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Abstract—Fuzzing is a simple yet effective approach to discover
software bugs utilizing randomly generated inputs. However, it
is limited by coverage and cannot find bugs hidden in deep
execution paths of the program because the randomly generated
inputs fail complex sanity checks, e.g., checks on magic values,
checksums, or hashes.

To improve coverage, existing approaches rely on imprecise
heuristics or complex input mutation techniques (e.g., symbolic
execution or taint analysis) to bypass sanity checks. Our novel
method tackles coverage from a different angle: by removing
sanity checks in the target program. T-Fuzz leverages a coverage
guided fuzzer to generate inputs. Whenever the fuzzer can
no longer trigger new code paths, a light-weight, dynamic
tracing based technique detects the input checks that the fuzzer-
generated inputs fail. These checks are then removed from the
target program. Fuzzing then continues on the transformed
program, allowing the code protected by the removed checks
to be triggered and potential bugs discovered.

Fuzzing transformed programs to find bugs poses two chal-
lenges: (1) removal of checks leads to over-approximation and
false positives, and (2) even for true bugs, the crashing input on
the transformed program may not trigger the bug in the original
program. As an auxiliary post-processing step, T-Fuzz leverages
a symbolic execution-based approach to filter out false positives
and reproduce true bugs in the original program.

By transforming the program as well as mutating the input, T-
Fuzz covers more code and finds more true bugs than any existing
technique. We have evaluated T-Fuzz on the DARPA Cyber
Grand Challenge dataset, LAVA-M dataset and 4 real-world
programs (pngfix, tiffinfo, magick and pdftohtml). For
the CGC dataset, T-Fuzz finds bugs in 166 binaries, Driller in
121, and AFL in 105. In addition, found 3 new bugs in previously-
fuzzed programs and libraries.

I . I N T R O D U C T I O N

Fuzzing is an automated software testing technique that

discovers faults by providing randomly-generated inputs to a

program. It has been proven to be simple, yet effective [1], [2].

With the reduction of computational costs, fuzzing has become

increasingly useful for both hackers and software vendors, who

use it to discover new bugs/vulnerabilities in software. As such,

fuzzing has become a standard in software development to

improve reliability and security [3], [4].

Fuzzers can be roughly divided into two categories based on

how inputs are produced: generational fuzzers and mutational

fuzzers. Generational fuzzers, such as PROTOS [5], SPIKE [6],

and PEACH [7], construct inputs according to some provided

format specification. By contrast, mutational fuzzers, including

AFL [8], honggfuzz [9], and zzuf [10], create inputs by ran-

domly mutating analyst-provided or randomly-generated seeds.

Generational fuzzing requires an input format specification,

which imposes significant manual effort to create (especially

when attempting to fuzz software on a large scale) or may

be infeasible if the format is not available. Thus, most recent

work in the field of fuzzing, including this paper, focuses on

mutational fuzzing.

Fuzzing is a dynamic technique. To find bugs, it must trigger

the code that contains these bugs. Unfortunately, mutational

fuzzing is limited by its coverage. Regardless of the muta-

tion strategy, whether it be a purely randomized mutation or

coverage-guided mutation, it is highly unlikely for the fuzzer

to generate inputs that can bypass complex sanity checks in

the target program. This is because, due to their simplicity,

mutational fuzzers are ignorant of the actual input format

expected by the program. This inherent limitation prevents

mutational fuzzers from triggering code paths protected by

sanity checks and finding “deep” bugs hidden in such code.

Fuzzers have adopted a number of approaches to better

mutate input to satisfy complex checks in a program. AFL [8],

considered the state-of-art mutational fuzzer, uses coverage

to guide its mutation algorithm, with great success in real

programs [11]. To help bypass the sanity checks on magic

values in the input files, AFL uses coverage feedback to heuris-

tically infer the values and positions of the magic values in the

input. Several recent approaches [12], [13], [14], [15] leverage

symbolic analysis or taint analysis to improve coverage by

generating inputs to bypass the sanity checks in the target

program. However, limitations persist — as we discuss in

our evaluation, state-of-the-art techniques such as AFL and

Driller find vulnerabilities in less than half of the programs

in a popular vulnerability analysis benchmarking dataset (the

challenge programs from the DARPA Cyber Grand Challenge).

Recent research into fuzzing techniques focuses on finding

new ways to generate and evaluate inputs. However, there

is no need to limit mutation to program inputs alone. In

fact, the program itself can be mutated to assist bug finding

in the fuzzing process. Following this intuition, we propose
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Transformational Fuzzing, a novel fuzzing technique aimed

at improving the bug finding ability of a fuzzer by disabling

input checks in the program. This technique turns the dynamic

code coverage problem on its head: rather than necessitating

time-consuming and heavyweight program analysis techniques

to generate test cases to bypass complex input checks in the

code, we simply detect and disable these sanity checks. Fuzzing

the transformed programs allows an exploration of code paths

that were previously-protected by these checks, discovering

potential bugs in them.

Of course, removing certain sanity checks may break the

logic of the original program and the bugs which are found in

transformed programs may thus contain false positives, poten-

tially overwhelming the analyst. To remove false positives, we

develop a post-processing symbolic execution-based analysis.

The remaining inputs reproduce true bugs in the original

program. Though this method is complex and heavyweight

(like test case mutation techniques of related work), it only

needs to be done to verify detections after the fact, and (unlike

existing test case mutation techniques) does not slow down the

actual analysis itself.

To show the usefulness of transformational fuzzing, we

developed a prototype named T-Fuzz. At its base, it employs

an off-the-shelf coverage-guided fuzzer to explore a program.

Whenever the fuzzer can no longer generate new inputs to trig-

ger unexplored code paths, a lightweight dynamic tracing-based

approach discovers all input checks that the fuzzer-generated

inputs failed to satisfy, and the program is transformed by

selectively disabling these checks. Fuzzing then continues on

the transformed programs.

In comparison to existing symbolic analysis based ap-

proaches, T-Fuzz excels in two aspects: (1) better scalability:

by leveraging lightweight dynamic tracing-based techniques

during the fuzzing process, and limiting the application of

heavyweight symbolic analysis to detected crashes, the scala-

bility of T-Fuzz is not influenced by the need to bypass complex

input checks; and (2) the ability to cover code paths protected

by “hard” checks.

To determine the relative effectiveness against state-of-the-

art approaches, we evaluated T-Fuzz on a dataset of vulnerable

programs from the DARPA Cyber Grand Challenge (CGC),

the LAVA-M dataset, and four real-world programs relying on

popular libraries (pngfix/libpng, tiffinfo/libtiff,

magick/ImageMagick and pdftohtml/libpoppler).

In the CGC dataset, T-Fuzz finds bugs in 166 binaries out of

296, improving over Driller [12] by 45 binaries and over AFL

by 61 binaries, and demonstrating the effectiveness of trans-

formational fuzzing. Evaluation of the LAVA-M dataset shows

that T-Fuzz significantly outperforms Steelix and VUzzer in

the presence of “hard” input checks, such as checksums. The

ground truth provided by these two datasets allows us to

determine that our tool is able to filter out false positives at

the cost of surprisingly few false negatives (6%-30%). Finally,

the evaluation of T-Fuzz on real-world applications leads to

the discovery of 3 new bugs.

