
Specification and Validation of Authorisation
Constraints Using UML and OCL

Karsten Sohr1, Gail-Joon Ahn2,�, Martin Gogolla1, and Lars Migge1

1 Department of Mathematics and Computer Science,
Universität Bremen, Bibliothekstr. 1,

28359 Bremen, Germany
2 Department of Software and Information Systems,

University of North Carolina at Charlotte
Charlotte, NC 28223, USA

Abstract. Authorisation constraints can help the policy architect de-
sign and express higher-level security policies for organisations such as
financial institutes or governmental agencies. Although the importance
of constraints has been addressed in the literature, there does not ex-
ist a systematic way to validate and test authorisation constraints. In
this paper, we attempt to specify non-temporal constraints and history-
based constraints in Object Constraint Language (OCL) which is a con-
straint specification language of Unified Modeling Language (UML) and
describe how we can facilitate the USE tool to validate and test such poli-
cies. We also discuss the issues of identification of conflicting constraints
and missing constraints.

1 Introduction

Today information technology pervades more and more our daily life. This ap-
plies to very different domains such as healthcare, e-government, banking. On
the other hand, new technologies go along with new risks, which must be system-
atically dealt with, such as preventing unauthorised access. Hence it is manda-
tory to establish adequate mechanisms that enforce the security and protection
requirements demanded by the rules and laws relevant to the organisation in
question. For example, in Europe there do exist strong data protection require-
ments as those formulated in the Directive 95/46/EC [7]. This directive among
other areas applies to clinical information systems where in particular the prin-
ciple of patient consent must be enforced [4]. In contrast, in the banking domain
other security requirements such as data integrity are more important such that
often separation of duty policies (SoD) [17,5] must be enforced.

Implementing such higher-level organisational security policies in computer
systems can be cumbersome and inefficient. However, it has turned out that
� This work of Gail-J. Ahn was partially supported at the Laboratory of Information

of Integration, Security and Privacy at the University of North Carolina at Charlotte
by the grants from National Science Foundation (NSF-IIS-0242393) and Department
of Energy Early Career Principal Investigator Award (DE-FG02-03ER25565).

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 64–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Specification and Validation of Authorisation Constraints 65

one of the great advantages of role-based access control (RBAC) is that SoD
rules can be implemented in a natural way [9]. Generally speaking, role-based
authorisation constraints are an important means for laying out higher-level
security policies [1,13]. Although there are several works on the specification of
role-based authorisation constraints, e.g., [1,13], there is a lack of appropriate
tool support for the validation, enforcement, and testing of role-based access
control policies. Specifically, tools are needed which can be applied quite easily
by a policy designer without too much deeper training.

As demonstrated in [2,18], the Unified Modeling Language (UML) and the
Object Constraint Language (OCL) can be conveniently used to specify several
classes of role-based authorisation constraints. Moreover, owing to the fact that
OCL has proved its applicability in several industrial applications1, OCL is a
good means for such a practically relevant process like the design of security
policies.

However, as mentioned above, tool support is needed in order to have a
broader practical use. Hence, we demonstrate in this paper how to employ the
USE system (UML Specification Environment) [19,20] to validate and test access
control policies formulated in UML and OCL. In particular, USE is a validation
tool for UML models and OCL constraints, which has been reportedly applied
in industry and research [19]. With the help of this tool, a policy designer can
detect conflicting and missing authorisation constraints.

The paper is now organised as follows: Section 2 gives a short overview of
RBAC, UML/OCL, and introduces the USE system. In Section 3 typical and
partly more complex authorisation constraints are specified in OCL and in a
temporal OCL extension. Section 4 then demonstrates how USE can be employed
to validate and enforce RBAC security policies and test RBAC configurations
while Section 5 sketches related work. Section 6 summarises and gives an outlook
on future work.

2 Related Technologies

We first give a short overview of RBAC, then we briefly describe UML and
OCL, and finally introduce the USE tool, which can be employed to validate
OCL constraints.

2.1 RBAC and Authorisation Constraints

RBAC has received considerable attention as an alternative to traditional dis-
cretionary and mandatory access control. One reason for this increasing in-
terest is that in practice permissions are assigned to users according to their
roles/functions in the organisation (governmental or commercial) [8]. In addi-
tion, the explicit representation of roles greatly simplifies the security manage-
ment and allows one to use well-known security principles like separation of duty
and least privilege.
1 OCL is UML’s constraint specification language and UML has been widely adopted

in software engineering discipline.

