OVERVIEW

We present, implement, and evaluate SmokeBomb—a cache side-
channel mitigation method that prevents attacks on every cache
level mentioned in § 3, especially for inclusive and non-inclusive
caches. With SmokeBomb, an attacker attempting to measure data
access times of sensitive data will be met with consistent timing
results for all sensitive data, and will thus be unable to infer which

sensitive data is actually used. To this end, we design SmokeBomb
to achieve particular defensive goals:
(D1) It defends against cross-core L2 data cache attacks.
(D2) It defends against directory protocol based cross-core L1 data

cache attacks.
(D3) It defends against single-core L1 data cache attacks.
To accomplish these goals, SmokeBomb first instruments applica-
tions (during compilation time) to find and patch any sensitive
code (§ 5), which puts the sensitive data involved under Smoke-
Bomb’s protection (where the developer annotates the sensitive
data in the source code). Then, SmokeBomb carries out three steps,
at different points before, during, and after the execution of the
patched sensitive code. Figure 1 depicts the effect of SmokeBomb in
terms of the amount of data loaded in the cache, and we reference
it through the following description.
Preloading Sensitive Data (§ 6): Before executing the sensitive
code (at time-point t1 in Figure 1), SmokeBomb preloads the sen-
sitive data into the L1 cache. By preloading the sensitive data,
SmokeBomb prevents the attacker from identifying which spe-
cific cache sets have been used by the victim (e.g., Prime+Probe).

Preserving Sensitive Data (§ 7): SmokeBomb ensures that the
preloaded data exists in the private L1 cache throughout the sensi-
tive code’s execution (t1∼t2 in Figure 1). In a non-inclusive cache,
the preloaded data will be maintained only in the L1 cache. In an
inclusive cache, the preloaded data will be maintained in the L1
and the L2 cache. Thus, an asynchronous attacker from another
core cannot infer any information regarding the key data.

Flushing Sensitive Data (§ 8): At the termination of the sensi-
tive code (t2 in Figure 1), SmokeBomb flushes all data from the
cache so that no information on what data was used is revealed
to an attacker (between time points t2 and t3).

Without SmokeBomb, as the sensitive code executes from t1 to t2,
the amount of key data in the cache increases gradually. At t2, all
the key data may have been fetched into the cache and will stay
there until being replaced gradually as shown from t2 to t3. Thus,
attackers can infer which sensitive data is the key data from t1 to
t3. With SmokeBomb, however, entire or only a certain amount
of sensitive data is fetched into the cache when sensitive code
starts execution at t1 and flushed when sensitive code exits at t2.
Consequently, SmokeBomb will cause consistent timing results for
all sensitive data. We note that SmokeBomb is not able to defend
instruction cache attacks, which will be discussed in § 10.

 With SmokeBomb
 Without SmokeBomb

Time

of L1 cache lines holding the sensitive data

t1 t2

Flush Preload

0

Amount of the key data

Amount of preloaded
sensitive data

t3

Figure 1: The difference in cache usage with and without

SmokeBomb. The x-axis denotes the time of code execution

and the y-axis represents the number of cache lines holding

sensitive data. Any observable changes on the y access rep-

resent a potential cache side-channel attack vector.

Instructions Used. SmokeBomb uses the data prefetcher by call-
ing preloading data (PLD) instruction to preload the sensitive data.
We have confirmed that all the Cortex-A processors support PLD in-
structions and their effects through the technical reference manuals
of each Cortex-A processor [6–11, 13–18, 20–23].

The DC CISW instruction flushes a designated cache line in a spe-
cific cache level [10, 13]. It requires a set number, away number, and
a cache level as operands. SmokeBomb uses the DC CISW instruc-
tion to bypass the psuedo-random replacement policy. Also, this
instruction is used to keep sensitive data away from the L2 cache
in inclusive caches.
SmokeBomb APIs. In applications, SmokeBomb is initiated and
finalized by the following two APIs in user-space programs: (1)
init_smokeBomb, and (2) exit_smokeBomb. The init API has two
parameters: the start address and the size of the sensitive data.When
this API is called by a process in the system, SmokeBomb preloads
the sensitive data into the cache and changes the scheduling policy
of the process. The exit API, which flushes the sensitive data
from the cache and restores the scheduling policy, does not have
any parameters. Between these two APIs—during the execution
of the sensitive code, SmokeBomb-defined instructions execute to
preserve the preloaded sensitive data in the L1 cache.
SmokeBomb-defined Instructions. Because most ARM proces-
sors have no cache locking instructions, we utilize the undefined
instruction exception handler to implement our own cache locking
instructions that are software-emulated by the handler. SmokeBomb
finds and patches cache-relevant instructions (such as LDR or STR)
that access non-sensitive data, because they can change the cache
state by fetching non-sensitive data to the L1 cache. At runtime,
those instructions will be trapped and handled by SmokeBomb’s
exception handler. We call the patched instructions as xSB instruc-
tions, such as LDRSB, which performs the intended operation of
the original x instruction, but also ensures the preservation of the
sensitive data only in the L1 cache.

5 INSTRUMENTING SENSITIVE CODE

SmokeBomb requires two modifications to the sensitive code. First,
the two API calls mentioned in § 4 must be inserted before and
after the sensitive code. Second, cache changing instructions in the
sensitive codemust bemodified to SmokeBomb-defined instructions
which have opcodes that do not exist in the ARMv7 and ARMv8
instruction sets. SmokeBomb software-emulates them through the
undefined instruction handler.

4

SmokeBomb: Effective Mitigation Against Cache Side-channel Attacks on the ARM Architecture MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

SmokeBomb automates this process for developers by requiring
only an annotation of the sensitive data (in our implementation,
using attribute syntax annotations [1]), and SmokeBomb derives
all necessary code modifications during compilation. Developers
can annotate static data directly or a data pointer for dynamically
allocated data. Note that, as SmokeBomb is a protection mechanism,
we rely on the developers to identify the data that should be pro-
tected. However, approaches exist for the automated identification
of such data, and this compilation process could be modified to
automatically insert even the annotations themselves [56]

Provided these annotations, SmokeBomb uses a compiler ex-
tension (i.e., an LLVM pass) to instrument the application. First,
SmokeBomb identifies the sensitive code, which is straightforward
due to the annotation. By analyzing each IR instruction, Smoke-
Bomb can identify all memory operations that reference (annotated)
sensitive data. Specifically, when data is annotated, SmokeBomb
can identify all memory operations that reference annotated sen-
sitive data by analyzing operands of load and store instructions.
When a pointer is annotated, SmokeBomb checks whether mem-
ory operations dereference the annotated pointer or not. All such
instructions are identified as sensitive code.

Once sensitive code is found in a function, SmokeBomb identifies
the dominator and post dominator of the basic blocks in which the
sensitive code exists. It then inserts a call instruction which invokes
the init API at the dominator node (and specifies the reference
to the sensitive data in the API call) and another call instruction
for the exit API at the post dominates node. If there are other call
instructions in the basic blocks, SmokeBomb additionally places
instructions calling the exit API and the init API before and after
the other call instructions, respectively.

When the size of the sensitive data is larger than the L1 cache,
SmokeBomb takes the first part of the sensitive data as selected
sensitive data that will be preloaded and preserved. The selected
sensitive data is bigger than a way of the L1 cache so that the
selected part can cover all sets for preventing attacks which try to
identify which set is used (e.g., Prime+Probe). Note that unselected
sensitive data is neither preloaded nor preserved: it is explicitly
kept out of the cache, achieving the same protection.

Next, SmokeBomb patches all cache changing instructions that
are located between the two APIs. When the size of sensitive data
is smaller than the L1 data cache, it only patches instructions that
access non-sensitive data, to preserve sensitive data in the L1 cache
by enforcing additional cache maintenance operations after these
instructions execute. The insight here is that instructions that access
sensitive data do not change the cache state of that data. By patching
only non-sensitive instructions, SmokeBomb can avoid unnecessary
undefined instruction exceptions, thus minimizing performance
degradation. However, if the size of sensitive data is larger than the
L1 data cache, SmokeBomb patches all cache changing instructions,
because it cannot statically determine which sensitive code might
access the unselected sensitive data.

