Specification and Classification of Role-based Authorization Policies

Gail-Joon Ahn
University of North Carolina at Charlotte
gahnQ@uncc. edu

Abstract

Constraints are an important aspect of role-based
access control (RBAC). Although the importance of
constraints in RBAC has been recognized for a long
time, they have not received much attention. In this
paper we classify RBAC constraints into two major
classes called prohibition constraints and obligation
constraints. To specify these constraints, we utilize a
formal language, named RCL2000. In this paper we
show that prohibition, cardinality, and obligation con-
straints can be also represented in RCL2000.

1. Introduction

RBAC has become a well-accepted and well-known
approach for authorization and access control in mod-
ern systems. RBAC regulates the access of users to
the information on the basis of the activities the users
execute in the system. It requires the identification
of roles in the system. A role can be defined as a
set of actions and responsibilities associated with a
particular working activity. Then, instead of specify-
ing all the access each user is allowed to execute, ac-
cess authorizations on objects are specified for roles.
Since roles in an organization are relatively persistent
with respect to user turn over and task re-assignment,
RBAC provides a powerful mechanism for reducing
the complexity, cost, and the potential for error of as-
signing users permissions within the organization. Be-
cause the roles within an organization typically have
overlapping permissions, RBAC models include fea-
tures to establish role hierarchies, where a given role
can include all of permissions of another role. An-
other fundamental aspect of RBAC is constraints. Al-
though the importance of constraints in RBAC has
been recognized for a long time, they have not received
much attention. This paper focuses on constraints in
RBAC, and addresses how we can specify constraints
in role-based systems, using the specification language
RCL2000.

1.1. Constraints

Constraints are an important aspect of access con-
trol and are a powerful mechanism for laying out
higher level organizational policy. Consequently the
specification of constraints needs to be considered. So
far this issue has not received enough attention in the
area of role-based access control. In this paper we
identify the major classes of constraints in RBAC such
as Prohibition Constraints and Obligation Constraints,
including Cardinality Constraints. We also propose
a framework and formal language for specification of
these identified classes of constraints in role-based sys-
tems.

1.1.1. Prohibition Constraints

In organizations, we need to prevent a user from doing
(or being) something that he is not allowed to do (or
be) based on organizational policy. Prohibition Con-
straints are constraints that forbid the RBAC compo-
nent from doing (or being) something which it is not
allowed to do (or be). A common example of prohibi-
tion constraints is separation of duty (SOD). SOD is
a fundamental technique for preventing fraud and er-
rors, known and practiced long before the existence of
computers. We can consider the following statement
as an example of this type of constraint: if a user is as-
signed to purchasing manager, he cannot be assigned
to accounts payable manager. This statement requires
that the same individual cannot be assigned to both
roles which are declared mutually exclusive.

1.1.2. Obligation Constraints

We also need to force a user to do (or be) something
that he is allowed to do (or be) based on organiza-
tional policy. We derived another class of constraints
from this motivation. Obligation Constraints are con-
straints that force the RBAC component to do (or
be) something. The motivation of this constraints is
from the simulation of lattice-based access control in

YF]',F.

SOCIETY

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'03) (COMPUTER
1080-1383/03 $17.00 © 2003 IEEE

RBAC [San96]. In [San96], there is a constraint which
requires that certain roles should be simultaneously
active in the same session. There is another constraint
which requires a user to have certain combinations of
roles in user-role assignment. We classify this kind of
constraints as obligation constraints.

1.1.3. Cardinality Constraints

Another constraint is a numerical limitation for the
number of users, roles, and sessions. For example,
only one person can fill the role of department chair;
similarly, the number of roles (sessions) an individual
user can belong to (activate) could be constrained.

Our objective in this paper is to study con-
straints in context of role-based access control
(RBAC) [SCFY96], i.e, on how constraints can be ex-
pressed. Constraints can be expressed in natural lan-
guages, such as English, or in more formal languages.
Natural language specification has the advantage of
ease of comprehension by human beings, but may be
prone to ambiguities. Natural language specifications
do not lend themselves to the analysis of properties of
the set of constraints. For example, one may want to
check if there are conflicting constraints in the set of
access constraints for an organization. We opted for a
formal language approach to specify constraints. The
advantages of a formal approach include a formal way
of reasoning about constraints, a framework for identi-
fying new types of constraints, a classification scheme
for types of constraints (e.g., prohibition constraints
and obligation constraints), and a basis for support-
ing optimization and specification techniques on sets
of constraints.