66 K. Sohr et al.

In the sequel, we briefly describe RBAC96, a family of RBAC models intro-
duced by Sandhu et al. [22]. RBAC96 has the following components:

– Users, Roles, P, S (sets of users, roles, permissions, activated sessions)
– UA ⊆ Users × Roles (user assignment)
– PA ⊆ Roles × P (permission assignment)
– RH ⊆ Roles × Roles is a partial order also called the role hierarchy or role

dominance relation written as ≤.

Users may activate a subset of the roles they are assigned to in a session. P
is the set of ordered pairs of operations and objects. In the context of security
and access control all resources accessible in an IT-system (e.g., files, database
tables) are referred to by the notion object. An operation is an active process
applicable to objects (e.g., read, write, append). The relation PA assigns to
each role a subset of P . So PA determines for each role the operation(s) it may
execute and the object(s) to which the operation in question is applicable for the
given role. Thus any user having assumed this role can apply an operation to an
object if the corresponding ordered pair is an element of the subset assigned to
the role by PA.

An important advanced aspect of RBAC are authorisation constraints. Au-
thorisation constraints are sometimes argued to be the principal motivation be-
hind the introduction of RBAC [22]. They allow a policy designer to express
higher-level organisational security policies. Depending on the organisation, dif-
ferent kinds of authorisation constraints are required such as SoD in the banking
field [5] or constraints on delegation and context constraints in the healthcare
domain [24]. Later in this paper, different kinds of authorisation constraints are
specified and discussed.

2.2 Overview of UML and OCL

Unified Modeling Language. The Unified Modeling Language (UML) [21] is
a general-purpose visual modeling language in which we can specify, visualize,
and document the components of software systems. It captures decisions and
understanding about systems that must be constructed. UML has become a
standard modeling language in the field of software engineering.

UML permits the description of static, functional, and dynamic models. In
this paper, we concentrate on the static aspects of UML. A static model provides
a structural view of information in a system. Classes are defined in terms of their
attributes and relationships. The relationships include specifically associations
between classes. In Figure 1, the conceptual static model for RBAC is depicted.

Object Constraint Language. The Object Constraint Language (OCL) [25]
is a declarative language that describes constraints on object-oriented models.
A constraint is a restriction on one or more values of an object-oriented model.
OCL is an industrial standard for object-oriented analysis and design.

Each OCL expression is written in the context of a specific class. In an OCL
expression, the reserved word self is used to refer to a contextual instance.

Specification and Validation of Authorisation Constraints 67

Session

name: String

User

name: String

Permission

name: Stringname: String

Role

Inherits

Establishes
(user)

(roles)
Activates

UA PA

*

** *

1

*

*

Fig. 1. Conceptual Class Model for RBAC-Entity Classes

The type of the context instance of an OCL expression is written with the
context keyword, followed by the name of the type. The label inv: declares the
constraint to be an invariant. Consider the RBAC model from Figure 1: If the
context is Role, then self refers to an instance of Role. The following line shows
an example of an OCL constraint expression describing a role with at most two
users:

context Role inv: self.user->size()<2

self.user is a set of User objects that is selected by navigating from objects
of class Role to User objects through an association. The ‘‘.’’ stands for a
navigation. A property of a set is accessed by an arrow ‘‘->’’ followed by the
name of the property. A property of the set of users is expressed using the size
operation in this example.

The following shows another example describing that a user can be assigned
to a role r2 only if she is already member of r1:

context User inv:
self.role_->includes(’r2’) implies self.role_->includes(’r1’)

The expression self.role ->includes(’r2’) means that r2 is a member
of the set of roles the user is assigned to. The implies connector is similar to
logical implication.

Furthermore, OCL has several built-in operations that can iterate over the
members of a collection (set, bag, ...) such as forAll, exists, iterate, any and
select (cf. [25]).

2.3 The USE Tool

This section explains the functionality of the UML Specification Environment
(USE) which allows the validation of UML and OCL descriptions. USE is the
only OCL tool allowing interactive monitoring of OCL invariants and pre- and
postconditions, and the automatic generation of non-trivial system states. These
system states or snapshots consist of the current objects and links between those
objects adhering to the UML model in question.

68 K. Sohr et al.

The central idea of the USE tool is to check for software quality criteria
like correct functionality of UML descriptions already in the design level in an
implementation-independent manner. This approach takes advantage of descrip-
tive design level specifications by expressing properties more concisely and in a
more abstract way. Such properties are given by invariants and pre- and post-
conditions, and these are checked by the USE system against the test scenarios,
i.e., object diagrams and operation calls given by sequence diagrams, which the
developer provides. These abstract design level tests are expected to be also used
later in the implementation phase.