6 PRELOADING SENSITIVE DATA

Before sensitive code executes, SmokeBomb preloads the sensitive
data (or, if the sensitive data larger than the L1 cache, the selected
sensitive data). One way to preload data into the cache is to simply

access it (e.g., using the LDR instruction). However, this is slow, as
the CPU will wait until the data actually arrives in a register or
memory. For better performance, SmokeBomb employs a hardware
feature called data prefetching, by using the preloading data (PLD)
instruction, which is available in the Cortex-A series. SmokeBomb
triggers the prefetcher by using the PLD instruction in ARMv7 and
the PRFM PLD instruction in ARMv8 [10, 13]. For brevity, we use
“PLD instructions” to refer to both instruction forms. PLD instruc-
tions execute much faster than LDR to fetch data into the cache.
Bypassing the Pseudo-random Replacement Policy. The PLD
instruction loads data (of the size of a cache line) from memory to
the cache. However, with ARM’s pseudo-random cache replacement
policy, sensitive data loaded earlier in the process might be evicted
by sensitive data loaded later in the process. SmokeBomb must
ensure that this does not happen, so that the entire sensitive data
can be safely loaded. Our experiments on both testing environments
reveal that the pseudo-random replacement policy only triggers
when there is no empty cache line available. If we can make one
cache line available by flushing it in the set that the data is supposed
to reside, the data is guaranteed to occupy the empty cache line
instead of evicting any other line in the set.

We conducted preliminary experiments to confirm this behavior
for both the L1 and L2 caches: we first flush a particular cache line
of a set using the DC CISW instruction, which takes a set number
and a way number as operands [10, 13]. Then, we load data using
the PLD instruction from an address whose index fields match the
set number. We then flush the same cache line again. At the last step,
we load the same data again on the same core and check the cache
refill event using the performance monitor unit (PMU) [10, 13]. If a
cache refill event occurs, the data has been loaded in the cache line
we selected, and vice versa.
Keeping SensitiveDataAway fromL2Cache. For non-inclusive
caches, PLD instructions load data into L2 cache automatically as
well, which enables cross-core cache attacks because an L2 cache
line is evictable. To prevent this, we use the same approach de-
scribed in the previous subsection to ensure that sensitive data is
always loaded into a known way in the cache. Then, we flush the
sensitive data from the L2 cache. When SmokeBomb preloads the
sensitive data, other processes’ data in the L2 cache can be evicted.
To minimize this impact, SmokeBomb uses only the last way of the
L2 cache. For inclusive caches, SmokeBomb loads the sensitive data
into the L2 cache.

Figure 2 illustrates how SmokeBomb preloads the sensitive data
into the cache, bypassing the pseudo-random replacement policy.
We first translate the virtual address of the sensitive data to physical
address and compute its set number for L1 and L2 cache respectively,
because the cache is physically indexed and tagged. We then flush
the one way of this set in L1 and L2 cache respectively to make room
for sensitive data as shown in (1) – (2) of Figure 2. For convenience,
we flush from the last way of L1 to the first way in this step. Then,
we use PLD instructions to load data into the cache as shown in
(3) of Figure 2. Because there is one cache line available in L1 and
L2 cache, the data goes to that available line. We flush the just
loaded L2 cache line as shown in (4) of Figure 2. We repeat this
procedure until the entire sensitive data or the selected sensitive
data is loaded into the cache. In this loop, if a way of the L1 cache is
fully occupied with sensitive data, we start to fill the previous way

5

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Cho, et al.

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

Set
0

1

2

3

Way 0 1 2 3

Set
0

1

2

3

Way 0 1 2 3

(1) (2) (3) (4) (5) (6) (7)

Figure 2: Example of the cache state changes in the non-inclusive cache model when preloading the sensitive data. In this

figure, we assume that there are 4 sets and 4 ways in both the L1 and L2 caches. Light gray means sensitive data and dark gray

means normal data. White represents a flushed cache line. (1): Flush an L1 cache line. (2): Flush an L2 cache line of the last

way. (3): Load the sensitive data. (4): Flush the sensitive data from the L2 cache. (5)–(7): Repeat the prior 4 steps.

instead as shown in (5)–(7) of Figure 2. For inclusive caches, we can
omit to flush an L2 cache line—step (4) of Figure 2. SmokeBomb
changes a way of the L2 cache similar to the L1 from the last way
in descending order, if a way is full with sensitive data.

7 PRESERVING SENSITIVE DATA

After preloading the sensitive data (or the selected sensitive data, if
the sensitive data is larger than the size of the L1 cache), it is critical
to preserve it in the cache during the execution of sensitive code to
prevent side-channel attacks. Additionally, unselected sensitive data
must not be in the cache. By preserving only preloaded sensitive
data, SmokeBomb achieves a consistent cache state throughout the
execution of the sensitive code.

In our experimentation environment, we tested how many cache
lines were evicted during AES encryption after preloading the T-
tables as the sensitive data into the L1 cache. We used OpenSSL
(v.1.0.2) and 128-bit AES algorithm to encrypt an 8-byte plaintext.
Even with an intentionally-chosen small plaintext, the results show
that around 89% of cache lines holding non-key sensitive data were
evicted during the encryption procedure, which opens the door for
cache side-channel attacks. The experiments clearly demonstrate
the need to preserve sensitive data in the cache.

Unfortunately, most ARM Cortex-A series processors do not
support hardware cache locking techniques. Thus, to preserve the
sensitive data in the L1 cache, SmokeBomb must hook all instruc-
tions that could influence the state of the cache after preloading
the sensitive data. If the sensitive data is smaller than the L1 cache,
SmokeBomb only needs to hook cache changing instructions that
access non-sensitive data, because these instructions can evict the
preloaded sensitive data from the L1 cache to the L2 cache. When
the sensitive data is larger than the L1 cache, SmokeBomb must
hook all cache instructions that occur in sensitive code regardless
of which data they access.

To design a software cache locking technique, we use the unde-
fined instruction exception handler, which can be used to implement
custom “soft-instructions.”
Handling xSB Instructions. SmokeBomb installs an undefined
instruction handler for each xSB instruction. We use a handler for
LDRSB to illustrate how the handlers work with the non-inclusive
cache model (as shown in Figure 3).

SmokeBomb first loads data referenced by the original instruc-
tion. If the address of this data is already in the L1 cache, no matter

if the data is sensitive or not, the handler returns immediately to the
sensitive code. This is because if non-sensitive data is already in the
cache after preloading the sensitive data, it means the data exists
in the cache with the sensitive data. We determine if the data is in
the L1 cache by checking the L1 data cache refill event. If the event
did not occur (i.e., an L1 cache hit occurred), the memory system
does not fetch the data from the main memory. Consequently, the
preloaded sensitive data is still only in the L1 cache.

If the data is neither non-sensitive data that is already in the
L1 cache nor preloaded sensitive data, the data will be fetched
into the L1 and L2 caches as shown in (1) of Figure 3, which may
result in the eviction of a cache line where the sensitive data or
selected sensitive is stored. Because we cannot determine which
way has been evicted due to the pseudo-random replacement policy,
SmokeBomb simply reloads the sensitive data in the set as in the
preload procedure. However, if the address of the loaded data is not
congruent with any preloaded sensitive data, SmokeBomb returns
to the sensitive code without reloading.

To reload the sensitive data, SmokeBomb flushes it located in
the set using its virtual address. Once the sensitive data has been
evicted from the L1 cache, SmokeBomb cannot know which way

of the L2 cache has the data. Therefore, SmokeBomb entirely re-
moves the sensitive data in the set from a cache as shown in (2) of
Figure 3. Then, SmokeBomb reloads the sensitive data following
the preloading method to fill the set again as shown in (3) – (7) of
Figure 3. As a consequence, the process has the same sensitive data
that was preloaded only in the L1 cache.

