
Supporting Access Control Policies Across
Multiple Operating Systems

Lawrence Teo∗ Gail-Joon Ahn
Laboratory of Information Integration, Security, and Privacy (LIISP)

University of North Carolina at Charlotte

{lcteo,gahn}@uncc.edu

ABSTRACT
The evaluation of computer systems has been an important
issue for many years, as evidenced by the introduction of in-
dustry evaluation guides such as the Rainbow Books and the
more recent Common Criteria for IT Security Evaluation.
As organizations depend on the Internet for their daily op-
erations, the need for evaluation is even more apparent due
to new security risks. It is not uncommon for large organi-
zations to evaluate different systems, such as operating sys-
tems, to identify which would best fit their security policy.
Each system would undoubtedly use different methods to
represent access control policies. The security policy would
therefore need to be translated into specific access control
policies that each system understands, which is challenging
when large and complex systems are involved. In this pa-
per, we focus on the evaluation of operating systems. We
describe Chameleos, a policy specification language that is
designed to specify the access control policies of multiple op-
erating systems. The strength of Chameleos is its flexibility
to cater to many operating systems, while remaining suf-
ficiently extensible to support the specific features of each
system. We describe the design and architecture of Cha-
meleos, and demonstrate that Chameleos can flexibly and
effectively represent the access control policies of grsecurity
and SELinux – two very different systems.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—constraint and logic languages; D.4.6 [Operating
Systems]: Security and Protection—access controls

General Terms
Security, management, design, languages.

∗Lawrence Teo is also affiliated with Calyptix Security Cor-
poration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA, USA.
Copyright 2005 ACM 1-59593-059-0/05/0003 ...$5.00.

Keywords
Chameleos, policy specification, access control, operating
systems, flexibility, extensibility

1. INTRODUCTION
As more organizations depend on computer systems and

the Internet for their daily operations, it is becoming in-
creasingly important to evaluate these systems to make sure
that they are safe from security risks. Throughout the his-
tory of computer security, a number of industry evaluation
guides like the Rainbow Books and the Common Criteria for
IT Security Evaluation have been introduced to address this
need. However, the evaluation of large and complex systems,
like those prevalent in large enterprises, is very challenging.
Each system may use different methods, languages, and for-
mats to represent their configuration policies. It is difficult
for an organization to translate its requirements into spe-
cific policies that each system understands. How can the
evaluator be sure that the policy implemented on each new
system matches the organizational requirements? Are there
any incompatibilities among the policies of each candidate
system?

To address this challenges, we proposed a solution to the
problem with the introduction of Chameleos [16], a new pol-
icy specification language that is both flexible and extensible.
Flexibility means that the language should be able to cater
to multiple systems. Extensibility means that our language
should be able to support the specific features in the policies
of each target system or application. While Chameleos will
eventually work with a variety of systems, its current incar-
nation focuses on access control policies on operating sys-
tems. Throughout the paper, we call the target systems
in which Chameleos works with as security-aware systems,
since we are primarily interested in representing security-
related policies for these systems. We are currently devel-
oping Chameleos for three security-aware systems; however,
we believe that it would be possible to support more systems
by following the methodology described in this paper.

Our earlier work [16] introduced Chameleos where we pro-
vided conceptual descriptions on how Chameleos can be used
to represent operating system access control policies. We
concentrated on Systrace [12] as the primary security-aware
system. This paper extends our work where we move from
concept to implementation, and now describe how Chame-
leos can be used to represent the access control policies
of two more security-aware systems – grsecurity [14] and
SELinux [10].

2-288

The rest of the paper is organized as follows. Section 2 de-
scribes the background and related work. Section 3 discusses
the design and architecture of Chameleos. In Section 4, we
demonstrate how the access control policies of grsecurity
and SELinux can be represented with Chameleos. This is
followed by a discussion of ongoing and future work in Sec-
tion 5. We then conclude the paper in Section 6.

2. RELATED WORK
The most relevant work that is related to our project is

the Authorization Specification Language (ASL) by Jajo-
dia et al [6, 7]. A widely accepted language in the access
control community, ASL is a very flexible and expressive
language that can be used for multiple access control poli-
cies. It has been adopted into different areas like modular
authorization [17], logical access control frameworks [1], and
privacy policies [8]. We used ASL in a number of our exper-
iments [16] to help us design and develop Chameleos.

THINK [13] is a kernel-based framework that is designed
to protect flexible operating system architectures. Unlike
THINK, Chameleos focuses on supporting access control
policies for operating systems above the kernel layer. This
makes Chameleos accessible to practitioners who do not wish
to use kernel-level access control facilities.