The USE tool expects as an input a textual description of a model and its
OCL constraints (for an example of such a description refer to Figure 3). Then
syntax checks of this description are carried out, which verify a specification
against the grammar of the specification language, basically a superset of OCL
extended with language constructs for defining the structure of the model. Hav-
ing passed all these checks, the model can be displayed by the GUI provided
by the USE system. In particular, USE makes available a project browser which
displays all the classes, associations, invariants, and pre- and post-conditions of
the current model.

Figure 2 shows a USE screenshot with an example. On the left we see the
project browser displaying the classes, associations, invariants, and operation
pre- and post-conditions. In a detail window below, the selected class is pictured
with all details. On the right, we identify a sequence diagram presenting the
operations which lead to the current system state given in the object diagram
window below. The evaluation of the invariants in this system state is pictured
in the class invariant window to the right of the object diagram window. The

Fig. 2. USE screenshot

Specification and Validation of Authorisation Constraints 69

developer gets feedback from USE about the validity of the invariants in the
invariant window and the validity of the pre- and post-conditions in the sequence
diagram window. Further information about the validity of invariants can be
requested by a dialog window for evaluating arbitrary OCL expressions. This
dialog allows ad-hoc queries useful for navigating and exploring a system state
at any time. Hence, USE helps the developer in analysing situations when an
invariant or a pre- or post-condition fails. This query window will be used several
times in Section 4.

3 Constraints Specification

In this section, different types of authorisation constraints are specified in OCL.
In the first subsection, non-temporal authorisation constraints are formulated in
OCL, whereas in the second subsection history-based authorisation constraints
are formalised in a temporal extension of OCL.

3.1 Non-temporal Authorisation Constraints

Subsequently we give three examples that demonstrate how to use OCL to spec-
ify authorisation constraints.

Example 1: Simple Static Separation of Duty (SSOD)
The first example concerns a separation of duty constraint. Consider two (or
more) conflicting roles such as accounts payable manager and purchasing man-
ager. Mutual exclusion in terms of the user assignment UA specifies that one
individual cannot have both roles. This constraint on UA can be specified using
the OCL expression as follows 2:

context User inv SSOD:
let

CR:Set={{AccountsPayableManager, PurchasingManager}, ...}
in

CR->forAll(cr|cr->intersection(self.role_)->size()<=1)

This formulation of SSOD is based upon the SSOD specification given in [1].
Specifically, CR denotes a set which consists of conflicting role sets.

Example 2: Prerequisite Roles
The second example is based upon the concept of prerequisite constraints as
introduced in [22]. In this example, we consider a prerequisite constraint stating
that a user can be assigned to the engineer role only if the user is already as-
signed to the employee role.

2 For the sake of simplicity, we have left out here the part for the creation of the
instances AccountsPayableManager and PurchasingManager. Similar remarks hold
for the subsequent OCL specifications.

70 K. Sohr et al.

context User inv Prerequisite Role:
self.role ->includes(engineer) implies self.role ->includes(employee)

Example 3: Static Separation of Duty - Conflict Users (SSOD-CU)
By means of OCL even more complex authorisation constraints can be formu-
lated. One example of such a constraint is SSOD-CU identified by Ahn in [1].
SSOD-CU means that two or more colluding users cannot be assigned to con-
flicting roles. For example, it might be the company policy that members of
the same family cannot be assigned to the roles accounts payable manager and
purchasing manager. SSOD-CU can now be expressed in OCL in the following
way:

context User inv SSOD-CU:
let

CU:Set(Set(User))=Set{Set{Michael,Frank,Susan},Set{Lars,Maria}},
CR:Set(Set(Role))=Set{Set{AccountsPayableManager, BillingClerk},
Set{Cashier, CashierSupervisor}, ...}

in
CR->forAll(cr|cr->intersection(self.role_)->size()<=1)

and
CU->forAll(cu|
CR->forAll(cr|cr->iterate(r:Roles; result:Set(User)=Set{}|
result->union(r.user))->intersection(cu)->size()<=1))

SSOD-CU is a composite constraint consisting of two parts, an SSOD part and an
additional part concerning the conflicting users. The SSOD part is required be-
cause otherwise obviously the whole constraint would not be useful. The iterate
operation iterates over all roles r belonging to a set of conflicting roles and col-
lects all users of these roles. CR has the same meaning as in example 1 whereas
CU is a set consisting of all conflicting user sets.