In the inclusive cache, everything is identical except that we
omit flushing an L2 cache line when reloading the sensitive data.
Handling Preemption.Modern operating systems have a preemp-
tive kernel and provide preemptive multitasking features. These
systems allow scheduled processes to execute only for a time slice.
For example, the Completely Fair Scheduler (CFS), which is the
default scheduler of the Linux kernel, interrupts a process when the
time slice of its thread is expired. Context switches can also occur
when a thread voluntarily yields control of the CPU by making
system calls, such as sleep and yield.

Unfortunately, a context switch can cause an attacker process to
be executed by the core that was previously running the sensitive
code, allowing it to influence the state of the L1 cache. To avoid
potential attacks stemming from this phenomena, SmokeBomb
must do one of two things during context switches: (1) it must flush

6

SmokeBomb: Effective Mitigation Against Cache Side-channel Attacks on the ARM Architecture MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

L1-D Cache

L2 Cache

Set
0

1

2

3

Way 0 1 2 3

Set
0

1

2

3

Way 0 1 2 3

(1) (2) (3) (4) (5) (6) (7)

Figure 3: Example of the cache state changes in the non-inclusive cache model when SmokeBomb preserves the sensitive data.

In this figure, we assume that there are 4 sets and 4 ways in both the L1 and L2 caches. Light gray means the sensitive data
and dark gray means normal data. White represents a flushed cache line. (1): Data, which is not in the L1 cache, is loaded. (2):

Flush the sensitive data located in the set of the L1 cache. (3) – (7): Refill the set with the sensitive data again.

(on preemption of sensitive code) and re-preload (on resumption of
sensitive code) the sensitive data or (2) it must prevent preemption
from happening in the first place. The latter represents minimal
change to the running system itself.

SmokeBomb overcomes this challenge by executing the sen-
sitive code of a process on the same core until it returns (from
init_smokeBomb to exit_smokeBomb). This guarantees that the
L1 cache subordinated to the core is not being used by any other
processes while executing the sensitive code between the two APIs.

To prevent preemption, SmokeBomb temporarily changes the
scheduling policy of only the single process when it starts to execute
the sensitive code (other processes on the system continue running
under the default scheduling policy). Unlike kernel threads, which
can manipulate the preemption strategy itself, user-level threads
cannot be free from preemption. However, a user-level process can
run until it relinquishes the CPU voluntarily by using the First-In,
First-Out (FIFO) scheduling policy with the highest static priority.
Among the available scheduling policies in the Linux kernel, the
FIFO scheduling is the only policy that will not schedule a thread
in the time slice manner [4].

It is worth noting that SmokeBomb is only activated in a function
where sensitive code exists. If other functions are called from the
function in which SmokeBomb is started, exit_smokebomb call will
be invoked, restoring the scheduler to the default setting. When a
thread returns to the function, SmokeBomb is activated again.While
this design choice increases the latency on the single application
that executes sensitive code, it minimizes the performance impact
on the rest of the system.

8 FLUSHING SENSITIVE DATA

After the sensitive code finishes or when the protected process is
scheduled out, the entire sensitive data will be gradually evicted
if SmokeBomb does not flush it. Even though it seems harmless to
leave sensitive data in the cache after the sensitive code terminates,
we designed experiments to verify the necessity of flushing: in
particular, whether cache exploitation by an attacker is possible
when the LRU replacement policy is used. Usually Cortex-A series
use the pseudo-random replacement policy, but the LRU policy can
be chosen alternatively, and ARM Cortex-A57 and A72 processors
employ the LRU replacement policy for the L1 cache by default [8,
16, 17, 17, 20, 21].

0x
b6
6d
90
00

0x
b6
6d
90
40

0x
b6
6d
90
80

0x
b6
6d
90
c0

0x
b6
6d
91
00

0x
b6
6d
91
40

0x
b6
6d
91
80

0x
b6
6d
91
c0

0x
b6
6d
92
00

0x
b6
6d
92
40

0x
b6
6d
92
80

0x
b6
6d
92
c0

0x
b6
6d
93
00

0x
b6
6d
93
40

0x
b6
6d
93
80

0x
b6
6d
93
c0

Memory Addresses

0

1000

2000

3000

Nu
m
be

r o
f C

ac
he

 H
its

Lastly Accessed Addresses

Figure 4: The cache attack results of exploiting the LRU

cache replacement policy on the Cortex-A72. The results

show that the remaining sensitive data in a cache can be re-

sulted in the key data leakage.

We conducted experiments on the Cortex-A72, which uses the
LRU replacement policy for the L1 cache. The victim then terminates
itself right after accessing three different memory addresses. Then,
the attacker loads data that is congruent with the sensitive data to
evict recently used cache lines. At the last step, the attacker checks
access times of the sensitive data.

We ran this experiment 3,000 times. Figure 4 shows the attack
results where the three addresses that the victim actually accessed
have the largest number of cache hits (red squares) among the
preloaded sensitive data. Blue squares stand for the preloaded mem-
ory addresses that the victim did not access, which have lower
number of cache hits than red squares. To protect against this attack,
SmokeBomb flushes the sensitive data from cache upon termination
of sensitive code to prevent information leakage.

9 EVALUATION

Our experimental environments consist of a Samsung Tizen device
and Raspberry PI3 using the Cortex-A72 and A53 processor mod-
els, respectively, as listed in Table 1. These devices have different
instruction sets: ARMv7 and ARMv8. We implemented proof-of-
concept prototypes of SmokeBomb for both instruction sets. The
prototypes consist of two parts: (1) an LLVM pass with a binary
patching tool and (2) a loadable kernel module. SmokeBomb, which
can be deployed without requiring changes to the operating system
beyond loading the kernel modules and can be adopted by develop-
ers by annotating sensitive data in their applications (or using an
approach for automatic identification of it, such as CacheD [56]).

Of the discussed attacks, we evaluate against Flush+Reload and
Evict+Reload for the Cortex-A53 (non-inclusive cache) and the
Cortex-A72 (inclusive cache), respectively, because these are the

7

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Cho, et al.

fastest and most accurate attack methods. We also used Prime+Pro-
be. Except when Prime+Probe is used, all experiments were con-
ducted on a cross-core environment, using two processes: the at-
tacker and the victim. By utilizing amulti-core environment, Smoke-
Bomb’s defense against the directory protocol of the ARM archi-
tecture is evaluated as well [41]. Flush+Flush was not used for
the evaluation because the effectiveness of the method and re-
sults are very similar to Flush+Reload and Evict+Reload. Also
Evict+Time was not evaluated, because SmokeBomb always loads
and flushes the same amount of sensitive data into the cache and
the sensitive data does not exist in the cache when SmokeBomb is
inactivated, which implies the attack is unavailable.

For the Cortex-A53 processor, which uses the non-inclusive
cache, we assume the flush instruction is unlocked for user-land ap-
plications, which strengthens the attacker and makes SmokeBomb’s

job more difficult. The Cortex-A72 processor employs the inclusive
cache, known as AutoLock, and thus data cannot be evicted by other
processes while it is in the L1 data cache [31]. Furthermore, the flush
instruction is not available in user-land, because the device uses
the ARMv7 instruction set. To conduct cache side-channel attacks
on the Cortex-A72 processor, we use the two different assumptions
introduced by Green et al., depending on the attack method [31].
The victim process provides several services to other processes, and
the attacker can request the services. This assumption makes the
victim perform the L1 data cache line evictions itself by requests
from the attacker. Eventually, the sensitive data of the targeted
service can be evicted by the other services requested by the at-
tacker so that Evict+Reload is possible. For Prime+Probe on the
Cortex-A72, we assume the attacker and the victim run on the same
core. This assumption is theoretically possible, because preemption
is disabled only when the sensitive code is executing.

Throughout this section, we present a number of figures describ-
ing the difference in cache measurement opportunities for attackers
with and without SmokeBomb. In these figures, attack results are
shown by blue squares in all figures for the non-SmokeBomb case,
and by red circles for the results of SmokeBomb’s application.