The motivation of our work should not be confused with
that of XACML (eXtensible Access Control Markup Lan-
guage) [11]. XACML is an XML-based language. Its goal is
to allow access control policies to be specified by any appli-
cation that requires authorization for users. In many ways,
we view it as the other extreme of ASL. In our work, we
strive to achieve middle ground by designing a flexible lan-
guage within a particular domain – in this case, the operat-
ing systems domain. We did not choose XML as the basis of
our language due to the potential overhead it might impose
when used with low-level operating system access control
policies, which may in turn diminish the practicality and
usability of the language [16].

In Section 4, we will demonstrate how Chameleos is used
to represent the access control policies of grsecurity and
Security-Enhanced Linux (SELinux). grsecurity [14] is an
“ACL system” that consists of a Linux kernel patch and
other administration utilities to allow the specification of
fine-grained access control policies for programs in a Linux
system. SELinux [9, 10] is a research prototype that com-
prises a modified Linux kernel and specially patched pro-
grams to allow comprehensive access control policy features
like mandatory access control, type enforcement [2], role-
based access control, and multi-level security.

3. DESIGN AND ARCHITECTURE

3.1 Objectives and Design
Chameleos is designed with two objectives in mind: (1)

it has to support multiple security-aware systems, and (2)
it must be able to be implemented (we are focusing on a
practical language, and not a theoretical one).

The advantages of implementing a single language for
many security-aware systems are manifold. Having a single
language would provide a common syntax for administrators
to implement various policies. There is no need to re-learn
the syntax for different systems, thus presenting a conve-
nient way for the administrator to specify multiple system

Meta-
Language

Extension 1 Extension 2 Extension n

Translator

.......

Implementation-
Specific Policy

Figure 1: The Chameleos architecture.

policies. This is especially true in the evaluation of two dif-
ferent systems. Also, if there are similar systems, we do not
need to convert the policies from one system to the other.
We strive to achieve a “write once, deploy everywhere” phi-
losophy in the design of Chameleos.

We have defined a preliminary version of the Chame-
leos grammar using Extended Backus-Naur Form (EBNF)
[15]. Space restrictions do not permit us to include the full
EBNF grammar in this paper, but we shall briefly describe
the key ideas here. The Chameleos grammar allows us to
specify various access control policy notions such as generic
subjects and objects (and their relevant types). Since ac-
cess control policies frequently involve groups of entities,
the Chameleos grammar also allows the specification of ar-
bitrary sets and groups. More complex utilities such as com-
pound expressions, arbitrary comparison operators, and ar-
bitrary permissions are also supported. Other areas that we
are considering include the specification of hierarchies and
constraints. We strive to be as comprehensive as possible,
while keeping flexibility and extensibility in mind. We will
revisit these ideas again in Section 4.4.

3.2 Architecture
The Chameleos architecture (Figure 1) consists of three

main components: the meta-language, a translator, and ex-
tensions. The meta-language is the core Chameleos language
itself, namely the generic syntax of Chameleos. This in-
cludes operators, statement terminators, reserved keywords,
variable types, and other related entities. The meta-language
also clearly specifies how functions and procedures should be
defined.

The next component of the Chameleos architecture is the
translator. As its name implies, a translator is used to con-
vert a Chameleos policy into a system-specific policy. For
example, a translator can translate a Chameleos Systrace
policy that is written in Chameleos into an actual Systrace
policy. The translator needs to know the meta-language na-
tively, and be able to load extensions into the system when
required.

Extensions are used to support specific systems (one ex-
tension supports one system). To write a Chameleos policy
for a specific system, say SELinux, we would need to use
the specific features of that system. For example, a Chame-
leos SELinux policy would need to be able to support the
specification of type transitions and roles. A Chameleos pol-
icy for another system like Systrace would focus on system
calls. To support such extensibility, a Chameleos extension
is used. An extension comprises the variables, library of
functions (that can be implemented as a well-defined API),
and other properties of a specific system. To illustrate, a
Chameleos SELinux extension would be composed of con-
venience functions to specify SELinux notions like users,

2-289

/usr/sbin/sshd dp {
 /etc/ ssh r
 /dev/log rw
 +CAP_ SYS_TTY_CONFIG
 +CAP_ SYS_CHROOT
}

Subject
(Type: Executable)

Extension

Permission
(Allow)

Object
(Type: Capability)

Object
(Type: File)

Allow

Figure 2: Excerpt of a grsecurity policy annotated
with Chameleos directives.

user-role assignments, and type transitions. An extension
can be likened to a module (analogous to a Java class pack-
age in Java). The Chameleos EBNF grammar provides a
generalized framework to develop extensions that can sup-
port access control policies for multiple operating systems.
As new versions of the supported operating systems are re-
leased, these extensions will be updated to reflect the latest
features in those operating systems, while maintaining back-
ward compatibility wherever possible. This would enable
Chameleos to evolve as new systems become available.