3.2 History-Based Constraints

OCL is quite similar to first-order predicate logic. As expressions of the predicate
calculus, OCL expressions used in invariants are evaluated in a system state.
However, due to the fact that we consider here only one snapshot of the system,
we have no notion of time. Hence, authorisation constraints that consider the
execution history such as history-based or object-based dynamic SoD [10] cannot
be adequately expressed.

In the following, we sketch how history-based authorisation constraints can
be specified in TOCL (Temporal OCL) [26], an extension of OCL with tem-
poral elements. In particular, temporal operators like always (in the future),
sometime (in the future), and next are available. To demonstrate how history-
based authorisation constraints can be formulated in TOCL, we take dynamic
object-based SoD as an example, which has been introduced informally by Nash
and Poland [17]. Dynamic object-based SoD roughly speaking means that a user
must not act upon an object that the same user has previously acted upon.
Other dynamic SoD constraints enumerated in [10] can clearly be expressed in
TOCL, too.

Specification and Validation of Authorisation Constraints 71

model RBAC
-- classes

class Role
attributes

name:String
end

class User
attributes

name:String
end

class Permission
attributes

name:String
op:Operation
o:Object

end

class Object
attributes

name:String
end

class Operation
attributes

name:String
end

class Session
attributes

name:String
end

-- associations
association UA between

User[*] role user
Role[*] role role

end

association PA between
Permission[*] role permission
Role[*] role role

end
association establishes between

Users[1] role user
Session[*] role session

end

association activates between
Session[*] role session
Role[*] role role

end

association inherits between
Role[*] role senior
Role[*] role junior

end

constraints
context Users inv PrerequisiteRole:

self.role ->includes(r2)
implies self.role ->includes(r1)

--constraint: user part of SSOD-CU
context Role inv SSOD-CU:
let

CU:Set(Set(User))=Set{{u1,u2,u3},{u4,u5}}
in
let

CR:Set(Set(Role))=Set{Set{r1,r2},...}
in

CU->forAll(cu|
CR->forAll(cr|cr->iterate(r:Role;
result:Set(User)=oclEmpty(Set(User))|
result->union(r.user))->intersection(cu)->size()<=1))

Fig. 3. USE specification of an RBAC security policy

In order to specify dynamic object-based SoD in TOCL, we use two predi-
cates introduced in [16], namely auth(u, op, obj) and exec(u, op, obj). The former
predicate means that a user u is authorised to execute operation op on object
obj while the latter means that user u executes operation op on object obj in the
present state. For the sake of simplicity, the full details of those predicates are
left out here. The interested reader is referred to [16] to obtain more information
on that topic.

Due to the fact that exec and auth are ternary predicates and OCL supports
only binary associations we extend OCL with additional predicates Exec and
Auth to express ternary associations, as proposed in [12].

With this extension, we obtain the following TOCL specification for object-
based dynamic SoD (using the always operator):

context Object inv ObjDSoD:
Operation.allInstances->forAll(op,op1|

User.allInstances->forAll(u|
(Exec(u,op,self) and op1<>op) implies always not Auth(u,op1,self))))

This corresponds to the specification of dynamic object-based SoD in first-
order linear temporal logic as given in [16]:
∀u : Users; op, op1 : OpSet; obj : Object.op �= op1 ∧ exec(u, op, obj)
⇒ �¬auth(u, op1, obj).

72 K. Sohr et al.

4 Validation and Testing of RBAC Security Policies

With OCL we have a light-weight formalism at hand, which can help specify-
ing RBAC security policies. What is however missing is a tool which helps a
policy designer in validating her RBAC policy. Hence, in the sequel it will be
demonstrated how the USE tool, which is a general-purpose validation tool for
OCL constraints, can be employed for this purpose (cf. Section 4.1). Specifi-
cally, authorisation constraints such as those categorised in [1] can be handled.
Additionally, USE can also be applied to test concrete RBAC configurations
against certain conditions (cf. Section 4.2). The last section sketches how the
USE functionality can be used to build an RBAC authorisation editor.

4.1 Validation of RBAC Security Policies

As mentioned in section 2.3, the main application of the USE tool is the valida-
tion of UML/OCL models. The same can be carried out with an RBAC security
policy. The USE specification of a security policy is given in Figure 3 with the
authorisation constraints expressed by OCL constraints. This policy will serve
as an example within this section.