9.1 Effectiveness of L1 Cache as a Private Space

By using the cache refill event of the PMU, we tested if the ap-
proaches proposed in § 6 and § 7 to preload sensitive data to cache
and preserve it in L1 cache alone works in the non-inclusive cache
model using the following two experiments [10, 13].
(1) We first loaded 8 KB of data using the PLD instruction. Second,
we flushed L2 cache using the DC CISW instruction. Third, we loaded
the same data again with the LDR instruction, checking the L2 cache
refill event. As expected, no L2 cache refill event occurred because
all data accesses triggered L1 cache hit.
(2) In the second experiment, the first and the second steps are
as same as in the first experiment. The third step was done by a

different core and used the PRFM PLDL2KEEP instruction for loading
the data into L2 cache. This instruction does not fetch data to
L1 cache but only to L2 cache for data preloading. The L2 cache
refill event occurred, which confirmed that the data was successfully
flushed in step 2. If the L2 cache had the data, the event counter
would not increase. These experiments clearly demonstrate that
SmokeBomb can keep sensitive data in L1 data cache alone.

9.2 Security Analysis

Non-inclusive Caches. SmokeBomb achieves each defensive goal
described in § 4: D1—by keeping the sensitive data away from
L2 cache, the attacker cannot observe any sensitive data in L2 cache.
If sensitive data exists in L2 cache, the other processes can evict
the sensitive data, which in turn results in key data leakage; D2—
by preloading the sensitive data and keeping the sensitive data
during sensitive code execution, the attacker cannot find the key
data using the directory protocol; D3—by flushing the sensitive
data and protecting the sensitive code from preemption.
Inclusive Caches. D2 and D3 are guaranteed in the non-inclusive
cache model. However, SmokeBomb does not need to drive the
sensitive data out from L2 cache to achieve D1. In inclusive caches,
the sensitive data cannot be evicted from L2 cache as long as the
sensitive data is in L1 cache. Therefore, SmokeBomb can achieve
D1 for the inclusive cache model by keeping the sensitive data in a
cache until the sensitive code execution finishes.
The size of protected data. SmokeBomb can provide the same
level of defense even when the size of the sensitive data is larger
than L1 data cache. If SmokeBomb detects large sensitive data at
compile time, it marks a subset of the sensitive data as selected
sensitive data, and this data is preloaded and preserved. Next, while
SmokeBomb is activated at runtime, it flushes all unselected sensitive
data out of L1 cache during the same operation that maintains
the selected sensitive data in L1 cache. The unselected sensitive
data, thus, cannot remain in the cache. Consequently, SmokeBomb
can always produce consistent results against cache side-channel
attacks by preserving the selected sensitive data only. However,
with caching essentially disabled for the unselected sensitive data,
operations on this data will understandably be slow.
Against asynchronous Flush+Reload/Flush attacks. Sensi-
tive data leakage might occur even with the use of SmokeBomb,
which must meet the following conditions: (1) immediately after
the preloading phase, an attacker can flush the sensitive data on
another core and (2) the attacker can reload/flush the data, check-
ing access/flushing times, before the flushing phase. The attack
results will be as follows: (1) if the data is in a cache, the attacker
will think that it is the key data, however, the data could be data
that the sensitive code loaded (the key data) or data that has been
reloaded by SmokeBomb (not the key data); (2) if the data is not in
a cache, the attacker will think that it is not the key data, however,
the data could be data that the sensitive code did not load (not the
key data) or data that has been flushed by SmokeBomb (the key
data). As the possible attack results show, such attacks would have
false-positive errors caused by SmokeBomb, and we believe that the
attacks would be extremely difficult to trigger. Also, ARM CPUs do
not support a flush instruction except for ARMv8-A CPUs, and the
flush instruction is typically not available to user-land applications.
We note that, except for the previously discusses case, SmokeBomb
can prevent all other cases of asynchronous attacks.

9.3 Case Studies

Case 1: OpenSSL—AES algorithm. The AES implementation of
the OpenSSL library is a well-known target for cache side-channel
attacks targeting its T-tables [42, 54]. AES T-tables are pre-computed
lookup tables used to get a round key for each round of the AES

8

SmokeBomb: Effective Mitigation Against Cache Side-channel Attacks on the ARM Architecture MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

0x
b6

73
60

00

0x
b6

73
60

40

0x
b6

73
60

80

0x
b6

73
60

c0

0x
b6

73
61

00

0x
b6

73
61

40

0x
b6

73
61

80

0x
b6

73
61

c0

0x
b6

73
62

00

0x
b6

73
62

40

0x
b6

73
62

80

0x
b6

73
62

c0

0x
b6

73
63

00

0x
b6

73
63

40

0x
b6

73
63

80

0x
b6

73
63

c0

Memory Addresses

0
1000
2000
3000
4000
5000

Nu
m

be
r o

f C
ac

he
 H

its
Before applying SmokeBomb After applying SmokeBomb

(a) Last-round attack on Cortex-A72.

0x
7f9

78
df0

00

0x
7f9

78
df0

40

0x
7f9

78
df0

80

0x
7f9

78
df0

c0

0x
7f9

78
df1

00

0x
7f9

78
df1

40

0x
7f9

78
df1

80

0x
7f9

78
df1

c0

0x
7f9

78
df2

00

0x
7f9

78
df2

40

0x
7f9

78
df2

80

0x
7f9

78
df2

c0

0x
7f9

78
df3

00

0x
7f9

78
df3

40

0x
7f9

78
df3

80

0x
7f9

78
df3

c0

Memory Addresses

0
1000
2000
3000
4000
5000

Nu
m

be
r o

f C
ac

he
 H

its

Before applying SmokeBomb After applying SmokeBomb

(b) Last-round attack on Cortex-A53.

0x
7fa

75
10
00
0

0x
7fa

75
10
04
0

0x
7fa

75
10
08
0

0x
7fa

75
10
0c0

0x
7fa

75
10
10
0

0x
7fa

75
10
14
0

0x
7fa

75
10
18
0

0x
7fa

75
10
1c0

0x
7fa

75
10
20
0

0x
7fa

75
10
24
0

0x
7fa

75
10
28
0

0x
7fa

75
10
2c0

0x
7fa

75
10
30
0

0x
7fa

75
10
34
0

0x
7fa

75
10
38
0

0x
7fa

75
10
3c0

Memory Addresses

0
1000
2000
3000
4000
5000

Nu
m
be

r o
f C

ac
he

 H
its

Before applying SmokeBomb After applying SmokeBomb

(c) Last-round Prime+Probe attack on Cortex-A72.

0x
7f7

dcb
c00

0

0x
7f7

dcb
c00

4

0x
7f7

dcb
c00

8

0x
7f7

dcb
c00

c

0x
7f7

dcb
c01

0

0x
7f7

dcb
c01

4

0x
7f7

dcb
c01

8

0x
7f7

dcb
c01

c

0x
7f7

dcb
c02

0

0x
7f7

dcb
c02

4

0x
7f7

dcb
c02

8

0x
7f7

dcb
c02

c

0x
7f7

dcb
c03

0

0x
7f7

dcb
c03

4

0x
7f7

dcb
c03

8

0x
7f7

dcb
c03

c

Memory Addresses

0
1000
2000
3000
4000
5000

Nu
m
be

r o
f C

ac
he

 H
its

Before applying SmokeBomb After applying SmokeBomb

(d) One-round attack on Cortex-A53.

Figure 5: The attack and protection results on the AES algorithm. In (a), (b), and (d), the Evict+Reload was used on the

Cortex-A72 and the Flush+Reload was used on the Cortex-A53. (c) is the results when the Prime+Probe was used on the

Cortex-A72

algorithm. There are four 1 KB T-tables, for a total of 4 KB of sensi-
tive data. If the secret key length is 128-bits, AES encryption and
decryption processes have 10 rounds and the key is expanded into
10 round keys as well. This key expansion uses lookups against the
T-tables, and determining these lookups via a cache side-channel
allows an attacker to recover key data. We used two well-defined
attack methods for this experiment: the last-round attack [42] and
the one-round attack [54]. With the last-round attack method, it is
possible to recover the full secret key. For the one-round attack, we
can recover 4 bits of every key byte, since our experimental devices
have a 64-byte cache line.