To specify these constraints we utilize the spec-
ification language RCL2000 which is the specifica-
tion language for role-based authorization constraints
[AS99, AS00]. For brevity, we omit formal syntax and
semantics of RCL2000. Who would be the user of
RCL2000?7 The first reaction might be to say the se-
curity officer or the security administrator. However,
we feel there is room for a security policy designer
distinct from security administrator. The policy de-
signer has to understand organizational objectives and
articulate major policy decisions to support these ob-
jectives. The security officer or security administrator
is more concerned with day to day operations. Policy
in the large is specified by the security policy designer
and the actions of the security administrator should be
subject to this policy. Thus policy in the large might
stipulate what is the meaning of conflicting roles and
what roles are in conflict. RCL2000 is also useful for

security researchers to think and reason about role-
based authorization constraints.

The rest of the paper is organized as follows. Sec-
tion reviews previous work on constraints in RBAC.
Section discusses how role-based authorization con-
straints can be expressed in RCL2000. In section we
characterize the classes of constraints in RBAC. Sec-
tion concludes the paper.

2. Related Work

Constraints are an important aspect of access con-
trol and are a powerful mechanism for laying out a
higher level organizational policy. Consequently the
specification of constraints needs to be considered.
This issue has received surprisingly little attention
in the research literature. There is some work such
as [CS95, GI96] that deal with constraints in the con-
text of role-based access control. This work, how-
ever, is preliminary and tentative, and need substan-
tial further development. Most prior work has fo-
cused on separation of duty constraints. Chen and
Sandhu [CS95] presented the initial description which
RCL2000 builds on. Even though their description
was preliminary, it suggested how constraints can be
specified. Giuri and Iglio [GI96] defined a new model
to provide the capability of defining constraints on
roles. In their model, a role is defined as a mamed
set of constrained protection domains (NSCPD) that
is activatable only if the corresponding constraint is
satisfied. Their description focused on the activation
of roles. But we should also consider that constraints
can be applied to other components in RBAC.

3. Expressive Power of RCL2000

Now, we show how we can specify constraints in
RCL2000. Particularly we show specification of SOD
which is an example of prohibition constraints. Also,
we specify cardinality constraints and obligation con-
straints using RCL2000.

3.1. Prohibition Constraints: SOD Con-

straints

SOD is a well-known principle for preventing fraud
by identifying conflicting roles—such as Purchasing
Manager and Accounts Payable Manager—and ensur-
ing that the same individual can belong to at most

YF]',F.

SOCIETY

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'03) (COMPUTER
1080-1383/03 $17.00 © 2003 IEEE

one conflicting role. Static SOD applies to the user-
assignment relation and dynamic SOD applies to the
activated roles in session(s). In this section, we show
how RCL2000 can be used to specify the various sep-
aration of duty properties.

Static SOD (SSOD) is the simplest variation of
SOD. In Table 1 we show our expression of several
forms of SSOD. These include new forms of SSOD
which have not previously been identified in the lit-
erature. This demonstrates how RCL2000 helps us in
understanding SOD and discovering new basic form of
it.

Property 1 is the most straightforward property.
The SSOD requirement is that no user should be as-
signed to two roles which are conflicting each other.
RCL2000 can clearly express this property. This prop-
erty is the classic formulation of SSOD which is iden-
tified by several papers including [GGF98, Kuh97,
SCFY96]. It is a role-centric property.

Property 2 follows the same intuition as property 1,
but is permission-centric. Property 2 says that a user
can have at most one conflicting permission acquired
through roles assigned to the user. Property 2 is a
stronger formulation than property 1 which prevents
mistakes in role-permission assignment. This kind of
property has not been previously mentioned in the lit-
erature. RCL2000 helps us discover such omissions in
previous work. In retrospect property 2 is an “obvious
property” but there is no mention of this property in
over a decade of SOD literature.

Property 3, another form of SOD, ensures that each
role can have at most one conflicting permission with-
out consideration of user-role assignment.