Through the validation of RBAC policies conflicting constraints can be de-
tected and missing constraints identified. The validation can be done before the
deployment of the RBAC policy, i.e., during the design phase. As indicated above,
the USE approach for validation is to generate system states (snapshots) and
check these states against the specified constraints. In our case, the system states
are certain RBAC configurations (consisting of users, roles, the relations between
these entities). The RBAC configurations could be created automatically by run-
ning a script with the state manipulation commands, which are supported by
the USE tool, or as an alternative with a GUI provided by the USE system. This
animation-based approach for the validation of security policies can be regarded
as a complement to a rigorous formal verification, which often requires deeper
training in formal methods.

The result of the validation can lead to different consequences. Firstly, we
may have reasonable system states that do not satisfy one or more authorisation
constraints of the policy. This may indicate that the constraints are too strong
or the model is not adequate. Secondly, the security policy may allow undesired
system states, i.e., the constraints are too weak. In the following both situations
are discussed more thoroughly.

Conflicting Constraints. USE may help the policy designer find conflicting
constraints. This will be subsequently demonstrated by an example, considering
the RBAC policy presented in Figure 3. Clearly, this example policy is rather
simple, but in reality we often have to deal with considerably more complex
policies. Now, let us further assume that the policy designer has forgotten that
he had once defined a prerequisite role constraint between r1 and r2. Later, the
policy designer decided to define r1 and r2 mutually exclusive due to a change
of organisational rules/policies. Obviously, both constraints could not be sat-
isfied at the same time and hence the composite constraint is too strong. The

Specification and Validation of Authorisation Constraints 73

Fig. 4. USE screenshot: two conflicting constraints

USE screenshot in Figure 4 displays the situation after user u has been assigned
to r2. Clearly, the policy designer cannot have assigned u to role r1; other-
wise the new SSOD constraint would be violated. However, now the constraint
User::PrerequisiteRole is evaluated to false (cf. “Class invariants” view in
Figure 4), and hence the current RBAC configuration is not a correct system
state according to the given policy specification.

Admittedly, the mere information that a constraint is false might often not
help to find the real reason for the problem and to resolve the conflict. Additional
information is required which objects and links of the current state violate the
constraint. For such a purpose, the policy designer can debug the constraints that
are not satisfied by the current system state with the “Evaluate OCL expression”
dialog. For example, in Figure 4 the result of the query “all users who are assigned
to r2 but not to r1” applied to the given RBAC configuration is shown. Here,
one can learn that u is not assigned to r1, although this is required by the
prerequisite role constraint. If the policy designer now conversely tries to assign
u to r1, the SSOD constraint fails, and one can conclude that both constraints
are contradictory. A policy designer could employ USE in a similar way for
other constraint types such as cardinality constraints or other SoD properties.
In particular, this approach is helpful if a new constraint is added to the policy,
in order to check if it is in conflict with the composition of the already defined
constraints.

Nevertheless, USE may find conflicts only in certain cases, and there is no
guarantee that all conflicts can be detected. Had u not been assigned to r2,
the conflict would have remained undetected. In order to eliminate contradic-
tory constraints in general, a more formal approach such as model checking is
required. On the other hand, the USE approach is only meant to improve the
design of a security policy, and does not aim at a formally proven design. Given
the condition that there is often a lack of tools for policy analysis, the USE ap-

74 K. Sohr et al.

proach can be considered as a first pratical step towards more reliable security
mechanisms.

However, various heuristics can be applied which may streamline the conflict
detection process with USE. For example, system states (snapshots) could be
created which are specially tailored towards certain constraint types. In partic-
ular, we could consider snapshots which satisfy the constraint in question and
which contain all the parameters (objects and links) occurring in this constraint
(cf. the system state in Figure 4 for the SSOD constraint). Such a snapshot can
then be taken as a starting point for the conflict detection process. Specifically,
we can check if this system state also adheres to the composition of the other
already defined constraints. As a further improvement, we could store snapshot
templates for each constraint type (e.g., SSOD, prerequisite roles) and instanti-
ate these templates for a certain constraint if needed. This way, a library with
snapshot templates is available, which can be reused and appropriately combined
with other snapshots to obtain test cases for conflict detection.