The contents of an extension are specified in a file (such
as selinux.extension). For instance, the variables declared
inside a typical SELinux extension could be:

subject_type domain, user;
object_type file, lnk_file, sock_file, fifo_file;
perm p_create, p_read, p_write, p_getattr,

p_setattr, p_link, p_unlink, p_rename;
opmode allow, user;

This SELinux extension allows the declarations of SELinux-
specific subject types, object types, and permissions. These
variables can then be used throughout the specific policy.

4. REPRESENTING ACCESS CONTROL
POLICIES WITH CHAMELEOS

In this section, we discuss the criteria that we used to
select security-aware systems that were used to aid the de-
velopment of Chameleos. We then describe two security-
aware systems – grsecurity and SELinux – and demonstrate
that Chameleos can flexibly and effectively represent their
policies, even though they are very different systems.

4.1 Selection of Security-Aware Systems
We are developing Chameleos using an evolutionary bot-

tom-up approach, which would enable us to build a solid
language that can be practically implemented [16]. In order
to do this, it is important to select a sample of security-aware
systems that we can use to design and test the language
incrementally. This initial pool of systems is very important,
as it would fundamentally influence future development of
the language. In this initial development phase, we focus
on grsecurity and SELinux as our target systems. In our
earlier work [16], we conducted some work on Systrace [12]
as well. We believe that these systems are different enough
to help us develop a flexible and extensible language. In
this section, we discuss the roles of grsecurity and SELinux
in the development of Chameleos.

import grsecurity.extension;

/* Set our global policy to default-deny. */
global_policy(default_deny);

subject("/usr/sbin/sshd", executable)
assoc(extension, dp)
{

object("/etc/ssh", file)
{

perm(allow, perm_r);
}

object("/dev/log", file)
{

perm(allow, perm_r, perm_w);
}

object("CAP_SYS_TTY_CONFIG", capability)
{

perm(allow);
}

object("CAP_SYS_CHROOT", capability)
{

perm(allow);
}

}

Figure 3: The grsecurity policy from Figure 2 rep-
resented using Chameleos.

4.2 grsecurity
We shall now discuss grsecurity’s access control policy.

grsecurity’s policies are the simplest and therefore the eas-
iest to develop for. We present an excerpt of a grsecurity
policy in Figure 2. We have annotated it with directives
on how the policy should be implemented using Chame-
leos features. Briefly, this grsecurity policy states that the
executable program /usr/sbin/sshd is allowed to read from
the directory /etc/ssh1 . sshd can also read and write to
the /dev/log file. Lastly, sshd is allowed to have two capa-
bilities: CAP_SYS_TTY_CONFIG and CAP_SYS_CHROOT.

Consider the first line. /usr/sbin/sshd is designated as
a subject. In the context of grsecurity, /usr/sbin/sshd is
an executable, so it is specified as a subject of type “Ex-
ecutable.” Likewise, we denote /etc/ssh as an object of
type “File.” Arbitrary permissions can be given, such as r

for read. Permissions can be allowed or denied; in this case,
the read (r) permission is allowed. Different objects, such as
capabilities, can still be designated as objects, but they are
labeled as different types. In this case, CAP_SYS_TTY_CONFIG
and CAP_SYS_CHROOT are specified as objects of type “Capa-
bility.” Note that the subject is associated with the subject
modes d and p (for a more thorough discussion of grsecurity
features, we refer the reader to the grsecurity documenta-
tion [14]).

We now show the grsecurity policy specified using Cha-
meleos in Figure 3. The grsecurity extension is imported
using the import statement. The contents of the grsecurity
extension file (named grsecurity.extension) are:

1Although /etc/ssh is actually a directory, UNIX considers
directories as files.