With the condition in property, we can extend prop-
erty 1 in presence of conflicting permissions as prop-
erty 4. In property 4 we have another additional condi-
tion that conflicting permissions can only be assigned
to conflicting roles. The net effect is that a user can
have one conflicting permissions via roles assigned to
the user. The viewpoint of property 4 is that con-
flicting roles are designated in advance and conflicting
permissions must be restricted to conflicting roles.

Property 5 is a very different property. With a
notion of conflicting users, we identify new forms of
SSOD. Property 5 says that two conflicting users can-
not be assigned to roles in same conflicting role set.
This property is useful because it is much easier to
commit fraud if two conflicting users can have differ-
ent conflicting roles in same conflicting role set. This
property prevents this kind of situation in role-based
systems. A collection of conflicting users is less trust-

worthy than a collection of non-conflicting users, and
therefore should not be mixed up in the same con-
flict role set. This property has not been previously
identified in the literature.

We may also identify a composite property which
includes conflicting users, roles and permissions from
these properties.

3.2. Cardinality Constraints

Another constraint is a numerical limitation for the
number of users, roles, and sessions. For example, only
one person can fill the role of department chair; simi-
larly, the number of roles (sessions) an individual user
can belong to (activate) could be limited. This numer-
ical limitation may vary depending upon the organiza-
tional policy. RCL2000 can specify these constraints
without any extension of language. Along with our ex-
pression, we reiterate the requirement of an example
constraint as below.

e Numerical limitation N that exists for the num-
ber of roles an individual user can belong to can-
not be exceeded.

| roles*(0E(V)) | < NV

We have briefly shown that we could express cardi-
nality constraints in RCL2000 without any extension
provided they apply uniformly all roles and all users.

3.3. Obligation Constraints

Role-based access control is a promising alterna-
tive to traditional discretionary access control (DAC)
and mandatory access control (MAC). Sandhu has ear-
lier shown how to simulate several variations of MAC
in RBAC, and that Chinese Wall policy is just an-
other Lattice-based information policy. Sandhu and
Munawer have recently shown how to simulate a va-
riety of DAC policies in RBAC [SM98]. These re-
sults were of theoretical interests because it relates
RBAC to the most dominant form of access control.
In this section we show how to express these simula-
tions with RCL2000, particularly based on Sandhu’s
LBAC-RBAC simulation [San96].

3.3.1. Lattice-Based Access Control

Lattice-based access control is concerned with enforc-
ing one directional information flow in a lattice of secu-
rity labels [San96]. LBAC is also known as mandatory
access control or multilevel security.

YF]',F.

SOCIETY

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'03) (COMPUTER
1080-1383/03 $17.00 © 2003 IEEE

Properties Expressions
1. SSOD-CR roles*(0E(U)) NOE(CR) | < 1
2. SSOD-CP permissions(roles*(0E(U))) NOE(CP) | <1
3. Variation of 2 | (2) A | permissions*(0E(R)) N0E(CP) | < 1
4. Variation of 1 | (1) A | permissions*(0E(R)) NOE(CP) | <1
A permissions(0E(R)) N OE(CP) # ¢=—0E(R) N OE(CR) # ¢
5. SSOD-CU (1) A | user(OE(CR)) NOE(CU) | < 1
Table 1: Static Separation of Duty
. iR . Definition 4 (Strict *-property) Subject s can
write object o only if A(s) = A(o). O
We begin by considering the example lattice of Fig-
ure 1(a) with the liberal *-property.
Sandhu [San96] introduced how LBAC can be re-
constructed in the context of RBAC. LBAC is enforced
L LR — in terms of read and write operations. In RBAC this

(a)A partially ordered Lattice

Figure 1: A Partially Ordered Lattice

The mandatory access control policy is expressed
in terms of security labels attached to subjects and
objects. The security labels form a lattice structure
as defined below.

Definition 1 (Security Lattice) There is a finite
lattice of security labels SC with a partially ordered
dominance relation > and a least upper bound oper-
ator. O

A simple example of a security lattice is shown in Fig-
ure 1(a) with H > L. Information is only permitted
to flow upward in the lattice. In this example, H and
L, respectively, denote high and low. This is a typical
confidentiality lattice where information can flow from
low to high but not vice versa.