Detection of Missing Constraints. The second consequence of constraint
validation may be that the policy permits undesirable system states, i.e., the
authorisation constraints are too weak. Once again suppose that the policy de-
signer has defined a complex security policy. Let us further assume that she has
forgotten to define the SSOD part of the SSOD-CU constraint mentioned above
(cf. Figure 3) and that an undesirable system state has been created by USE in
which u is assigned to both the roles r1 and r2. Now, USE can help in detecting
the missing constraint in this scenario: all constraints (in our case specifically
the conflict user part of the SSOD-CU constraint) defined so far are evaluated
to true and hence the policy seems supposedly to be correct. On the other hand,
the policy permits a user to be assigned to the mutually exclusive roles r1 and
r2. Therefore, a further SSOD constraint must be added to the policy in order
to exclude the undesirable state.

But how can we create a system state which reveals the missing constraint?
One possible solution is to create an RBAC configuration tailored towards the
missing constraint as described in the previous section, but with the difference
that now snapshots must be considered that violate the missing constraint. An-
other possibility is to use the test generator provided by USE [11]. By means
of this generator we can create system states at random and then check if the
created system state violates certain conditions with the help of the “Evaluate
OCL expression” dialog.

4.2 Testing a Given RBAC Configuration with USE

Beyond the validation of constraints, USE can be employed for testing an RBAC
configuration after the constraints have been deployed. However, observe that
we consider here a predefined RBAC configuration of users, roles, etc. which
corresponds to a real-world RBAC configuration of an organisation.

Testing an RBAC configuration may be mandatory in several situations. For
example, in some domains (e.g., healthcare) strict data protection laws must
be fulfilled such as the European Directive 95/46/EC [7]. In order to assess

Specification and Validation of Authorisation Constraints 75

the current RBAC configuration defined for security-relevant applications, often
some external review is required, e.g., from an government agency responsible for
data protection as established in Germany. What is often missing is a tool that
supports an external reviewer in checking a concrete RBAC configuration of an
organisation against certain properties such as data protection rules. In addition,
the ability to test RBAC configurations may also be helpful for administrators
in order to check if a security policy has been implemented correctly.

USE can now be employed as an ad hoc query tool to check certain properties
of the current RBAC configuration such as:

– there is no common user of mutually exclusive roles
– only clinicians of a patient’s current ward may have access to the patient’s

electronic patient record3

For this purpose, the “Evaluate OCL expression” dialog is helpful again. For
example, a reviewer can check the current RBAC configuration if and which
users are assigned to the roles r1 and r2, which ought to be mutually exclusive.
Due to the fact that an administrator or external reviewer usually is not an
expert in specification formalisms like OCL an authorisation editor should be
made available which hides the formalism behind a GUI. This is discussed in the
following.

4.3 Authorisation Editor

We have implemented an RBAC authorisation editor built upon the Java API
made available by the USE system. This way, the USE system is hidden from
the administrator and hence she need not be familar with UML/OCL and USE.
The authorisation editor can enforce several types of authorisation constraints
like those listed in [1]. More explicitly speaking, the authorisation editor can be
used in principle to specify and enforce all authorisation constraints expressible
in OCL. As a consequence, types of authorisation constraints beyond those enu-
merated in [1] can also be formulated and enforced such as context constraints.

In the following, the functionality of the authorisation editor will be presented
in more detail. First, the prototype of the authorisation editor currently supports
most of the functionality demanded by the ANSI standard for RBAC [3]. This
means that we have implemented administrative functions, system functions, and
review functions. According to [3] administrative functions allow the creation and
maintenance of the element sets (e.g., User, Role, Permission) and the RBAC
relations (e.g., UA, PA). For example, AddUser, DeleteUser, and AssignUser
belong to this class of functions. System functions are required by the authorisa-
tion editor for session management and making access control decisions. Thus,
examples are CreateSession, and AddActiveRole. Review functions allow for
reviewing the results of the actions created by administrative functions. Typ-
ical examples of review functions are AssignedUsers, and UserPermissions.

3 We assume here that there is a further attribute “ward” for certain roles and for
users.

76 K. Sohr et al.

Fig. 5. The authorisation editor

Administrative and system functions can be implemented by the state manipu-
lation commands provided by the USE system. Due to the aforementioned query
facilities of USE, RBAC review functions can also be easily implemented.

Beyond this basic functionality, the RBAC authorisation editor provides
mechanisms for defining and enforcing authorisation constraints (e.g., simple
static SoD, object-based static SoD, cardinality constraints). The basic idea of
the constraint checking mechanism is now as follows: The authorisation editor,
or to put it in another way, the USE system checks if the relevant authorisation
constraints are still satisfied after an administrative function has been carried
out. If any constraint is violated, the last function is automatically revoked. As
a consequence, the tool can only produce states that are consistent with the
specified constraints.