2-290

allow sshd _t sshd _tmp_t:file { create read write
getattr setattr link

 unlink rename };

allow sshd _t sshd _tmp_t:notdevfile_class_set create_file_perms;

Permission(s)
(Allow)

Mode of
operation

Subject
(Type: domain)

Object
(Type: file)

Object
(Type:Set(notdevfile _class_set)) Set(Permissions(create_file_perms))

Figure 4: Excerpt of an SELinux policy annotated
with Chameleos directives.

subject_type executable;
perm perm_r, perm_w, perm_x;
object_type file, capability;
group d, p;
assoc extension;

We define the global policy directive as default-deny using
the global_policy function. We then define the subject
block for /usr/sbin/sshd and create the association with
the d and p extensions using the assoc statement. Within
the subject block, we define each object and the subject’s
permissions, using object blocks and the perm statement.
We can define the object type for each object as an argument
to the object statement.

It can be observed that Chameleos is flexible enough to
capture all the elements of the grsecurity policy. Also, it is
sufficiently extensible to capture grsecurity-specific charac-
teristics, such as the extensions (via the assoc statement).

4.3 Security-Enhanced Linux (SELinux)
SELinux has the most comprehensive support for access

control policies among our target systems. An excerpt of an
SELinux policy is shown in Figure 4. There are two similar
statements in this policy, with some differences in terms of
granularity. We shall discuss each statement in turn.

The first statement permits a subject in the sshd_t do-
main to perform a set of operations (create, read, write, link,
unlink, rename, and set and get the attributes) to an object
of type sshd_tmp_t of object class file. An administrator
who wishes to replicate these permissions to multiple files
has two options: (1) use a similar statement for each single
file that need to adopt these permissions; or (2) group the
permissions into a set, and assign the set to the files instead.
Option 1 would introduce a lot of repeating statements,
which may reduce the readability of the policy. Therefore,
Option 2 would be more favorable, as shown in the second
statement. A subject in the domain sshd_t can now execute
any of the permissions given in the create_file_perms set
to any object of type sshd_tmp_t, provided that it is in the
object class notdevfile_class_set set. This means that an
sshd_t subject can now create, read, modify, delete, and re-
name any non-device file as long as it is of type sshd_tmp_t.

While the second statement provides a more convenient
method to express permissions that are similar to the first
statement, it loses some granularity in the process. For
instance, if the create_file_perms set includes more (or
less) permissions than those declared in the first statement,
the administrator might unintentionally allow more (or less)

import selinux.extension;

/* First statement. */
opmode(allow)
{

subject("sshd_t", domain)
{

object("sshd_tmp_t", file)
{

perm(allow, p_create, p_read, p_write,
p_getattr, p_setattr, p_link,
p_unlink, p_rename);

}
}

}

/* Second statement. */
define_set(notdevfile_class_set,

file, lnk_file, sock_file, fifo_file);

define_set(create_file_perms,
p_create, p_read, p_write, p_getattr,
p_setattr, p_link, p_unlink, p_rename);

opmode(allow)
{

subject("sshd_t", domain)
{

object("sshd_tmp_t", notdevfile_class_set)
{

perm(allow, create_file_perms);
}

}
}

Figure 5: The SELinux policy from Figure 4 repre-
sented using Chameleos.

permissions than what was initially desired. Sets and other
convenience functions should therefore be used with care.

Chameleos can represent this SELinux policy excerpt us-
ing the extension presented earlier in Section 3.2. The state-
ments in Figure 4 can be supported with Chameleos using
the Chameleos policy in Figure 5, which is described as fol-
lows: The first statement declares allow as a mode of opera-
tion using the Chameleos opmode statement, since SELinux
supports many types of operation in a single file. sshd_t

is declared as a subject of type domain, and sshd_tmp_t is
declared as an object of type file to represent the SELinux
object class. The multiple permissions can also be specified
as Chameleos permissions. For the second statement, we
use the Chameleos set function define_set to define the
notdevfile_class_set and create_file_perms sets. In
both statements, Chameleos allows the subject to execute
the permissions on the corresponding object.