The specific mandatory access rules usually speci-
fied for a lattice, where A signifies the security label of
the indicated subject or object, are as follows:

Definition 2 (Simple Security) Subject s can read
object o only if A(s) > A(o). O

Definition 3 (Liberal *-property) Subject s can
write object o only if A(s) < A(o). m]

(b) Roles in RBAC Simulation

means our permissions are reads and writes on indi-
vidual objects written as (o,r) and (o,w), respectively.
An LBAC object has a single sensitivity label associ-
ated with it. This is expressed in RBAC by requiring
that each pair of permissions (o,r) and (o,w) be as-
signed to exactly one matching pair of xR and xW
roles, respectively. By assigning permissions (o,r) and
(o,w) to roles xR and xW respectively, we are implic-
itly setting the sensitivity label of object o to x. RH
is expressed as shown in Figure 1(b)

With RCL2000 we need additional administrative
sets to specify these constraints because these con-
straints require that each user should have exactly two
roles xR and LW and each session should have exactly
two roles yR and yW. From this observation, we in-
troduce the following new administrative sets: active
role sets (AR), assignment role sets (ASR), write roles
(WR), and read roles (RR). Active roles mean that those
roles should be active at the same session and assign-
ment roles are roles which a user should have during
user-role assignment. With these sets, we can specify
the formalization mentioned above as below.

RCL 2000 Specification: (Liberal *-Property)
e R = {HR, HW, LR, LW}

e 0BJ = {obj1, obja, ..., 0bj, }

0P = {read, write}

P = {rp, wp}

rp={(read, objr), (read, obj2), ..., (read, obj,) }

YF]',F.

SOCIETY

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'03) (COMPUTER
1080-1383/03 $17.00 © 2003 IEEE

and
wp={(write, obj), (write, obja), ..., (write, obj,)}

e RR = {HR, LR}
o WR = {HW, LW}

e AR={ary, ar}
ar; = {HR, HW}
ars = {LR, LW}

e ASR={asr, asra}
asr; = {HR, LW}
asro = {LR, LW}

Given these sets, such as R, 0BJ, OP, P, RR, WR, AR,
and ASR, we specify the above constraints described
as below.

e Constraint on UA:
roles(0E(U)) = OE(ASR)

e Constraint on sessions:
roles(OE(sessions(0E(U)))) = OE(AR)

o Constraints on PA:
objects(0E(wp)) = objects(0E(rp)) =
roles(0E(wp)) Uroles(0E(rp)) = OE(AR) A
roles(0E(rp)) NWR = ¢ A
| roles(OE(rp)) NRR |=1

O

From the initial construction, we can have two
sets, ar; and ary because both HR and HW roles
should be activated, and both LR and LW roles should
also be in a session. Also asr; and asrp are re-
quired because each user should have HR and LW (or,
LR and LW) in user-role assignment. Therefore, we
can express UA constraint and session constraint us-
ing ASR and AR sets, respectively. In expression of
UA constraints, roles(0E(U)) = OE(OE(ASR)) ensures
that a user should have roles exactly equal to one
of the ASR sets. In expression of session constraints,
roles(0E(sessions(0E(U)))) denotes all roles which a
user activates in a single session. The constraint en-
sures that the roles activated by a user in a session
consist of exactly one of the AR sets. Constraint speci-
fication of PA ensures that each permission should be
assigned to a single object and roles which have read-
write permissions on a single object can be invoked
in a session. Unlike SOD constraints, we have just
shown that we need additional administrative sets of
RCL2000 to specify LBAC constraints and that these
constraints need to be forced to activate the predefined
roles at the same time.

4. Characterization

We characterize the classes of constraints in RBAC.
This characterization is based on RCL2000 specifica-
tions described in this paper such as SOD constraints
and LBAC simulation. Also, we refer a sampling of
RCL expression in [AS00] to characterize the classes
of constraints. From these specifications, we try to
characterize each class of constraints with an intuitive
and a sharp distinction rather than with exhaustive
analysis.

Even though we believe that RCL2000 helps us dis-
cover useful constraints, this paper cannot list all of
the existing constraints. We assert that our specifica-
tions in this paper cover a subset of each class of con-
straints. We simply call our characterizations Simple
Prohibition Constraints class and Simple Obligation
Constraint class. That is, a small set represents a
group of constraints which we identified in this paper.