The authorisation editor can also deal with role hierarchies, which are not
restricted to inheritance trees, but can also in general form directed acyclic
graphs. Moreover, the tool can detect and then prevent inconsistencies such
as a senior role which inherits two mutually exclusive junior roles. For example,
assume we have a role Chair and two junior roles Reviewer and Author. Further
assume both junior roles are mutually exclusive. Then the role Chair is strictly
speaking useless because no user can ever be assigned to this role. To give a
better overview, a screenshot of the current prototype of the authorisation editor
is shown in Figure 5. In the upper part of the window, there are several buttons,
each button stands for a special administrative function. The large window in
the middle of the tool visualises the current system state (RBAC configuration).
The visualisation of the system state will be immediately renewed when the
system state has been changed by an administrative function. At the bottom of

Specification and Validation of Authorisation Constraints 77

the window there is a log window, which displays the result of the last applied
administrative function. There are currently two windows open: On the right-
hand side there is a small window to create a set of roles for a simple static SoD
constraint; on the left-hand side there is a window to create a session for a user
with active roles.

5 Related Work

There are several works concerning the specification of RBAC authorisation con-
straints, e.g., a graphical language [13] and the RCL 2000 language based upon
restricted first-order logic [1]. As demonstrated in [1], various classes of authori-
sation constraints can be expressed with RCL 2000. Although the classification
and the case studies are insightful, no tool support for constraint validation, en-
forcement, and testing has been implemented so far. In [18] and [2], constraints
are formulated in UML/OCL, but once again no tool support for the validation
is available. In this respect, the USE approach fills this gap.

In [14,15], another approach for the verification of RBAC policies is presented,
based upon graph transformations. However, this approach does not tackle the
problem of conflicting constraints, but the problem of graph rules conflicting
with constraints. Due to the fact that some constraints can only be expressed
clumsily (e.g., SSOD-CU, operational SoD) a formulation of those constraints in
OCL is often more intuitive.

In [6], an authorisation editor is presented which is similar to the one de-
scribed in Section 4.3. However, with the approach from [6], for example, the
SSOD-CU constraint cannot be specified and enforced. On the other hand, with
USE no history-based SoD constraints can be enforced because TOCL is cur-
rently not supported.

6 Conclusion and Future Work

In this paper we demonstrated that with the help of OCL several classes of au-
thorisation constraints and even complex composite constraints can be specified.
Due to the fact that the UML/OCL is quite familiar in industrial environments
there is hope that OCL can be used by policy designers in many organisations.
In addition, we demonstrated how the USE tool, a validation tool for OCL con-
straints, can be employed to fulfill several practical needs such as constraint
validation, testing of RBAC configurations and building an authorisation editor.

Owing to the fact that USE can only check the current snapshot of an RBAC
configuration, history-based authorisation constraints [23] cannot be dealt with.
For this purpose a temporal extension of OCL like that sketched in this paper
is needed. Hence, it remains future work to extend USE in order to deal with
temporal constraints. Another goal is to integrate the authorisation editor into
middleware. Specifically, Web services could be an interesting target to enforce
authorisation constraints due to the high access control requirements of this
technology.

78 K. Sohr et al.

References

1. G.-J. Ahn, The RCL 2000 language for specifying role-based authorization con-
straints, Ph.D. thesis, George Mason University, Fairfax, Virginia, 1999.

2. G.-J. Ahn and M.E. Shin, Role-Based Authorization Constraints Specification Us-
ing Object Constraint Language, Proc. of the 10th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprise, IEEE, 2001,
pp. 157–162.

3. American National Standards Institute Inc., Role Based Access Control, 2004,
ANSI-INCITS 359-2004.

4. R. Anderson, A security policy model for clinical information systems, Proceedings
of the IEEE Symposium on Research in Security and Privacy (Oakland, CA), IEEE
Computer Society Press, May 1996, pp. 30–43.

5. D. D. Clark and D. R. Wilson, A comparison of commercial and military computer
security policies, Proceedings of the 1987 IEEE Symposium on Security and Privacy
(1987), 184–194.

6. J. Crampton, Specifying and enforcing constraints in role-based access control,
Proc. of the 8th ACM Symposium on Access Control Models and Technologies
(New York), ACM Press, June 2–3 2003, pp. 43–50.