We first performed the last-round attack [42] and the one-round
attack [54] without SmokeBomb. The attacks were conducted using
the 128-bit AES algorithm (version 1.0.2 of the OpenSSL library). To
demonstrate the effectiveness of SmokeBomb, we annotated the 4
KB T-tables of the OpenSSL library as the sensitive data (requiring
four lines of code to annotate each of the T-tables), then SmokeBomb
was applied to the library automatically.

In the last-round attack scenario, the attacker checks the cache
state before and after the victim process executes the AES en-
cryption function. Figure 5a and 5b show the attack results of
Evict+Reload and Flush+Reload. The attacker can distinctly
identify the addresses accessed by the victim without SmokeBomb.
Without SmokeBomb’s defense, we successfully recovered the se-
cret key after 150 iterations of the attack. However, after Smoke-
Bomb was applied, the attacker cannot observe any timing differ-
ences for all entries of the T-tables on both test devices, as shown
in Figures 5a and 5b.

Similarly, Figure 5c shows the Prime+Probe attack results, in
which we also can identify memory addresses accessed by the
victim. The protection results in Figure 5c seem (to the attacker) to
indicate that every entry of the T-tables was accessed by the victim.
This is because all cache sets where the sensitive data can be loaded

have been occupied in the preloading step. Thus, the attacker cannot
understand what data was accessed and cannot differentiate key data

from sensitive data. We ran the attacker and the victim processes
on different cores concurrently.

To simulate the one-round attack, we sent a signal from the
victim to the attacker process so that the attacker can perform the
Flush+Reload attack after the first round of the AES encryption
function—the attacker flushed the sensitive data before the initAPI
executes and reloaded the sensitive data after the first round. Also,
to avoid unnecessary impediments for conducting the attack, we
paused the victim process before the second round—in the middle
of the sensitive code execution. This makes defense more difficult by
giving the attacker an advantage. With the one-round attack, we
cracked half of the secret key over 500 iterations of AES encryption,
on average. Figure 5d shows that the attack can reveal the T-table
entries used in the first round of the AES encryption function.

Conversely, attacks against the SmokeBomb-protected imple-
mentation resulted in cache hits for all entries—successfully pro-
tecting the sensitive data against attacker measurement. This pre-
vention result shown in Figure 5d implies that the key data can be
revealed by the attack using the directory protocol unless Smoke-
Bomb preserves the sensitive data. After the first round is finished,
the victim process still holds the sensitive data in the L1 cache but
not in the L2 cache for executing the next rounds. However, access
times to the sensitive data must be faster than the L2 cache miss by
means of the directory protocol. Thus, the attacker has no choice
but to think there was an L2 cache hit—the victim process has used
that data.
Case 2: Decision Tree. A decision tree algorithm is used to make
a decision according to some input data (called the attributes). Pa-
rameters are attributes and the output is the algorithm’s decision.
Each node of the decision tree is a point where an attribute is tested
and a branch is taken according to the result of the test. A leaf node
represents a final decision made by the attributes. Because different
memory addresses are accessed depending on the attribute, this can
result in information leakage via cache side-channel attacks [50].

9

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Cho, et al.

sun
ny ho

t
hig
h

we
ak NO

!
str
on
g

ov
erc
ast YE

S! rai
n

mi
ld coo

l

no
rm
al

Input Attributes and Output Decisions

0
1000
2000
3000
4000
5000

Nu
m
be

r o
f C

ac
he

 H
its

Before applying SmokeBomb After applying SmokeBomb

(a) Attacking decision tree attack on Cortex-A72.

sun
ny ho

t
hig
h

we
ak NO

!
str
on
g

ov
erc
ast YE

S! rai
n

mi
ld coo

l

no
rm
al

Input Attributes and Output Decisions

0
1000
2000
3000
4000
5000

Nu
m
be

r o
f C

ac
he

 H
its

Before applying SmokeBomb After applying SmokeBomb

(b) Attacking decision tree on Cortex-A53.

Figure 6: The attack and protection results on the decision

algorithm. Evict+Reload was used on the Cortex-A72 and

Flush+Reload was used on the Cortex-A53.

For this experiment, we created a decision tree using the ID3 al-
gorithm [29]. We also implemented a shared library which provides
a service using the decision tree. The attack scenario is as follows:
the victim calls the function within a shared library to get a result
from the decision tree. To call the function, the victim needs to
select specific information as attributes. A set of attributes is used
as a parameter of the function. The attacker tries to identify the
attributes selected by the victim and the decision made by the tree.

SmokeBomb was applied in the function that traverses the de-
cision tree by annotating the tree as sensitive data (one line of
code change). Because each of the different nodes tests the unique
attributes and makes the final decision, there is a one-to-one corre-
spondence between memory addresses of the nodes and attributes
(or the final decision). Without protection, the attacker can clearly
figure out the input records and the final decision as shown in Fig-
ure 6. SmokeBomb forces a consistent cache state for the sensitive
data, and thus, the attacker cannot classify data as key data using
access time. Figure 6b particularly shows the results of an attack in
the middle of sensitive code execution. We simulated the attack to
reload the sensitive data before the exit API executes. The attack
results are all cache hits because of the directory protocol, which
indicates that the sensitive data is fully preserved.
Case 3: Large sensitive data.We show the effectiveness of Smoke-
Bomb’s defense when it protects application with sensitive data
larger than L1 cache. In these experiments, the victim accesses
48 KB of sensitive data using a regular pattern and the attacker uses
the Flush+Reload attack. The sensitive data consists of 48 entries
and each data entry is separated by 1 KB (one line of code change
to annotate the sensitive data). SmokeBomb selects only the first
8 KB as selected sensitive data if the sensitive data is larger than
the L1 data cache. We conducted the attack in such a way that the
attacker can check the data reloading time after the victim finishes
accessing the sensitive data (before flushing it). Figure 7 shows the
results: the attacker cannot infer the actual access pattern, only
seeing cache hits on the first 8 entries and cache misses on the rest.
This consistency protects against cache side-channel attacks even
when the sensitive data is larger than the L1 cache.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Data Indices

0
1000
2000
3000
4000
5000

Nu
m
be

r o
f C

ac
he

 H
its

Before applying SmokeBomb After applying SmokeBomb

Figure 7: The attack and protection result on the large sen-

sitive data. Flush+Reloadwas used on the Cortex-A53 pro-

cessor. After applying SmokeBomb, we cannot find the ac-

cess pattern.

9.4 Performance

Performance of software instructions.We evaluated the over-
head of each xSB instructions emulated by SmokeBomb to keep the
sensitive data in L1 cache (as discussed in § 7). For the convenience
of the experiment, we implemented a function that has only one
instruction (either loading or storing data from/to a memory ad-
dress) and measured its execution time in nanoseconds. We cannot
measure CPU cycles directly because the cycle counter does not
increase while execution is in the exception handler. Table 2 shows
the execution times of xSB instructions on average across 5,000
executions with execution times of the orginal instructions.

Execution times of xSB instructions are substantial, when com-
pared to the original LDR or STR instructions’ execution times. Nat-
urally, the more xSB instructions that execute, the larger the result-
ing performance overhead. SmokeBomb handles the performance
overhead of executing xSB instructions by patching only the cache

changing instructions in the sensitive code that accesses non-sensitive
data. This optimization process helps to avoid unnecessary perfor-
mance degradation. Using the decision tree (case study 3), the per-
formance overhead when SmokeBomb patched all cache changing
instructions increases by about 104% compared with the optimized
patching.
Performance of SmokeBomb APIs.We evaluated the execution
times of SmokeBomb API enter and exit APIs (which involves
prefetching and flushing the sensitive data). As the performance
overhead caused by SmokeBomb APIs is determined by the size of
sensitive data, we measured execution times using different sizes of
sensitive data up to a size the same as the L1 cache size (sensitive
data sizes larger than the L1 cache size will only load the selected
data to the L1 cache, therefore the upper bound is L1 cache size).
Figure 8 shows the execution times of SmokeBomb APIs. The exe-
cution time of each API increases with the size of the sensitive data.
When the size of sensitive data is 32 KB, the execution time of the
two APIs is about 450 microseconds in total on the Cortex-A53.
Single-application overhead.To understand the impact of Smoke-
Bomb on the performance of sensitive code, we evaluated a Smoke-
Bomb protected HTTP Secure (HTTPS) protocol implementation.
For this experiment, SmokeBomb was applied on the AES algo-
rithm, and we used the top 500 web pages selected by the Moz [3].
Then, we compared average execution times required to down-
load the 500 web pages between the normal HTTPS protocol and
SmokeBomb-protected one across 5,000 experiments. Table 3 shows
SmokeBomb-protected HTTPS protocol has very low performance
overhead of around 4.02% for Cortex-A53 and 5.91% for Cortext-
A72, making it unnoticeable to users during web browsing and
quite acceptable for serving web content.