In summary, this paper makes the following contributions:
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Fig. 1: Secure compressed file format

1) We show that fuzzing can more effectively find bugs by

transforming the target program, instead of resorting to

heavy weight program analysis techniques.

2) We present a set of techniques that enable fuzzing to

mutate both inputs and the programs, including techniques

for (i) automatic detection of sanity checks in the target

program, (ii) program transformation to remove the de-

tected sanity checks, (iii) reproducing bugs in the original

program by filtering false positives that only crash in the

transformed program.

3) We evaluated T-Fuzz on the CGC dataset, LAVA-M

dataset and 4 real-world programs. Experimental results

show the effectiveness of our technique as compared to

other state-of-art fuzzing tools.

4) We found 3 new bugs: two in magick/ImageMagicK
and one in pdftohtml/libpoppler.

I I . M O T I VAT I O N

State-of-art mutational fuzzers like AFL (American Fuzzy

Lop) [8] and honggfuzz [9] — called coverage guided fuzzers —

use coverage as feedback from the target program to guide the

mutational algorithm to generate inputs. Specifically, they keep

track of a set of interesting inputs that triggered new code paths

and focus on mutating the interesting inputs while generating

new inputs. However, generation of inputs to pass through

complex sanity checks remains a well-known challenge for

mutational fuzzers because they are ignorant of the expected

input format. When mutational fuzzers fail to generate inputs

to bypass the sanity checks, they become “stuck” and continue

to generate random inputs without covering new code paths.

As an example, Figure 1 shows a secure compressed file

format: the first 4 bytes are a file header which contains

hardcoded magic values (“SECO”); the Keys field declares

95 unique chars whose ASCII values must be within the range

of [32, 126]; the Len field specifies the length of the following

compressed data; and finally a 4-byte CRC field to integrity

check the compressed data. The example is based on CGC

KPRCA 00064, extended with a CRC check.

Listing 1 is a program that parses and decompresses the

compressed file format shown above. It has a “deep” stack

buffer overflow bug in decompress function in line 31. Before

calling decompress, the program performs a series of checks

on the input:

C1. check on the magic values of the header field in line 8.

C2. check for range and uniqueness on the next 95-byte Keys

field in line 13-18.

C3. check on the CRC field for potential data corruption in

line 24.

If any of these checks fail, the input is rejected without calling

decompress, thereby not triggering the bug.

These checks highlight the challenges in mutational fuzzers

and related techniques. First of all, it takes a lot of effort for a
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1

2 #define KEY_SIZE 95
3 int sc_decompress(int infd, int outfd) {
4 unsigned char keys[KEY_SIZE];
5 unsigned char data[KEY_SIZE];
6 char *header = read_header(infd)
7 // C1: check for hardcoded values
8 if (strcmp(header, "SECO") != 0)
9 return ERROR;

10 read(infd, keys, KEY_SIZE);
11 memset(data, 0, sizeof(data));
12 // C2: range check and duplicate check for keys
13 for (int i = 0; i < sizeof(data); ++i) {
14 if (keys[i] < 32 || keys[i] > 126)
15 return ERROR;
16 if (data[keys[i] - 32]++ > 0)
17 return ERROR;
18 }
19 unsigned int in_len = read_len(infd);
20 char *in = (char *) malloc(in_len);
21 read(infd, in, in_len);
22 unsigned int crc = read_checksum(infd);
23 // C3: check the crc of the input
24 if (crc != compute_crc(in, in_len)) {
25 free(in);
26 return ERROR;
27 }
28 char *out;
29 unsigned int out_len;
30 // Bug: function with stack buffer overflow
31 decompress(in, in_len, keys, &out, &out_len);
32 write(outfd, out, out_len);
33 return SUCCESS;
34 }

Listing 1: An example containing various sanity checks

mutational fuzzer like AFL [8] to bypass C1 without the help

of other techniques. As mutational fuzzers are unaware of the

file format, they will struggle to bypass C2 or C3. Additionally,

although symbolic analysis based approaches like Driller [12]

can quickly bypass C1 and C2 in this program, they will fail

to generate accurate inputs to bypass C3 as the constraints

derived from the checksum algorithm are too complex for

modern constraint solvers [16]. It is therefore unlikely that the

buggy decompress function will be triggered through either

mutational fuzzing or symbolic analysis.

Regarding sanity checks in the context of fuzzing, we make

the following observations:

1) Sanity checks can be divided into two categories: NCC
(Non-Critical Check) and CC (Critical Check). NCCs are

those sanity checks which are present in the program logic

to filter some orthogonal data, e.g., the check for a magic

value in the decompressor example above. CCs are those

which are essential to the functionality of the program,

e.g., a length check in a TCP packet parser.

2) NCCs can be removed without triggering spurious bugs as

they are not intended to prevent bugs. Removal of NCCs

simplifies fuzzing as the code protected by these checks

becomes exposed to fuzzer generated inputs. Assume

we remove the three checks in the decompressor above,

producing a transformed decompressor. All inputs gener-

ated by the fuzzer will be accepted by the transformed

decompressor and the buggy decompress function will be

covered and the bug found.

3) Bugs found in the transformed program can be reproduced

in the original program. In the decompressor above, as

the checks are not intended for preventing the stack buffer

overflow bug in the decompress function, bugs found

in the transformed decompressor are also present in the

original decompressor. Assume that the fuzzer found a

bug in the transformed decompressor with a crashing input

X , it can be reproduced in the original decompressor by

replacing the Header, Keys, and CRC fields with values

that satisfy the check conditions in the program.

4) Removing CCs may introduce spurious bugs in the

transformed program which may not be reproducible in

the original program. These false positive bugs need to

be filtered out during a post-processing phase to ensure

that only the bugs present in the original program are

reported.

NCCs are omnipresent in real-world programs. For example

on Unix systems, all common file formats use the first few bytes

as magic values to identify the file type. In network programs,

checksums are widely used to detect data corruption.

Based on these observations, we designed T-Fuzz to improve

fuzzing by detecting and removing NCCs in programs. By

removing NCCs in the program, the code paths protected

by them will be exposed to the fuzzer generated inputs and

potential bugs can be found. T-Fuzz additionally helps fuzzers

cover code protected by “hard” sanity checks like C3 in

Listing 1.

I I I . T- F U Z Z I N T U I T I O N

Figure 2 depicts the main components and overall workflow

of T-Fuzz. Here we summarize its main components, the details

will be covered in the following section.

Fuzzer: T-Fuzz uses an existing coverage guided fuzzer, e.g.,

AFL [8] or honggfuzz [9], to generate inputs. T-Fuzz

depends on the fuzzer to keep track of the paths taken by

all the generated inputs and realtime status information

regarding whether it is “stuck”. As output, the fuzzer

produces all the generated inputs. Any identified crashing

inputs are recorded for further analysis.

Program Transformer: When the fuzzer gets “stuck”, T-Fuzz

invokes its Program Transformer to generate transformed

programs. Using the inputs generated by the fuzzer,

the Program Transformer first traces the program under

test to detect the NCC candidates and then transforms

copies of the program by removing certain detected NCC

candidates.

Crash Analyzer: For crashing inputs found against the trans-

formed programs, the Crash Analyzer filters false positives

using a symbolic-execution based analysis technique.

Algorithm 1 shows how a program is fuzzed using T-Fuzz.