7. EU, Directive on the protection of individuals with regard to the processing of
personal data and on the free movement of such data. Directive 95/46/EC.
http://www.privacy.org/pi/intl orgs/ec/eudp.html, 1995.

8. D. Ferraiolo, D. Gilbert, and N. Lynch, An examination of federal and commercial
access control policy needs, Proc. of the NIST-NCSC Nat. (U.S.) Comp. Security
Conference, 1993, pp. 107–116.

9. D.F. Ferraiolo, D.R. Kuhn, and R. Chandramouli, Role-based access control, Artec
House, Boston, 2003.

10. V. D. Gligor, S. I. Gavrila, and D. Ferraiolo, On the formal definition of separation-
of-duty policies and their composition, 1998 IEEE Symposium on Security and
Privacy (SSP ’98), IEEE, May 1998, pp. 172–185.

11. M. Gogolla, J. Bohling, and M. Richters, Validation of UML and OCL Models
by Automatic Snapshot Generation, Proc. 6th Int. Conf. Unified Modeling Lan-
guage (UML’2003), Springer, Berlin, LNCS 2863, 2003, pp. 265–279.

12. Martin Gogolla and Mark Richters, Transformation Rules for UML Class Dia-
grams, Proc. 1st Int. Workshop Unified Modeling Language (UML’98), Springer,
Berlin, LNCS 1618, 1999, pp. 92–106.

13. T. Jaeger and J.E. Tidswell, Practical safety in flexible access control models, ACM
TISSEC 4 (2001), no. 2, 158–190.

14. M. Koch, L. V. Mancini, and F. Parisi-Presicce, A Graph Based Formalism for
RBAC, ACM Transactions on Information and System Security (TISSEC) 5
(2002), no. 3, 332–365.

15. M. Koch and F. Parisi-Presicce, Visual Specification of Policies and their Verifi-
cation, Proc. of Fundamental Approaches to Software Engineering (FASE) 2003,
LNCS, no. 2621, Springer, 2003, pp. 278–293.

16. T. Mossakowski, M. Drouineaud, and K. Sohr, A temporal-logic extension of role-
based access control covering dynamic separation of duties, Proc. of TIME-ICTL
2003, Cairns, Queensland, Australia, July 8–10 2003.

17. M. J. Nash and K. R. Poland, Some conundrums concerning separation of duty,
Proc. IEEE Symposium on Research in Security and Privacy, 1990, pp. 201–207.

Specification and Validation of Authorisation Constraints 79

18. I. Ray, N. Li, R. France, and D.-K. Kim, Using UML to visualize role-based access
control constraints, Proc. of the 9th ACM symposium on Access control models
and technologies, ACM Press New York, USA, 2004, pp. 115–124.

19. M. Richters, A Precise Approach to Validating UML Models and OCL Constraints,
Ph.D. thesis, Universität Bremen, Fachbereich Mathematik und Informatik, Logos
Verlag, Berlin, BISS Monographs, No. 14, 2002.

20. M. Richters and M. Gogolla, Validating UML Models and OCL Constraints,
Proc. 3rd Int. Conf. Unified Modeling Language (UML’2000), Springer, Berlin,
LNCS 1939, 2000, pp. 265–277.

21. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Refer-
ence Manual, Second Edition, Object Technology Series, Addison Wesley Longman,
Reading, Mass., 2004.

22. R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, Role-based access
control models, Computer 29 (1996), no. 2, 38–47.

23. R. Simon and M. Zurko, Separation of duty in role-based environments, 10th IEEE
Computer Security Foundations Workshop (CSFW ’97), June 1997, pp. 183–194.

24. K. Sohr, M. Drouineaud, and G.-J. Ahn, Formal Specification of Role-based Security
Policies for Clinical Information Systems, Santa Fe, New Mexico, Proc. of the 20th
ACM Symposium on Applied Computing, 2005, To appear.

25. J. Warmer and A. Kleppe, The Object Constraint Language: Getting your models
ready for MDA, Addison-Wesley, Reading/MA, 2003.

26. P. Ziemann and M. Gogolla, An OCL Extension for Formulating Temporal Con-
straints, Research Report 1/03, Universität Bremen, 2003.

	Introduction
	Related Technologies
	RBAC and Authorisation Constraints
	Overview of UML and OCL
	The USE Tool

	Constraints Specification
	Non-temporal Authorisation Constraints
	History-Based Constraints

	Validation and Testing of RBAC Security Policies
	Validation of RBAC Security Policies
	Testing a Given RBAC Configuration with USE
	Authorisation Editor

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