4.4 Feature Comparison
We summarize this section by presenting Table 1 that

compares the features of Chameleos with SELinux, Systrace,
and grsecurity. We first provide a general description of the
features listed in the first column of the table. Subjects and
objects are basic access control concepts. A subject is an
entity that is authorized (or not authorized) to access an
object. A typical subject could be a program while a typical
object could be a file. Subject type and object type refer to

2-291

Chameleos SELinux Systrace grsecurity

Target systems All security-aware systems Linux only OpenBSD, NetBSD, Linux only
in the OS domain MacOS X, and Linux

Subjects Generic System-specific System-specific System-specific
Objects Generic System-specific System-specific System-specific
Subject types Yes Represented using ABI only Files only

classes and types
Object types Yes Yes System calls only Files only
Variables Yes Yes No No
Macros Yes Yes (m4 macros) No No
Groups Yes No No No
Roles Yes Yes No Future version
Arbitrary sets Yes Yes No No
Compound Yes Yes Yes No
expressions
Association Yes Yes Yes Yes
Comparison Arbitrary System-specific System-specific System-specific
operators set set set
Aliases Yes No No No
Mode of Yes Yes No No
operation
Permissions Arbitrary System-specific System-specific System-specific
Hierarchies Yes Yes No No
Constraints Yes Yes No No
Specification Yes Yes No No
of defaults

Table 1: Feature comparison between Chameleos, SELinux, Systrace, and grsecurity.

the kind of subject (say, what kind of program) and the kind
of object (for instance, a specific kind of file) respectively.
To reduce repetition in policies, macros can be used. Groups
enable entities to be represented as a collective. Roles facili-
tate the assignment of permissions to users, where common
groups of permissions can be assigned to roles instead of
individual users (the latter would be tedious). Sets refer
to the ability to group related entities as a set. Compound
expressions allow multiple expressions to be joined, such as
the conjunction of multiple boolean expressions using com-
parison operators like AND and OR. Associations link one
entity to another, such as assigning a user to a role. Aliases
are similar to the typedef notion in C. Mode of operation
refers to the ability of statements to carry out different op-
erations. Hierarchies are used to support notions like role
hierarchies. Constraints allow us to restrict the number of
ways in which a policy statement can be specified. Specifi-
cation of defaults assigns default values to variables.

Throughout Table 1, the common theme is that Chame-
leos strives to be as generic as possible, while the other sys-
tems have features specific to their particular area. This de-
sign allows Chameleos to be flexible such that it can support
multiple security-aware systems. We have also attempted to
make the list of features as exhaustive as possible, so that
Chameleos can support the specific features of each system.

As an example, consider the types of permissions used by
various systems. UNIX uses read, write, and execute file
permissions. grsecurity introduces new permissions like the
ability to view hidden files (v). The Andrew File System
enables users to allow/deny listing of their files by other
users. To adequately support these permissions and those of
future systems, Chameleos supports arbitrary permissions.

Likewise, Chameleos supports arbitrary comparison oper-
ators. While most systems use regular (in)equality compar-
ison operators, some support special comparison operators.
For instance, Systrace uses match to compare regular expres-
sions. Support for arbitrary permissions and comparison
operators makes Chameleos extensible to more systems.

5. ONGOING AND FUTURE WORK
Chameleos began its life as a language to specify operating

system access control policies. We have faced the numerous
challenges and learned many lessons while designing and
developing Chameleos. Based on this experience, our cur-
rent plan for Chameleos is for it to support security-aware
systems outside the operating systems domain. Our new
vision for Chameleos is for it to be a family of languages
for multiple security-aware systems [15]. As a start, we in-
tend the Chameleos family to have three primary variants:
Chameleos-os (for operating systems), Chameleos-ids (for
intrusion detection systems), and Chameleos-fw (for fire-
walls). Covering these key security-aware systems would
enable organizations to evaluate their systems in a more
comprehensive and effective manner. For example, an or-
ganization will be able to use Chameleos to test the intro-
duction of a new web server and how it would affect IDS
signatures and firewall rules, with a single Chameleos pol-
icy. The new Chameleos architecture will support the ability
to automatically deploy and enforce translated policies.

To support these capabilities, we are currently building
a network testbed [15] to test multiple operating systems,
servers, firewalls, and IDSs. Our current focus is on UNIX-
based open source systems due to cost constraints, but we
do plan to support Windows-based systems at a later stage.

2-292

Apart from the renewed vision and plan for a Chame-
leos family of operating systems, we are also working on new
components for the Chameleos architecture. These compo-
nents include a syntax checker, analyzer, and reverse transla-
tor. The syntax checker would serve as the foundation for all
syntax checking requirements in the other components. The
analyzer would be used to analyze a Chameleos policy for
conflicts and ambiguities. The analyzer would have to take
constraints [3] and conflict resolution techniques [4] into ac-
count, especially for complex systems like SELinux [5]. The
reverse translator ’s role is to translate a system-specific pol-
icy into a Chameleos policy.