First, T-Fuzz iteratively detects and disables NCC candidates

that the fuzzer encounters in the target program. A queue

(programs) is used to save all the programs to fuzz in

each iteration, and initially contains the original program. In
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Fig. 2: Overview of T-Fuzz

each iteration, T-Fuzz chooses a program from the queue and

launches a fuzzer process (in the algorithm, the invocation

of Fuzzer) to fuzz it until it is unable to generate inputs

that further improve coverage. Using inputs generated by the

fuzzer before it gets “stuck”, T-Fuzz detects additional NCC

candidates and generates multiple transformed programs (by

invoking Program_Transformer) with different NCCs

disabled. The transformed programs are added to the queue

for fuzzing in the following iterations. All crashes found by

the Fuzzer in each iteration are post-processed by the Crash

Analyzer to identify false positives.

Algorithm 1: Fuzzing with T-Fuzz

Input: program: original program

1 programs← {program}
2 while programs �= ∅ do
3 p← Choose Program(programs)
4 inputs← Fuzzer(p)
5 programs←

programs ∪ Program Tranformer(p, inputs)

I V. T- F U Z Z D E S I G N

In this section we describe T-Fuzz and discuss the technical

details of its key components. T-Fuzz uses an off-the-shelf

version AFL for its fuzzer. The design and details of mutational

fuzzing are orthogonal to this work and covered in [17] for

AFL.

Detecting NCCs: Detecting NCCs is the most important step

in T-Fuzz. To this end, different approaches are possible. For

performance reasons, in T-Fuzz we over-approximate NCCs

to all the checks that fuzzer-generated inputs could not bypass
and leverage an imprecise, light-weight dynamic tracing based

approach to detect them. This gives us a set of NCC Candidates
(shown in Section IV-A). As the detected NCC Candidates may

contain other sanity checks, fuzzing the transformed program

may result in false positives.

Program Transformation: Program Transformation is the

process of removing the detected NCC candidates in the

target program. In T-Fuzz, we use binary rewriting to negate

detected NCC candidates in the target program. The details

are presented in Section IV-C.

Filtering out False Positives and Reproducing true bugs:

As mentioned above, the bugs found by fuzzing the transformed

program may contain false positives. To help the analyst

identify true bugs, as post processing, we provide a symbolic

analysis pass that filters false positives (Section IV-D). As it

relies on symbolic analysis, it may not work in the presence

of “hard” checks. In that case, manual analysis is needed.

A. Detecting NCC Candidates

To detect the NCCs in a program, different options are

available with varying precision and overhead. For example,

we can use complex data flow and control flow analysis to track

dependencies between the sanity checks in the program and

input. This approach has good precision, but involves very high

overhead (which is extremely detrimental for fuzzing, as fuzzers

are heavily optimized for performance), and often needs to be

based on fairly brittle techniques (which is detrimental to the

applicability of the technique). Considering this, in T-Fuzz, we

use a less precise, but lightweight approach that approximates

NCCs; we use the set of checks that could not be satisfied by

any fuzzer-generated inputs when the fuzzer gets stuck.

Sanity checks are compiled into conditional jump instruc-

tions in the program, and represented as a source basic block

S with 2 outgoing edges in the control flow graph (CFG)1.

Each outgoing edge corresponds to either True or False of the

condition, which are denoted as T and F respectively. Failing

to bypass a sanity check means that only the T or F edge is

ever taken by any fuzzer-generated input.

In T-Fuzz we use all the boundary edges in the CFG — the

edges connecting the nodes that were covered by the fuzzer-

generated inputs and those that were not — as approximation
of NCC candidates. Denote all the nodes in the CFG of the

program as N and all the edges as E, and let CN be the

union of executed nodes, CE be the union of taken edges by

all inputs in I . The boundary edges mentioned above can be

formalized as all edges e satisfying the following conditions:

1) e is not in CE;

2) source node of e is in CN ;

Algorithmically, T-Fuzz first collects the cumulative node

and edge coverage executed by the fuzzer generated inputs.

Then, it uses this cumulative coverage information to calculate

the NCC candidates. T-Fuzz uses a dynamic tracing based

approach to get the cumulative edge and node coverage for a

set of inputs. As shown in Algorithm 3, for each input i, it

invokes dynamic trace to get the sequence of executed edges

under input i. The union of edges and nodes in all traces of

inputs is returned.

Algorithm 2 shows how NCC candidates are detected

based on the cumulative edge and node coverage collected by

Algorithm 3. It builds the CFG of the program and then iterates

over all the edges, returning those that satisfy the conditions

shown above as NCC candidates.

1To simplify the discussion we assume that switch statements are compiled
to a tree of if conditions, instead of a jump table, although the tool itself makes
no such assumption.
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Algorithm 2: Detecting NCC candidates

Input: program: The binary program to be analyzed

Input: CE: cumulative edge coverage

Input: CN : cumulative node coverage

1 cfg ← CFG(program)
2 NCC ← ∅

3 for e ∈ cfg.edges do
4 if e �∈ CE ∧ e.source ∈ CN then
5 NCC ← NCC ∪ {e}

Output: NCC: detected NCC candidates

Algorithm 3: Calculating cumulative edge and node

coverage

Input: inputs: inputs to collect cumulative coverage

1 CE ← ∅

2 CN ← ∅

3 for i ∈ inputs do
4 trace← dynamic trace(i)
5 for e ∈ trace do
6 CE ← CE ∪ {e}
7 CN ← CN ∪ {(e.source, e.destination)}

Output: CE: cumulative edge coverage

Output: CN : cumulative node coverage

We use the following example to demonstrate the effect of

this algorithm. Listing 2 takes 16 bytes as input and uses the

first two bytes as magic values and the third byte to decide

whether to use format1 or format2 to process the input.

Figure 3a shows the CFG of the program.

Assume the fuzzer component has generated a set of in-

puts {“123...”, “A12..”, “AB ...”, “AB{...”}, and gets “stuck”

without being able to cover format1 and format2 we

are interested in. Running our algorithm we can easily

detect the sanity checks that are guarding the invocation

of format1 and format2. As “123...” triggers execu-

tion path A→H, “A12..” triggers execution path A→B→H,

“AB ..” triggers A→B→C→E→G→H, and “AB{..” triggers

A→B→C→D→H, the cumulative node and edge coverage are

{A, B, C, D, E, G, H} and { A→H, A→B, B→H, B→C, C→D,

D→H, C→E, E→G, G→H} (see Figure 3b), and the detected

NCC candidates are {C→D, E→H, G→I} (see Figure 3c).

Obviously D→F and G→I are the sanity checks that preventing

the fuzzer generated inputs to cover format1 and format2.

B. Pruning Undesired NCC Candidates

The NCC candidates detected using the algorithm in Sec-

tion IV-A is an over-approximation of sanity checks and may

contain undesired checks. Before feeding the NCC candidates

from Algorithm 2 into the Program Transformer, a filtering

step prunes any undesired candidates that we deem unlikely

to help bug finding. We list the types of undesired checks we

encountered, the consequences of removing these checks, and

our approaches to remove undesired checks.