10

SmokeBomb: Effective Mitigation Against Cache Side-channel Attacks on the ARM Architecture MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Table 2: Comparison of the execution times between xSB in-

structions and original instructions.

CPU Instruction L1 Hit Cache Miss
Group Original xSB Original xSB

Cortex-A72 LDR 612 ns 1,634 ns 897 ns 1,946 ns
STR 622 ns 1,678 ns 729 ns 1,802 ns

Cortex-A53 LDR 321 ns 1,209 ns 480 ns 1,916 ns
STR 365 ns 1,251 ns 540 ns 1,420 ns

50

100

150

200

250

300

350

400

T
im

e
 (
µ
s)

init_smokeBomb

exit_smokeBomb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

The size of the sensitive data (KB)

50

100

150

200

250

300

350

400

T
im

e
 (
µ
s)

Cortex-A72

Cortex-A53

init_smokeBomb

exit_smokeBomb

Figure 8: The execution times of SmokeBomb APIs in mi-

croseconds.

We also applied SmokeBomb on the AES algorithm of 7zip appli-
cation and measured execution times required to compress various
files secured with AES encryption. As shown in Figure 9, on the
Cortex-A53, the latency increased by just 1.58 percent, when 10
KB file is used. However, as the size of the input file increases, the
latency also increases. The AES algorithm is a block cipher, and
thus, its encryption function to which SmokeBomb was applied
operates on a single block. Consequently, the performance over-
head brought by SmokeBomb APIs and xSB instructions has to be
overlapped as an input file has more blocks.
Performance Impact on Systems. Lastly, we evaluate the impact
of SmokeBomb on systems throughput by comparing: (1) when
SmokeBomb is not running; with (2) when SmokeBomb is running
continuously by a process executing the AES encryption function
with SmokeBomb applied. The only difference between the two
situations is the status of SmokeBomb functions in the testing
systems. Thus, it can show how the system performance changes
when SmokeBomb is activated. For the evaluation, we used the
common UnixBench benchmarking utility (version 5.1.3) [2].

Figure 10 shows the overheads of each benchmark application
and the average on the test devices. On the Cortex-A72 of a Sam-
sung Tizen device which uses the inclusive cache model, and where
many service processes are executing, the average overhead with
SmokeBomb is almost zero. We suspect that the negative overhead
of the Whetstone benchmark, which tests how many floating-point
operations can execute within a limited time (without using a block-
ing syscall), is because the benchmark threads could occupy cores
a longer time than when SmokeBomb is not running. The aver-
age overhead on the Cortex-A53 of Raspberry PI3, which uses the
non-inclusive cache model, is about 2.8%. The results illustrate that,
when SmokeBomb is activated, the average performance overhead
that SmokeBomb imposes on the overall system is negligible.

Table 3: The performance overheads of SmokeBomb-

protected HTTPS to load a web page.

Cortex-A72 Cortex-A53
Baseline SmokeBomb (overhead) BaseLine SmokeBomb (overhead)

7,223ms 7,650ms (5.91%) 7,177ms 7,466ms (4.62%)

1 2 3 4 5
File size (MB)

100

150

200

250

O
v
e
rh
e
a
d
 (
%
)

Cortex-A72

1 2 3 4 5
File size (MB)

100

150

200

250

O
v
e
rh
e
a
d
 (
%
)

Cortex-A53

10 20 30 40 50
File size (KB)

0

5

10

15

20

O
v
e
rh
e
a
d
 (
%
)

10 20 30 40 50
File size (KB)

0

5

10

15

20

O
v
e
rh
e
a
d
 (
%
)

Figure 9: The performance overheads of SmokeBomb-

protected 7zip application.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Figure 10: The performance overheads on each benchmark

applications when SmokeBomb is activated.

10 LIMITATIONS

Instruction cache attacks. The first limitation of SmokeBomb is
that the instruction cache is not protected, potentially allowing an
attacker to understand which instructions are executed by the vic-
tim process (though not what sensitive data was accessed). There
is a fundamental problem in applying SmokeBomb to fully protect
the instruction cache: ARM has a preloading instruction (PLI) in-
struction, but in practice we cannot use this instruction to fetch
instructions into the L1 instruction cache. The effect of the PLI in-
struction is not explicitly defined in the ARM architecture reference
manuals [10, 13]. The pre-loading instruction (PLI) instruction is
treated as a NOP instruction in several Cortex-A processors [15–
17, 20, 21], or it fetches instructions to the L2 cache instead of the
L1 instruction cache [22]. Thus the only general way to load the
L1 instruction cache is to execute the instructions.

However, SmokeBomb can be extended to have functionality
for preloading instructions, and flush them, from L2 cache. Given
that a combination of preloading and flushing is enough to prevent
synchronous instruction cache attacks, a future direction is to defeat
asynchronous attacks that inspect an instruction cache in parallel

11

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Cho, et al.

with a running victim process. Note that preloading and flushing
make this kind of attack very difficult to perform. In addition, most
ARM Cortex-A processors employ a virtually indexed, physically
tagged (VIPT) implementation for the L1 instruction cache [6, 7, 9,
11, 14, 15, 18, 20, 21, 23]. Therefore, it is a reasonable assumption
that instructions are safe from attacks using the directory protocol
because modern operating systems implement ASLR. Aside from
this limitation in terms of attacks to determine the execution of
sensitive code, SmokeBomb can stop known attacks with respect to
the sensitive data.
Protection for exclusive caches. SmokeBomb cannot provide
complete defense for exclusive caches. This is because if an attacker
loads the sensitive data into their L1 cache, and evicts the data
from the L1 to the L2 cache, the data could also be evicted from
the victim’s L1 cache. By the definition of the exclusive cache,
there is only one copy of the data in the whole cache. Therefore,
if an exclusive L2 cache is shared by multiple cores, cache lines
of the L1 cache could be affected by the other cores’ data usages.
As a result, the attacker might deduce information related to the
key data. Such information leaks are not theoretically impossible
but are difficult to practically achieve, because an attacker must
identify whether the data is reloaded by a victim after evicting it
within a very short execution time between two SmokeBomb APIs.
Moreover, the reloaded data may not be the key data. Unfortunately,
we could not conduct any experiment on the exclusive cache model,
because there are no available devices on the market. Only the
Cortex-A55 employs the exclusive L2 cache among ARM CPUs, but,
that is the private per-core unified L2 cache which is not shared
between cores [22].
Implementation details.The instruction handlermight evict some

sensitive data from the L1 to the L2 cache as the size of sensitive data
reaches the size of L1 cache. We evaluated L1 cache refill events
caused by the instruction handler during its execution and deter-
mined that three cache lines were used by the instruction handler
due to the accesses to the stack and global variables. Such evic-
tions could be handled by a dynamically allocated temporary stack
only for the execution of sensitive code. This temporary stack can,
then, be cached into the L1 data cache with the sensitive data to
prevent any eviction of the sensitive data at a small cost of the
private area. We note that even if the eviction of sensitive data
occurs it would not be critical to SmokeBomb’s effectiveness, as
the attacker’s detecting of eviction does not necessarily lead to the
leakage of key data. In addition, the current version of the Smoke-
Bomb implementation protects static data. However, SmokeBomb
could provide the same defense for dynamically allocated data with
additional improvements to the compiler extension, which would
require annotations on pointers that are used to point to sensitive
data. In addition, albeit SmokeBomb only requires an annotation
of the sensitive data, it has to re-compile source code, and thus,
cannot be applied to compiled binaries. Lastly, the implementation
of SmokeBomb is dependent on hardware specifications such as
the size and inclusiveness of the cache. Hence, minor changes are
required to implement SmokeBomb for each different CPU.
Architecture dependence. While the concept of a private space
in L1 cache is not ARM-specific, SmokeBomb is implemented for,
and heavily uses specific functionality of, the ARM architecture.
Unfortunately, in our investigation of the current state of the Intel

x86_64, architecture, it does not appear to be possible to ensure that
data is present only in L1 cache, preventing us from implementing
SmokeBomb for this architecture. Likewise, the RISC-V architecture
currently has no instruction-level control of the cache [58]. How-
ever, as both cache control and hardware-based security measures
are an actively-evolving field, this could change in the future.