4.1. Simple Prohibition Constraints

The identified constraints which are classified as
prohibition constraints are generally expressed in sev-
eral similar forms. We generalize these forms to char-
acterize prohibition constraints.

Simple prohibition constraints include:

e Type 1:
| expr |<1

e Type 2:
expr = ¢ or | expr |=0

e Type 3:
| expr |<| expr |

Most of these forms are identified in the SOD con-
straints and some can also be found in other case stud-
ies.

4.2. Simple Obligation Constraints

Obligation constraints which are identified in our
work have several unique forms. We generalize these
forms to characterize prohibition constraints.

Simple obligation constraints include:

e Type 1:

expr # ¢ or | expr |> 0
e Type 2:

set X = set Y

YF]',F.

SOCIETY

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'03) (COMPUTER
1080-1383/03 $17.00 © 2003 IEEE

e Type 3:
obligation constraints = obligation constraints

o Type 4:
| expr |=1
This form can be re-expressed with the forms
which are identified in simple prohibition con-
straints and simple obligation constraints as be-
low.
| expr |=1 =] expr |<1 A | expr|>0

As we mentioned earlier, most of the constraints
which are identified in the simulation of LBAC in
RBAC have these types of forms.

5. Conclusion

Role hierarchies and constraints are two fundamen-
tal aspects of role-based access control. Although the
importance of constraints in RBAC has been recog-
nized for a long time, they have not received much
attention in research literature. In this paper we have
identified the major classes of constraints in role-based
access control such as prohibition constraints and obli-
gation constraints. Such classification of constraints
is the first attempt in role-based security. We have
described a framework to specify these classes of con-
straints using RCL2000. We also characterized these
classes of constraints based on the RCL2000 specifi-
cations. Our distinction is a pragmatic, but it is not
theoretically complete. We believe that this distinc-
tion will help system security officers to think and to
design a system more practically. We are currently
exploring a systematic way which can be adopted to
utilize this language in security policy architect arena.

Acknowledgment

This work was partially supported at the Labora-
tory of Information of Integration, Security and Pri-
vacy at the University of North Carolina at Charlotte
by the grants from National Science Foundation (NSF-
11S-0242393).

References

[AS99] Gail J. Ahn and Ravi S. Sandhu. The RSL99
Language for Role-Based Separation of Duty Con-
straints. In Proceedings of 4th ACM Workshop on
Role-based access control, ACM, 1999.

[ASO0] Gail J. Ahn and Ravi S. Sandhu. Role-based
Authorization Constraints Specification. ACM
Transactions on Information and System Security,
pages 207-226, Vol. 3, No. 4, ACM, November 2000

[CS95] Fang Chen and Ravi Sandhu. Constraints
for role based access control. In Proceedings of
1st ACM Workshop on Role-Based Access Control,
pages 39-46, Gaithersburg, MD, November 1995.

[GGF98] Virgil D. Gligor, Serban I. Gavrila, and
David Ferraiolo. On the formal definition of
separation-of-duty policies and their composition.
In Proceedings of IEEE Symposium on Research
in Security and Privacy, pages 172-183, Oakland,
CA, May 1998.

[GI96] Luigi Giuri and Pietro Iglio. A formal model
for role-based access control with constraints. In
Proceedings of IEEE Computer Security Founda-
tions Workshop, pages 136145, Kenmare, Ireland,
June 1996.

[Kuh97] D. Richard Kuhn. Mutual exclusion of roles
as a means of implementing separation of duty in
role-based access control systems. In Proceedings
of 2nd ACM Workshop on Role-Based Access Con-
trol, Fairfax, VA, October 1997.

[San96] Ravi S. Sandhu. Role hierarchies and con-
straints for lattice-based access controls. In Elisa
Bertino, editor, Proc. Fourth FEuropean Sympo-
sium on Research in Computer Security. Springer-
Verlag, Rome, Italy, 1996. Published as Lecture
Notes in Computer Science, Computer Security—

ESORICSY6.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-based ac-
cess control models. IEEE Computer, 29(2):38-47,
February 1996.

[SM98] Ravi S. Sandhu and Qamar Munawer. How
to do Discretionary Access Control Using Role. In
Proceedings of 3rd ACM Workshop on Role-Based
Access Control. ACM, 1998.

YF]',F.

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03) COMPUTER
1080-1383/03 $17.00 © 2003 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