1 void main() {
2 char x[16];
3 read(stdin, x, 16);
4

5 if (x[0] == ’A’ && x[1] == ’B’) {
6 if (x[2] >= ’a’) {
7 if (x[2] <= ’z’) {
8 format1(x);
9 } else {

10 goto failure;
11 }
12 } else {
13 if (x[2] >= ’A’ && x[2] <= ’Z’) {
14 format2(x);
15 } else {
16 goto failure;
17 }
18 }
19 }
20 failure:
21 error();
22 }

Listing 2: An example demonstrating the effect of NCC

detection algorithm

1 void main() {
2 char x[10];
3

4 if (read(0, x, 10) == -1)
5 goto failure;
6 // main logic for processing x
7 ...
8 return;
9 failure:

10 error();
11 }

Listing 3: An program showing check for error code

Algorithm 2 in Section IV-A detects NCC candidates in all

executed (or not executed) code. When fuzzing, we are often

interested in just the program executable or a specific library.

In a first step, we therefore prune any candidates that are not

in the desired object.

The second source of undesired checks are checks for error

codes that immediately terminate the program. For example

in the program shown in Listing 3, the return value of the

read system call is checked for possible errors in line 4. As

read errors happen infrequently, the error checking code is not

executed and thus detected as NCC candidate.

Treating these checks as NCCs does not result in useful

detections from T-Fuzz. Consider the detected check shown in

Listing 3. Removing the check results in a program execution

where only the error handling code is executed before the

program is abnormally terminated. It is unlikely for the fuzzer

to find bugs along this path.

Given that the program often terminates with very short code

paths after detecting such a severe error, we heuristically use the

number of basic blocks following the detected NCC candidate

as the length of code paths and define a threshold value to tell

an error handling code path. The intuition behind this approach

is to focus on NCCs that result in a large amount of increased

coverage compared to NCCs that immediately terminate the

program under test (due to, e.g., a severe error).
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(a) CFG of example program in Listing 2.
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(b) Cumulative edge and node coverage
of input set {“123...”, “A12...”, “AB ...”,
“AB{...”}. Cumulative nodes are greyboxes
and cumulative edges are solid arrows.
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(c) NCC candidates detected (red dashed
arrows).

Fig. 3: How NCC candidates are detected

C. Program Transformation

We considered different options to remove detected NCC

candidates, including as dynamic binary instrumentation, static

binary rewriting, and simply flipping the condition of the

conditional jump instruction. Dynamic binary instrumentation

often results in high overhead and static binary translation

results in additional complexity due to the changed CFG.

On the other hand, flipping conditions for conditional jumps

is straight-forward and neutral to the length of the binary,

providing the advantages of static rewriting without the need

for complex program analysis techniques. This technique

maintains the inverted path condition in the program, and the

path condition in the original program can be easily recovered.

T-Fuzz transforms programs by replacing the detected NCC

candidates with a negated conditional jump. Doing so maintains

the structure of the original program while keeping necessary

information to recover path conditions in the original program.

As the addresses of the basic blocks stay the same in the

transformed program, the traces of the transformed program

directly map to the original program. Maintaining the trace

mapping greatly reduces the complexity of analyzing the

difference between the original program and transformed

program in the Crash Analyzer.

Algorithm 4 shows the pseudo code of the Program Trans-

former. The Program Transformer takes a program to transform

and NCC candidates to remove as input. As there is at most

one jump instruction in a basic block, it simply scans all the

instructions in the source block of the NCC candidate and

overwrites the first conditional jump instruction with its negated

counterpart instruction. To keep track of the modified condi-

tional jump (by invocation of negate conditional jump), the

addresses of modified instructions are passed in as argument,

and the address of each modified instruction is recorded and

returned as part of the output.

Algorithm 4: Transforming program

Input: program: the binary program to transform

Input: c addrs: the addresses of conditional jumps

negated in the input program

Input: NCC: NCC candidates to remove

1 transformed program← Copy(program)
2 for e ∈ NCC do
3 basic block ←

BasicBlock(transformed program, e.source)
4 for i ∈ basic block do
5 if i is a conditional jump instruction and

i.addr /∈ c addrs then
6 negate conditional jump(program, i.addr)
7 c addrs← c addrs ∪ {i.addr}
8 break

Output: transformed program: the generated

program with NCC candidate disabled

Output: c addrs: the locations modified in the

transformed program

D. Filtering out False Positives and Reproducing Bugs

As the removed NCC candidates might be meaningful guards

in the original program (as opposed to, e.g., magic number

checks), removing detected NCC edges might introduce new

bugs in the transformed program. Consequently, T-Fuzz’s Crash

Analyzer verifies that each bug in the transformed program is

also present in the original program, thus filtering out false

positives. For the remaining true positives, an example input

that reproduces the bug in the original program is generated.

The Crash Analyzer uses a transformation-aware combi-

nation of the preconstrained tracing technique leveraged by

Driller [12] and the Path Kneading techniques proposed by

ShellSwap [18] to collect path constraints of the original

program by tracing the program path leading to a crash in
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Fig. 4: An example of transformed program

the transformed program. The satisfiability of the collected

path constraints indicates whether the crash is a false positive

or not. If the path constraints are satisfiable, the Crash Analyzer

reproduces the bug in the original program by solving the path

constraints.

To illustrate the idea behind the algorithm, we show a

transformed program P whose CFG is represented in Figure 4,

and a crashing input I . I executes a code path shown as grey

nodes in Figure 4, with the crash in Node6 at address CA.

Node1 and Node4 contain conditional jumps that are negated by

the Program Transformer and because of this, the T edges are

taken when executing I . The constraints associated with NCCs

in Node1 and Node4 are denoted as C1 and C4 respectively.

When the Crash Analyzer traces the transformed program,

it maintains two sets of constraints: one for keeping track of

the constraints in the transformed program (denoted as CT )

the other for keeping track of that in the original program

(denoted as CO). Before the tracing starts, I is converted

to a preconstraint (denoted as PC) and added to CT , this

ensures that the trace will follow the code path shown in

Figure 4. While tracing the transformed program, if the basic

block contains a negated conditional jump, the inverted path

constraint associated with the conditional jump is added to

CO, otherwise, the path constraints are added to CO. In this

example, ¬C1 and ¬C4 are added to CO. When the tracing

reaches the crashing instruction in the program, the cause of

the crash (denoted as CC) is encoded to a constraint and also

added to CO. For example, if it is an out-of-bound read or

write, the operand of the load instruction is used to encode the

constraint, if it is a divide by zero crash, the denominator of

the div instruction is used to encode the constraint. If the path

constraints in CO can be satisfied, it means that it is possible

to generate an input that will execute the same program path

and trigger the same crash in the original program. Otherwise

it is marked as a false positive.

The pseudo code of the Crash Analyzer is shown in Algo-

rithm 5. It takes the transformed program and the addresses

of negated conditional jumps, a crashing input and the crash

address in the transformed program as input. It traces the

transformed program with the crashing input as pre-constraints

using preconstraint trace instruction by instruction, and

collects the path constraints returned by it in TC. In case a

negated jump instruction is encountered, the inverted constraint

is saved in CO. In the end, the satisfiability of constraints in

CO is checked, if it is unsatisfiable, the input is identified as

a false positive, otherwise the constraints collected in CO can

be used to generate input to reproduce the bug in the original

program.