11 RELATEDWORK

Because the shared feature of hardware resources is one of the
fundamental reasons behind cache side-channel attacks, many pro-
posed countermeasures attempt to isolate shared resources to mit-
igate such attacks. These countermeasures can be categorized as
a hardware approach or a software approach. Previously, most of
the software approaches are deployed on cloud systems with Intel
architecture. SmokeBomb is the only cache side-channel defense
without architecture-specific hardware dependencies, covering the
L1 and the L2 cache together. Thus, SmokeBomb is the first de-
fense applicable to the ARM architecture. It achieves this without
invasive OS changes. Furthermore, it can be applied to applications
automatically by annotating the sensitive data.

SmokeBomb’s closest related works are as follows. Kim et al. [44]
proposed isolation of the last level cache using a dedicated mem-
ory page on each core. Even though it can prevent information
leakage via the last level cache efficiently, this approach cannot
prevent timing attacks using upper-level cache [41]. Zhang and
Reiter [66] proposed periodic cache cleansing mechanism, which
prevents information leakages by flushing data used by the previ-
ous process in the cache. It cannot address cache attacks targeting
the last level cache. Zhou et al. [67] introduced the copy-on-access
technique which copies the page when another process accesses
memory simultaneously to disable memory sharing. Also, it limits
the cacheability of memory pages per process, and thus, each pro-
cess only can have a limited number of cache lines. Liu et al. [47]
presented CATalyst which uses the Intel Cache Allocation Tech-
nology to partition the last level cache. It disallows sharing the
cache as in STEALTHMEM [44] to defeat the last level side channel
attack.

Most recently, Gruss et al. [34] proposed a technique that uses
hardware transactional memory (HTM) to prevent cache misses
during execution. Though it provides strong cache side-channel
protection, the protection range is limited by the size of the CPU’s
caches. Gruss et al.’s approach requires hardware support, and the
ARM architecture does not support the HTM. Another concern
is the possibility of these protected transactions failing, which
happens frequently under heavy system load (and could be induced
by attackers and result from attacks) [34].

12 CONCLUSION

We presented SmokeBomb: a novel, systematic software approach
to defeat cache side-channel attacks on the ARM architecture. Our
mitigation approach protects access patterns on the sensitive data
from attackers easily by providing the protection mechanism to
applications as a compiler extension. Our experimental results show
that SmokeBomb protects sensitive information leakages against
cache attack methods known to us effectively—and with minimal
overhead—on overall system throughput.

12

SmokeBomb: Effective Mitigation Against Cache Side-channel Attacks on the ARM Architecture MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

ACKNOWLEDGMENT

Many thanks to the anonymous referees for their thoughtful re-
views. We would also like to thank our shepherd, Kurtis Heimerl.

This material is based upon work supported in part by Samsung
Research, Samsung Electronics, the National Science Foundation
(NSF) under Grant No. 1703644 and No. 1948175, the Defense Ad-
vanced Research Projects Agency (DARPA) HR001118C0060, the
Office of Naval Research (ONR) KK1847, the Institute for Informa-
tion & communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No. 2017-0-00168, Automatic
Deep Malware Analysis Technology for Cyber Threat Intelligence),
and a grant from the Center for Cybersecurity and Digital Forensics
(CDF) at Arizona State University.

Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not neces-
sarily reflect the views of United States Government or any agency
thereof.

REFERENCES

[1] (accessed Jan 29, 2019). Attribute Syntax. https://gcc.gnu.org/onlinedocs/gcc/
Attribute-Syntax.html.

[2] (accessed Jan 29, 2019). Byte-unixbench: A Unix benchmark suite. https://
github.com/kdlucas/byte-unixbench.

[3] (accessed Jan 29, 2019). Moz’s list of the top 500 domains and pages on the web.
https://moz.com/top500.

[4] Josh Aas. 2005. Understanding the Linux 2.6. 8.1 CPU scheduler.
[5] Onur Acıiçmez and Werner Schindler. 2008. A vulnerability in RSA implemen-

tations due to instruction cache analysis and its demonstration on OpenSSL. In
Proceedings of the Cryptographer’s Track at the RSA Conference (CT-RSA). San
Fancisco, CA, 256–273.

[6] ARM. 2010. Cortex-A8 Technical Reference Manual. http://infocenter.arm.com/
help/topic/com.arm.doc.ddi0344k/index.html.

[7] ARM. 2012. Cortex-A9 Technical Reference Manual. http://infocenter.arm.com/
help/topic/com.arm.doc.100511040110en/index.html.

[8] ARM. 2013. Cortex-A15 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/index.html.

[9] ARM. 2013. Cortex-A7 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0464f/index.html.

[10] ARM. 2014. ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0406c/index.html.

[11] ARM. 2014. Cortex-A17 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0535c/index.html.

[12] ARM. 2015. ARM Cortex-A Series Programmerś Guide for ARMv8-A. http://
infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html.

[13] ARM. 2016. ARMv8-A Reference Manual. http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0487b.b/index.html.

[14] ARM. 2016. Cortex-A5 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0434c/index.html.

[15] ARM. 2016. Cortex-A53 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0500g/index.html.

[16] ARM. 2016. Cortex-A57 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0488h/index.html.

[17] ARM. 2016. Cortex-A72 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.100095000306en/index.html.

[18] ARM. 2016. Cortex-A73 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.100048000205en/index.html.

[19] ARM. 2017. AMBA Protocol. https://developer.arm.com/products/architecture/
amba-protocol.

[20] ARM. 2017. Cortex-A32 Processor Technical Reference Manual. http://
infocenter.arm.com/help/topic/com.arm.doc.100241000100en/index.html.

[21] ARM. 2017. Cortex-A35 Processor Technical Reference Manual. http://
infocenter.arm.com/help/topic/com.arm.doc.100236000200en/index.html.

[22] ARM. 2017. Cortex-A55 MPCore Processor Technical Reference Manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.100442010000en/index.html.

[23] ARM. 2017. Cortex-A75 Core Technical Reference Manual. http://
infocenter.arm.com/help/topic/com.arm.doc.100403020000en/index.html.

[24] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. arXiv preprint arXiv:1702.07521 (2017).

[25] Billy Bob Brumley and Risto M Hakala. 2009. Cache-timing template attacks. In
Proceedings of the 15th the International Conference on the Theory and Application

of Cryptology and Information Security (ASIACRYPT). Tokyo, Japan, 667–684.
[26] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael

Franz. 2015. Thwarting Cache Side-Channel Attacks Through Dynamic Software
Diversity.. In Proceedings of the 2015 Annual Network and Distributed System

Security Symposium (NDSS). San Diego, CA.
[27] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.

Prime+abort: A timer-free high-precision l3 cache attack using intel TSX. In
Proceedings of the 26th USENIX Security Symposium (Security). Vancouver, BC,
Canada, 51–67.

[28] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Optimiza-

tion (TACO) 8, 4 (2012), 35.
[29] Shekhar R Gaddam, Vir V Phoha, and Kiran S Balagani. 2007. K-Means+ ID3: A

novel method for supervised anomaly detection by cascading K-Means clustering
and ID3 decision tree learning methods. IEEE Transactions on Knowledge and

Data Engineering 19, 3 (2007), 345–354.
[30] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Christiano Giuffrida.

2017. ASLR on the line: Practical cache attacks on the MMU. In Proceedings of

the 2017 Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA.