Other areas that we are working on include improvements
to the language itself, such as safety analysis, safety checks,
and support for dependencies among extensions (one likely
way to do this is to borrow concepts like inheritance from the
object-oriented world). In the usability area, we intend to
introduce stock Chameleos templates, which would help ad-
ministrators define Chameleos policies. This would be most
useful when using different variants in the Chameleos family.

6. CONCLUSION
We have presented the design of Chameleos, a flexible and

extensible language that can be used to represent the policies
of multiple security-aware systems. The goal of Chameleos is
to help organizations evaluate large and complex systems,
so that better decisions can be made on the design of a
large system, especially from the security angle. We adopt
a “write once, deploy everywhere” philosophy, where a single
Chameleos policy can be translated into specific policies for
multiple systems. This would be of tremendous benefit to
system evaluators, since they would not have to re-learn the
syntax of each and every new system they encounter.

Chameleos differs from other languages, where our aim is
to make it practically realizable and highly usable. This is
different from the goals of other languages that are more
theoretical in nature.

In this paper, we have demonstrated how Chameleos can
be used to represent the access control policies of grsecu-
rity and SELinux successfully and effectively. grsecurity and
SELinux are two very different security-aware systems, so
this shows that Chameleos is indeed flexible and extensible.

While the current version of Chameleos works with oper-
ating systems only, future versions will be in the form of a
family of languages for operating systems, firewalls, and in-
trusion detection systems. This would help organizations to
make even better evaluations of their systems and networks.

Acknowledgments
This work was partially supported at the Laboratory of In-
formation of Integration, Security and Privacy at the Uni-
versity of North Carolina at Charlotte by grants from the
National Science Foundation (NSF-IIS-0242393) and De-
partment of Energy Early Career Principal Investigator A-
ward (DE-FG02-03ER25565).

7. REFERENCES
[1] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A

logical framework for reasoning about access control
models. In Proceedings of the 6th ACM Symposium on
Access Control Models and Technologies, pages 41–52,
Chantilly, VA, 2001.

[2] W. Boebert and R. Kain. A practical alternative to
hierarchical integrity policies. In Proceedings of the 8th
National Computer Security Conference, 1985.

[3] T. Jaeger. On the increasing importance of
constraints. In Proceedings of the 4th ACM Workshop
on Role-Based Access Control, pages 33–42, Fairfax,
VA, October 1999.

[4] T. Jaeger, A. Edwards, and X. Zhang. Managing
access control policies using access control spaces. In
Proceedings of the 7th ACM Symposium on Access
Control Models and Technologies, pages 3–12,
Monterey, CA, June 2002.

[5] T. Jaeger, R. Sailer, and X. Zhang. Resolving
constraint conflicts (to appear). In Proceedings of the
9th ACM Symposium on Access Control Models and
Technologies (SACMAT 2004), IBM T.J. Watson
Research Center, Yorktown Heights, NY, June 2004.

[6] S. Jajodia, P. Samarati, and V. Subrahmanian. A
logical language for expressing authorizations. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 31–42, Oakland, CA, May 1997.

[7] S. Jajodia, P. Samarati, V. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 474–485, May 1997.

[8] G. Karjoth and M. Schunter. A privacy policy model
for enterprises. In Proceedings of the 15th IEEE
Computer Security Foundations Workshop, Nova
Scotia, Canada, June 2002. IEEE Computer Society
Press.

[9] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the Linux operating
system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference (FREENIX
’01), June 2001.

[10] NSA. Security-Enhanced Linux.
http://www.nsa.gov/selinux/.

[11] OASIS. OASIS eXtensible Access Control Markup
Language TC. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=xacml.

[12] N. Provos. Improving host security with system call
policies. In Proceedings of the 12th USENIX Security
Symposium, Washington, DC, August 2003.

[13] C. Rippert. Protection in flexible operating system
architectures. ACM SIGOPS Operating Systems
Review, 37(4):8–18, October 2003.

[14] B. Spengler. grsecurity. http://www.grsecurity.net/.

[15] L. Teo and G.-J. Ahn. Towards effective security
policy management for large and heterogeneous
environments. Technical Report UNCC-SIS-06, UNC
Charlotte, Spring 2005.

[16] L. Teo and G.-J. Ahn. Towards the specification of
access control policies on multiple operating systems.
In Proceedings of the 5th IEEE Workshop on
Information Assurance, pages 210–217, United States
Military Academy, West Point, NY, June 2004.

[17] H. F. Wedde and M. Lischka. Modular authorization.
In Proceedings of the 6th ACM Symposium on Access
Control Models and Technologies, pages 97–105,
Chantilly, VA, 2001.

2-293