Algorithm 5: Process to filter out false positives

Input: transformed program: the transformed

program

Input: c addrs: addresses of negated conditional

jumps

Input: input: the crashing input

Input: CA: the crashing address

1 PC ← make constraint(input)
2 CT ← PC
3 CO ← ∅

4 TC, addr ←
preconstraint trace(transformed program,CT, entry)

5 while addr �= CA do
6 if addr ∈ c addrs then
7 CO ← CO ∪ ¬TC
8 else
9 CO ← CO ∪ TC

10 TC, addr ←
preconstraint trace(transformed program,CT, i)

11 CO ← CO ∪ extract crashing condition(TC)
12 result← SAT (CO)

Output: result: A boolean indicating whether input
is a false positive

Output: CO: The set of constraints for generating the

inputs in the original program

Note that, to err on the side of not overwhelming human

analysts with false detections, the Crash Analyzer errs on the

side of introducing false negatives over allowing false positives.

That is, it is possible that detections marked as false positives

by the Crash Analyzer, because they could not be directly

reproduced in a symbolic trace, do actually represent bugs

in the program. This will be discussed in detail in the case

study shown in Section V-E. Further improvements to the

Crash Analyzer, beyond transformation-aware symbolic tracing,

would improve T-Fuzz’s effectiveness.

E. Running Examples

To illustrate how the idea of filtering false positives and

reproducing bugs in the original program works, we provide

several concrete examples.

Listing 4 demonstrates a fuzzer’s weakness to bypass NCCs.

It reads an integer from the user and checks it against a specific

value. Then a second integer is read from the user and used

as a pointer to write an integer into the memory space. As

the likelihood that the fuzzer can generate the specific value

is exceedingly small, it is unlikely to find the bug.
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1 void main() {
2 int x, y;
3 read(0, &x, sizeof(x));
4 read(0, &y, sizeof(y));
5 if (x == 0xdeadbeef)
6 *(int *)y = 0;
7 }

Listing 4: A simple example showing how Crash Analyzer

reproduce bugs in the original program

Assume that the fuzzer has generated a few inputs that could

not bypass the check in line 5 and the NCC candidate detecting

algorithm has identified the transition from line 5 to line 6 as

a NCC candidate. Then the Program Transformer generates

a transformed program, negating the check condition (x !=
0xdeadbeef). Then the fuzzer can easily find the bug in

the transformed program.

Assume the fuzzer triggered the bug in the transformed

program with x = 0 and y = 1. When the Crash Analyzer

traces the transformed program, ¬(x! = 0xdeadbeef) will

be added to CO when it reaches the negated conditional

jumps shown in line 5. And when tracing reaches the crashing

instruction in line 6, the destination of the memory write will

be deemed as the crashing condition and thus y == 1 will

be added to CO. As {¬(x! = 0xdeadbeef), y == 1} is

satisfiable, the crash is a true bug in the original program.

And input (x = 0xdeadbeef, y = 1) can be used to

reproduce the bug in the original program.

Listing 5 is an example demonstrating how the Crash

Analyzer filters out false positives. The example program

contains a list of secrets in memory and reads an index from

the user to retrieve the secret at the position. To prevent out-

of-bound read, it checks the index is within the valid range or

not at line 6.

Assume the fuzzer generated inputs cannot bypass the checks

in line 6 and the algorithm has detected the transition from line

6 to line 7 as a NCC candidate and the Program Transformer

has generated a program with the negated condition (index
< 0 || index > 3) in line 6. Fuzzing the transformed

program, we could get a crash input index = 0x12345678
that incurs an invalid memory reference.

The Crash Analyzer traces the transformed program in the

same way shown as above, and when it reaches the condition

statement in line 6, the negated constraint (index >= 0 &&
index <= 3) is added to CO. And when tracing reaches the

crashing instruction shown in line 7, the operand for memory

read will be deemed as the crashing condition, thus index ==
0x12345678 will be added to CO, as {index >= 0 &&
index <= 3, index == 0x12345678} is unsatisfiable,

it is reported as a false positive.

V. I M P L E M E N TAT I O N A N D E VA L U AT I O N

We have implemented our prototype in Python based on a

set of open source tools: the Fuzzer component was built on

AFL [8], the Program Transformer was implemented using the

angr tracer [19] and radare2 [20], and the Crash Analyzer was

implemented using angr [21].

1 void main() {
2 char secrets[4] = "DEAD";
3 int index;
4 read(0, &index, sizeof(index));
5

6 if (index >= 0 && index <= 3)
7 output(secrets[index]);
8 }

Listing 5: An example showing how Crash Analyzer filters

out false positives

To determine T-Fuzz’s bug finding effectiveness, we per-

formed a large-scale evaluation on three datasets (the

DARPA CGC dataset, the LAVA-M dataset, and a set

of 4 real-world programs built on wide-spread libraries,

consisting of pngfix/libpng, tiffinfo/libtiff,

magick/ImageMagick, and pdftohtml/libpoppler)

and compared T-Fuzz against a set of state-of-art fuzzing tools.

The experiments were run on a cluster in which each node

is running Ubuntu 16.04 LTS and equipped with an Intel i7-

6700K processor and 32 GB of memory.

A. DARPA CGC Dataset

The DARPA CGC dataset [22] contains a set of vulnerable

programs used in the Cyber Grand Challenge event hosted

by DARPA. These programs have a wide range of authors,

functionalities, and vulnerabilities. Crucially, they also provide

ground truth for the (known) vulnerabilities in these programs.

The dataset contains a total of 248 challenges with 296

binary programs, as some of the challenges include multiple

vulnerable binaries. For each bug in these programs, the dataset

contains a set of inputs as a Proof of Vulnerability. These inputs

are used as ground truth in our evaluation. Programs in this

dataset contain a wide range of sanity checks on the input that

are representative of real world programs, and thus are used

widely as benchmark in related work [12], [13], [14].

In this evaluation, we run the CGC binaries with three

different configurations: (1) to evaluate T-Fuzz against heuristic

based approaches, we run AFL on the set of CGC binaries

; (2) to evaluate T-Fuzz against symbolic execution-based

approaches, we run Driller [12] on the CGC binaries; (3) we

run T-Fuzz on the same set of binaries. Each binary is fuzzed

for 24 hours with an initial seed of “fuzz”.

AFL. In this experiment, each binary is assigned one CPU

core. Before fuzzing starts, we create a dictionary using

angr [21]to help AFL figure out the possible magic values

used in the program.

Driller. When running the experiment with Driller [23],

each binary is assigned one CPU core for fuzzing and one

CPU core for dedicated concolic execution (i.e., Driller uses

two CPU cores, double the resources of the other experiments).

For resource limits, we use the same settings as the original

Driller evaluation [12].

T-Fuzz. To evaluate T-Fuzz, we assign the same CPU limits

as for AFL and use one CPU core (half the resources of the

Driller experiment). When multiple transformed binaries are

generated, they are queued and fuzzed in first-in-first-out order.
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Fig. 5: Venn diagram of bug finding results

TABLE I: Details of experimental results

Method Number of Binaries
AFL 105

Driller 121

T-Fuzz 166

Driller�AFL 16

T-Fuzz�AFL 61

Driller�T-Fuzz 10

T-Fuzz�Driller 45

To get an idea of the overall effectiveness of the system, we

evaluate the three different configurations and discuss the bugs

they found. To validate the T-Fuzz results (i.e., the stability

of T-Fuzz’s program transformation strategy), we performed

the DARPA CGC evaluation three times and verified that the

same set of vulnerabilities was found each time. This makes

sense, as aside from randomness in the fuzzing process, the

T-Fuzz algorithm is fully deterministic.

a) Comparison with AFL and Driller: As the results in

Figure 5 and Table I show, T-Fuzz significantly outperforms

Driller in terms of bug finding. Given the time budget and

resource limits mentioned above, T-Fuzz found bugs in 166

binaries (out of 296), compared to Driller which only found

bugs in 121 binaries and AFL which found bugs in 105 binaries.