[31] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann
Heyszl, and Thomas Eisenbarth. 2017. AutoLock:WhyCacheAttacks onARMAre
Harder Than You Think. In Proceedings of the 26th USENIX Security Symposium

(Security). Vancouver, BC, Canada, 1075–1091.
[32] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js:

A remote software-induced fault attack in javascript. In Proceedings of the 13th

Conference on Detection of Intrusions and Malware and Vulnerability Assessment

(DIMVA). San Sebastian, Spain, 300–321.
[33] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: a fast and stealthy cache attack. In Proceedings of the 13th Conference
on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA).
San Sebastian, Spain, 279–299.

[34] Daniel Gruss, Felix Schuster, Olya Ohrimenko, Istvan Haller, Julian Lettner, and
Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In Proceedings of the 26th USENIX Security

Symposium (Security). Vancouver, BC, Canada, 217–233.
[35] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template

Attacks: Automating Attacks on Inclusive Last-Level Caches. In Proceedings of

the 24th USENIX Security Symposium (Security). Washington, DC, 897–912.
[36] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016.

Cache storage channels: Alias-driven attacks and verified countermeasures. In
Proceedings of the 37th IEEE Symposium on Security and Privacy (Oakland). San
Jose, CA, 38–55.

[37] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games–
bringing access-based cache attacks on AES to practice. In Proceedings of the 32nd

IEEE Symposium on Security and Privacy (Oakland). Oakland, CA, 490–505.
[38] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-Resolution Side

Channels for Untrusted Operating Systems. In Proceedings of the 2017 USENIX

Annual Technical Conference (ATC). Santa Clara, CA, 299–312.
[39] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and

Berk Sunar. 2015. Seriously, get off my cloud! Cross-VM RSA Key Recovery
in a Public Cloud. Cryptology ePrint Archive, Report 2015/898. (2015). https:
//eprint.iacr.org/2015/898.

[40] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S $ A: A shared cache
attack that works across cores and defies VM sandboxing-and its application to
AES. In Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland).
San Jose, CA, 591–604.

[41] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross processor cache
attacks. In Proceedings of the 11th ACM Symposium on Information, Computer and

Communications Security (ASIACCS). Xi’an, China, 353–364.
[42] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.

Wait a minute! A fast, Cross-VM attack on AES. In Proceedings of the 17th In-

ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID).
Gothenburg, Sweden, 299–319.

[43] Georgios Keramidas, Alexandros Antonopoulos, Dimitrios N Serpanos, and Ste-
fanos Kaxiras. 2008. Non deterministic caches: A simple and effective defense
against side channel attacks. Design Automation for Embedded Systems 12, 3
(2008), 221–230.

[44] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM:
System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud.
In Proceedings of the 21st USENIX Security Symposium (Security). Bellevue, WA,
189–204.

[45] Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. 2008. De-
constructing new cache designs for thwarting software cache-based side channel

13

https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://moz.com/top500
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464f/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464f/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0535c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0535c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0434c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0434c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500g/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500g/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0488h/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0488h/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100095_0003_06_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100095_0003_06_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100048_0002_05_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100048_0002_05_en/index.html
https://developer.arm.com/products/architecture/amba-protocol
https://developer.arm.com/products/architecture/amba-protocol
http://infocenter.arm.com/help/topic/com.arm.doc.100241_0001_00_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100241_0001_00_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100236_0002_00_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100236_0002_00_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100442_0100_00_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100442_0100_00_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100403_0200_00_en/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.100403_0200_00_en/index.html
https://eprint.iacr.org/2015/898
https://eprint.iacr.org/2015/898

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Cho, et al.

attacks. In Proceedings of the the 2nd ACM workshop on Computer security archi-

tectures. Alexandria, VA, 25–34.
[46] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan

Mangard. 2016. ARMageddon: Cache attacks on mobile devices. In Proceedings

of the 25th USENIX Security Symposium (Security). Austin, TX, 549–564.
[47] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks in
cloud computing. In Proceedings of the 22nd IEEE Symposium on High Performance

Computer Architecture (HPCA). Barcelona, Spain, 406–418.
[48] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B Lee. 2016. Newcache: Secure

cache architecture thwarting cache side-channel attacks. IEEE Micro 36, 5 (2016),
8–16.

[49] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In Proceedings of the 36th IEEE

Symposium on Security and Privacy (Oakland). San Jose, CA, 605–622.
[50] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious Multi-Party Ma-
chine Learning on Trusted Processors. In Proceedings of the 25th USENIX Security

Symposium (Security). Austin, TX, 619–636.
[51] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-

measures: the case of AES. In Proceedings of the Cryptographer’s Track at the RSA

Conference (CT-RSA). San Jose, CA, 1–20.
[52] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.

Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS). Chicago, IL, 199–212.
[53] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan

Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks.
In Proceedings of the 14th Conference on Detection of Intrusions and Malware and

Vulnerability Assessment (DIMVA). Bonn, Germany, 279–299.
[54] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on

AES, and countermeasures. Journal of Cryptology 23, 1 (2010), 37–71.
[55] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael

Swift. 2015. A Placement Vulnerability Study in Multi-Tenant Public Clouds. In
Proceedings of the 24th USENIX Security Symposium (Security). Washington, DC,
913–928.

[56] ShuaiWang, PeiWang, Xiao Liu, Danfeng Zhang, and DinghaoWu. 2017. Cached:
Identifying cache-based timing channels in production software. In Proceedings of
the 26th USENIX Security Symposium (Security). Vancouver, BC, Canada, 235–252.

[57] Zhenghong Wang and Ruby B Lee. 2008. A novel cache architecture with en-
hanced performance and security. In Proceedings of the the 41st annual IEEE/ACM

International Symposium on Microarchitecture. Como, Italy, 83–93.
[58] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A Patterson, and Krste

Asanovic. 2017. The RISC-V Instruction SetManual. https://github.com/riscv/riscv-
isa-manual.

[59] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces
Using the FLUSH+ RELOAD Cache Side-channel Attack. IACR Cryptology ePrint

Archive 2014 (2014), 140.
[60] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX

Security Symposium (Security). San Diego, CA, 719–732.
[61] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas Hou. 2016.

TruSpy: Cache Side-Channel Information Leakage from the Secure World on
ARM Devices. IACR Cryptology ePrint Archive 2016 (2016), 980.

[62] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. 2016. Return-oriented flush-
reload side channels on arm and their implications for android devices. In Pro-

ceedings of the 23rd ACM Conference on Computer and Communications Security

(CCS). Vienna, Austria, 858–870.
[63] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011. HomeAlone:

Co-residency Detection in the Cloud via Side-Channel Analysis. In Proceedings

of the 32nd IEEE Symposium on Security and Privacy (Oakland). Oakland, CA,
313–328.

[64] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2012. Cross-
VM side channels and their use to extract private keys. In Proceedings of the 19th

ACM Conference on Computer and Communications Security (CCS). Raleigh, NC,
305–316.

[65] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In Proceedings of the 21st ACM

Conference on Computer and Communications Security (CCS). Scottsdale, AZ,
990–1003.

[66] Yinqian Zhang and Michael K Reiter. 2013. Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud. In Proceedings

of the 20th ACM Conference on Computer and Communications Security (CCS).
Berlin, Germany, 827–838.

[67] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. 2016. A software approach
to defeating side channels in last-level caches. In Proceedings of the 23rd ACM

Conference on Computer and Communications Security (CCS). Vienna, Austria,
871–882.

14

https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual

	Abstract
	1 Introduction
	2 ARM Cache Architecture
	3 Cache Side-channel Attacks
	3.1 Attack Methods
	3.2 Our Threat Model

	4 Overview
	5 Instrumenting Sensitive Code
	6 Preloading Sensitive Data
	7 Preserving Sensitive Data
	8 Flushing Sensitive Data
	9 Evaluation
	9.1 Effectiveness of L1 Cache as a Private Space
	9.2 Security Analysis
	9.3 Case Studies
	9.4 Performance

	10 Limitations
	11 Related Work
	12 Conclusion
	References