All of the bugs found by AFL were discovered by both Driller

and T-Fuzz. T-Fuzz found bugs in 45 additional binaries in

which Driller did not, while failing to find bugs in 10 that Driller

managed to crash. It is important to note that all the bugs found

by T-Fuzz mentioned here are true positives, verified using the

ground truth that the CGC dataset provides. The false positives

resulting from T-Fuzz’s analysis are discussed later.

Out of these 166 binaries in which T-Fuzz found crashes,

45 contain complex sanity checks that are hard for constraint

solvers to generate input for. Failing to get accurate input that

is able to bypass the “hard” sanity checks from a symbolic

execution engine, the fuzzing engine (AFL) in Driller keeps

generating random inputs blindly until it uses up its time

budget without making any progress in finding new code

paths. This is where the difference between Driller and T-

Fuzz comes in. Once the fuzzer gets “stuck”, T-Fuzz disables

the offending conditional checks, and lets the fuzzer generate

inputs to cover code previously protected by them, finding

new bug candidates. We use a case study in Section V-E to

demonstrate the difference in detail.

Driller found bugs in 10 binaries for which T-Fuzz failed to

find (true) bugs. This discrepancy is caused by 2 limitations

in the current implementation of T-Fuzz. First, if a crash

caused by a false positive stemming from an NCC negation

occurs in the code path leading to a true bug, the execution of

the transformed program will terminate with a crash without

executing the vulnerable code where the true bug resides (L1).

T-Fuzz “lost” to Driller in three of the 10 binaries because of

this limitation. Secondly, when the true bug is hidden deep in

a code path containing many sanity checks, T-Fuzz undergoes

a sort of “transformation explosion”, needing to fuzz too many

different versions of transformed program to trigger the true

bug (L2). While this is not very frequent in our experiments,

it does happen: T-Fuzz failed to find the bugs in the remaining

7 binaries within the 24-hour time budget. We plan to explore

these issues in T-Fuzz in our future work.

These results show that T-Fuzz greatly improves the per-

formance of bug finding via fuzzing. By disabling the sanity

checks, T-Fuzz finds bugs in 45 more CGC binaries than Driller.

The additional bugs found by T-Fuzz are heavily guarded by

hard checks and hidden in deep code paths of programs.

Of course, there is no requirement to use only a single

analysis when performing fuzzing in the real world. The

union of detections from T-Fuzz and Driller is 176 identified

bugs, significantly higher than any other reported metric from

experimentation done on the CGC dataset.

b) Comparison with other tools: In Steelix [13], 8 bina-

ries of the CGC dataset were evaluated. Steelix only found

an additional bug in KPACA 00001. As mentioned in the

Steelix paper, the main challenge for fuzzing it is to bypass the

check for magic values inside the program. Using a manually-

provided seed that reaches the sanity check code in the program,

Steelix detects the comparison against magic values in the

program and successfully generates input that bypassed the

sanity check, finding the bug in less than 10 minutes. T-Fuzz

finds the bug in its first transformed program in around 15

minutes – without requiring manual effort to provide a seed

that reaches the checking code.

In VUzzer [14], 63 of the CGC binaries were evaluated with

a 6-hour time budget, among which VUzzer found bugs in 29.

T-Fuzz found bugs in 47 of the 63 binaries, 29 of which were

found within 6 hours. In the 29 binaries in which VUzzer

found bugs, T-Fuzz found bugs in 23 of them (in 6 hours).

T-Fuzz failed to find the bugs within a 24-hour time budget in

the remaining 6 for the same reasons mentioned above (2 for

L1 and 4 for L2). However, VUzzer is unable to run on the full

CGC dataset, making a comprehensive comparison difficult.

B. LAVA-M Dataset

The LAVA dataset contains a set of vulnerable programs

created by automatically injecting bugs using the technique

proposed in [24]. LAVA-M is a subset of the LAVA dataset

consisting of 4 utilities from coreutils, each of which contains
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multiple injected bugs. The authors evaluated a coverage

guided fuzzing tool (FUZZER) and a symbolic analysis based

tool (SES) for 5 hours [24]. The dataset was also used in

VUzzer [14] and Steelix [13] as part of their evaluation. As at

the time of this evaluation, Steelix is not available and VUzzer

cannot be run (due to dependencies on a closed IDA plugin),

we ran T-Fuzz for 5 hours on each of the binaries in LAVA-M

dataset to compare our results with those stated by the authors

of VUzzer and Steelix in their papers.

The evaluation results are summarized in Table II. The

results of T-Fuzz is shown in the last column and results from

other work are shown in other columns. It is important to

note that the bugs mentioned here are bugs that have been

confirmed by Crash Analyzer or manually. We first run Crash

Analyzer on the reported bugs and then manually analyzed the

ones marked as false positives by Crash Analyzer. From the

results we can see that T-Fuzz found almost the same number

of bugs as Steelix in base64 and uniq, far more bugs in

md5sum and less bugs in who than Steelix. The reasons are

summarized as follows:

• Steelix and VUzzer performed promisingly well on

base64, uniq and who because of two important facts.

First of all, bugs injected into these programs are all

protected by sanity checks on values copied from input

against magic bytes hardcoded in the program. Thus, the

static analysis tools used in Steelix or VUzzer can easily

recover the expected values used in the sanity checks that

guard the injected bugs. Secondly, the LAVA-M dataset

provides well-formated seeds that help the fuzzer reach

the code paths containing injected bugs. If either of the

conditions fails to hold, Steelix and VUzzer would perform

worse. However, with the inability to evaluate Steelix

(which is unavailable) and VUzzer (which we could not

run), this is hard to verify.

• T-Fuzz can trigger the bugs in code paths protected

by “hard” checks which both Steelix and VUzzer can

not bypass. In md5sum, T-Fuzz found 15 bugs that

were not found by Steelix. These bugs are protected

by sanity checks on values computed from the MD5

sum of specified files, instead of being copied from the

input directly. As the expected values can no longer be

constructed easily using the hardcoded values present in

the program, Steelix failed to find these bugs.

• T-Fuzz performed worse than Steelix in who due to the

limited time budget. As the number of injected bugs

is huge and each injected bug is protected by a sanity

check, T-Fuzz was limited by the emergent issue of

“transformal explosion” and generated 578 transformed

programs. Within 5 hours, T-Fuzz only found 63 bugs.

In summary, T-Fuzz performs well in comparison with

state-of-art fuzzing tools in terms of bug finding even given

conditions favorable for other counterparts. In the presence of

“hard” checks on the input, e.g. checksums, T-Fuzz performs

better than existing techniques for finding bugs ”guarded” by

such checks.

C. Real-world Programs

We evaluated T-Fuzz on a set of real-world program/library

pairs (pngfix/libpng, tiffinfo/libtiff, magick-
/libMagickCore, and pdftohtml/libpoppler) and

compare it against AFL in terms of crashes found. Each

program was fuzzed for 24 hours with random seeds of 32

bytes.

Table III summarizes the number of unique true-positive

crashes found by T-Fuzz and AFL. T-Fuzz found 11, 124, 2

and 1 unique crashes in pngfix, tiffinfo, magick and

pdftohtml respectively. AFL did not trigger any crashes in

pngfix, magick and pdftohtml and only found less than

half of the crashes T-Fuzz found in tiffinfo. As random

seeds were provided, AFL got stuck very quickly, failing to

bypass the sanity checks on the file type bytes (the file header

for PNG files, the “II” bytes for TIF files, etc.). Within 24

hours, although AFL succeeded in generating inputs to bypass

these checks, it failed to generate inputs that could bypass

further sanity checks in the code, thus being unable to find

bugs protected by them. In particular, in pngfix, magick,

and pdftohtml, the bugs found by T-Fuzz are hidden in

code paths protected by multiple sanity checks, and thus were

not found by AFL; in tiffinfo, AFL found crashes, failing

to find the 71 additional crashes caused by code paths that are

guarded by more sanity checks.

These larger real-world programs demonstrate drawbacks of

the underlying symbolic execution engine: angr simply does

not have the environment support to scale to these programs.

While this is not something that we can fix in the prototype

without extensive effort by the angr team itself, our observation

is that T-Fuzz actually causes surprisingly few false positives

in practice. For example, for pdftohtml, the true positive

bug was the only alert that T-Fuzz generated.

After inspecting the crashes resulting from T-Fuzz, we found

3 new bugs (marked by * in Table III): two in magick and

one in pdftohtml. It is important to note that these bugs

are present in the latest stable releases of these programs,

which have been intensively tested by developers and security

researchers. One of the new bugs found in magick has

already been fixed in a recent revision, and we have reported

the remaining 2 to the developers [25], [26], waiting to be

acknowledged and fixed. Importantly, AFL failed to trigger

any of these 3 bugs. As these bugs are hidden in code paths

protected by several checks, it is very hard for AFL to generate

inputs bypassing all of them. In constrast, T-Fuzz successfully

found them by disabling checks that prevented the fuzzer-

generated input to cover them.

D. False Positive Reduction

T-Fuzz utilizes a Crash Analyzer component to filter out false

positive detections stemming from program transformations.

This component is designed to avoid the situation, common

in related fields such as static analysis, where a vulnerability

detection tool overwhelms an analyst with false positives. In

this section, we explore the need for this tool, in terms of its

impact on the alerts raised by T-Fuzz.
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TABLE II: LAVA-M Dataset evaluation results

program Total # of bugs FUZZER SES VUzzer Steelix T-Fuzz

base64 44 7 9 17 43 43
md5sum 57 2 0 1 28 49
uniq 28 7 0 27 24 26
who 2136 0 18 50 194 63

TABLE III: Real-world programs evaluation results, with

crashes representing new bugs found by T-Fuzz in magick
(2 new bugs) and pdftohtml (1 new bug) and crashes repre-

senting previously-known bugs in pngfix and tiffinfo.

Program AFL T-Fuzz

pngfix + libpng (1.7.0) 0 11
tiffinfo + libtiff (3.8.2) 53 124
magick + ImageMagick (7.0.7) 0 2*
pdftohtml + libpoppler (0.62.0) 0 1*

False-positive-prone static analyses report false positive

rates of around 90% for the analysis of binary software [21],

[27]. Surprisingly, we have found that even in the presence

of program transformations that could introduce unexpected

behavior, T-Fuzz produces relatively few false-positive bug

detections. We present an analysis of the alerts raised by T-

Fuzz on a sampling of the CGC dataset and LAVA-M dataset

in Table IV and Table V, along with the reports from our Crash

Analyzer and ratio of false negatives.

In the CGC dataset, T-Fuzz provides the Crash Analyzer

component with 2.8 alerts for every true positive detection on

average, with a median of 2 alerts for every true positive. In

the LAVA-M dataset, T-Fuzz only raised Crash Analyzer with

1.1 alerts for each true bug on average. Compared to static

techniques, this is a significant advantage — even without the

Crash Analyzer component, a human analyst would have to

investigate only three alerts to locate an actual bug. Compared

with other fuzzing techniques, even with the aggressive false

positive reduction performed by the Crash Analyzer (resulting

in only actual bug reports as the output of T-Fuzz), T-Fuzz

maintains higher performance than other state-of-the-art sys-

tems.

As mentioned in Section IV-D, the Crash Analyzer may

mark as false positives detections that actually do hint at a bug

(but are not trivially repairable with the adopted approach),

resulting false negative reports. E.g., if there is a “hard” check

(e.g., checksum) that was disabled in the code path leading

to a crash found by T-Fuzz, applying Crash Analyzer on the

crash would involve solving hard constraint sets. As current

constraint solvers can not determine the SATness of such hard

constraint sets, Crash Analyzer would err on the false negative

side and mark it as a false bug. Another example is shown in

Section V-E. In the selected sample of CGC dataset shown in

Table IV, Crash Analyzer mark detected crash in the first 3

binaries as false alerts. In LAVA-M dataset, Crash Analyzer

has an average false negative rate of 15%. It shows a slightly

higher false negative rate (30%) in md5sum because 15 of

the detected crashes are in code paths protected by checks on

TABLE IV: A sampling of T-Fuzz bug detections in CGC

dataset, along with the amount of false positive alerts that

were filtered out by its Crash Analyzer.

Binary # Alerts # True Alerts # Reported Alerts % FN

CROMU 00002 1 1 0 100%

CROMU 00030 1 1 0 100%

KPRCA 00002 1 1 0 100%

CROMU 00057 2 1 1 0

CROMU 00092 2 1 1 0

KPRCA 00001 2 1 1 0

KPRCA 00042 2 1 1 0

KPRCA 00045 2 1 1 0

CROMU 00073 3 1 1 0

KPRCA 00039 3 1 1 0

CROMU 00083 4 1 1 0

KPRCA 00014 4 1 1 0

KPRCA 00034 4 1 1 0

CROMU 00038 5 1 1 0

KPRCA 00003 6 1 1 0

TABLE V: T-Fuzz bug detections in LAVA-M dataset, along

with the amount of false positive alerts that were filtered out

by its Crash Analyzer.

Program # Alerts # True Alerts # Reported Alerts % FN

base64 47 43 40 6%

md5sum 55 49 34 30%

uniq 29 26 23 11%

who 70 63 55 12%

MD5 checksums.

E. Case Study

CROMU 000302 contains a stack buffer overflow bug (line

11) in a code path guarded by multi-stage “hard” checks. As

shown in Listing 6, to reach the buggy code, the input needs

to bypass 10 rounds of checks and each round includes a basic

sanity check (line 19), a check on checksum (line 25) and a

check on the request (line 30, in handle packet).
When T-Fuzz fuzzes this binary, after roughly 1 hour of

regular fuzzing,the fuzzer gets “stuck”, failing to pass the

check in line 25. T-Fuzz stops the fuzzer and uses the fuzzer-

generated inputs to detect NCC candidates, pruning undesired

candidates using the algorithm from Section IV-A, returning

a set of 9 NCC candidates. Next T-Fuzz transforms the

original program and generates 9 different binaries (shown as

CROMU 00030 0-CROMU 00030 8 in Figure 6) with one

detected NCC candidate removed in each. They are then fuzzed

and transformed sequentially in FIFO order in the same way

2This program simulates a game over a protocol similar to IEEE802.11 and
is representative of network programs.
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Fig. 6: The transformed binaries T-Fuzz generates and fuzzes

1 int main() {
2 int step = 0;
3 Packet packet;
4 while (1) {
5 memset(packet, 0, sizeof(packet));
6 if (step >= 9) {
7 char name[5];
8 // stack buffer overflow BUG
9 int len = read(stdin, name, 25);

10 printf("Well done, %s\n", name);
11 return SUCCESS;
12 }
13 // read a packet from the user
14 read(stdin, &packet, sizeof(packet));
15 // initial sanity check
16 if(strcmp((char *)&packet, "1212") == 0) {
17 return FAIL;
18 }
19 // other trivial checks on the packet

omitted
20 if (compute_checksum(&packet) != packet.

checksum) {
21 return FAIL;
22 }
23 // handle the request from the user, e.g.,

authentication
24 if (handle_packet(&packet) != 0) {
25 return FAIL;
26 }
27 // all tests in this step passed
28 step ++;
29 }
30 }

Listing 6: Code excerpt of CROMU 00030, slightly

simplified for readability

as the original. When CROMU 00030 6 (marked as grey in

Figure 6), which is the binary with the check in line 8 negated,

is fuzzed, a crash is triggered within 2 minutes, which is the

true bug in the original binary. The total time it takes T-Fuzz

to find the bug is about 4 hours, including the time used for

fuzzing the original binary (CROMU 00030) and the time for

fuzzing CROMU 00030 0-CROMU 00030 5. After the real

bug is found by fuzzing CROMU 00030 6, T-Fuzz continues

to fuzz and transform other (transformed) binaries until it uses

up its time budget.

It is important to note that T-Fuzz can also find the bug by

fuzzing the transformed binary with the sanity checks in line

25 and 30 negated. In that case, all the user provided input

“bypasses” these two complex checks and the buggy code in

line 11 is executed after looping for 10 iterations. As we fuzz

the transformed binaries in FIFO order, this configuration is

not reached within the first 24 hours.

In contrast, Driller failed to find the bug in this binary.

Driller’s symbolic execution engine cannot produce an accurate

input to bypass the check in line 25, as it is too complex.

Unable to get inputs to guide execution through the sanity

check, the fuzzer blindly mutates the inputs without finding

any new paths until it uses up its time budget. Note also that

it is highly unlikely for Driller to generate input to bypass the

check in line 30 even without the check in line 25 because of

the complexity involved in encoding the state of the protocol.

Listing 6 also showcases an example where Crash Analyzer

marks a true bug as a false positive. As the step variable is

not read from user and initialized as 0 in line 2, when the

Crash Analyzer reaches the crash in CROMU 00030 6, the

accumulated constraints set is {step == 0, step >= 9} which

is UNSAT, thus it is marked as false positive. This bug was

identified by manual analysis.

V I . R E L AT E D W O R K

A large body of related work has tried to improve the

efficiency of fuzzing. For example, Rebert et al. [28] and

Woo et al.[29] propose empirical seed selection and fuzzing

scheduling algorithms to find more bugs in a given limited

computation budget, in AFLFast [30] and AFLGo [31] Böhme

et al. model fuzzing as a Markov chain, assigning more fuzzing

energy on low-frequency paths. The directions of such work are

orthogonal to the fundamental challenge that fuzzer-generated

inputs cannot bypass the complex sanity checks in programs.

Thus in this section, we focus our discussion on related work

that improves fuzzing by bypassing sanity checks in programs.

A. Feedback based Approaches

Feedback based approaches make heuristics of possible

magic values and their positions in the input based on feedback

from the target program. E.g., AFL [8] and libFuzzer [32]

can automatically guess syntax tokens based on the change in

coverage and mutate input based on those tokens [33]. Further,

AFL-lafintel [34] and improve the feedback by dividing a check

on multiple bytes values into multiple nested checks on one

byte values and Steelix [13] introduces “comparison progress”

of checks to the feedback.

These approaches are based on hindsight to extend coverage

past a check, i.e., the fuzzer must have already generated/mu-

tated an input that passes some check in the program. Also,
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these approaches cannot handle checks on values computed

on the fly or based on other input values such as checksums.

T-Fuzz, on the other hand, is not limited by such restrictions.

B. Symbolic and Concolic Execution based Approaches

Symbolic execution encodes the sanity checks along a

program path as a set of constraints (represented as logical

formula), reducing the problem of finding a passing input

to solving the encoded constraints. Several tools have imple-

mented symbolic execution, e.g., KLEE [35], Veritesting [36],

SAGE [37], DART [38], SYMFUZZ [39], CUTE [40], Smart-

Fuzz [41], and Driller [12], covering domains like automatic

testcase generation, automatic bug finding and fuzzing.

Among the tools mentioned above, Driller [12] is the closest

to T-Fuzz. Driller uses selective concolic execution to generate

inputs when the fuzzer gets “stuck”.As mentioned in previous

sections, symbolic and concolic execution based approaches,

including Driller, suffer in scalability and ability to cover code

paths protected by “hard” checks, where T-Fuzz excels.

C. Taint Analysis based Approaches

Dynamic taint analysis identifies the dependencies between

the program logic and input. Taintscope [15] focuses mutating

the security-sensitive parts of the input identified by dynamic

taint analysis. Other works apply additional analysis based on

the identified dependencies to improve input generation, e.g.,

VUzzer uses data-flow and control analysis, Dowser [42] and

BORG [43] use symbolic analysis.

Dynamic taint analysis is heavy weight, application of

other techniques (data and control flow analysis in VUzzer

and symbolic analysis in Dowser and BORG) adds up the

overhead. In contrast,T-Fuzz only uses lightweight dynamic

tracing technique for identifying and disabling sanity checks

in the target program.

D. Learning based Approaches

This category of approaches generate inputs by learning

from large amount of valid inputs. E.g., Skyfire [44] and

Learn&Fuzz [45] generate seeds or inputs for the fuzzer using

the learned probabilistic distribution of different values from

samples, while GLADE [46] generates inputs based on the

synthesized grammar learned from provided seeds.

Learning based approaches has been shown to be effective

in generating well structured inputs (e.g., XML files) for

fuzzers in Skyfire [44] and Learn&Fuzz [45]. However, it is

difficult to learn less structured inputs like images or complex

dependencies among different parts of data like checksums

without external knowledge. In addition, learning requires a

large corpus of valid inputs as training set. In contrast, T-Fuzz

does not have such limitations.

E. Program transformation based approaches

Some existing work uses the idea of program transformation

to overcome sanity checks in the target program, but requires

significant manual effort. E.g., Flayer [47] relies on user

provided addresses of the sanity checks to perform transfor-

mation. TaintScope [15] depends on a on a pair of inputs

with one able to bypass a sanity check on checksum and the

other not, requiring a significant amount of manual analysis.

MutaGen [48] depends on the availability and identification

of program code that can generate the proper protocols, a

process involving much manual effort. In addition, they use

dynamic instrumentation to alter the execution of the target,

which typically involves a slowdown of 10x in execution speed.

T-Fuzz is the only program transformation-based technique,

known to us, that is able to leverage program transformation,

in a completely automated way, to augment the effectiveness

of fuzzing techniques.

V I I . C O N C L U S I O N S

Mutational fuzzing so far has been limited to producing

new program inputs. Unfortunately, hard checks in programs

are almost impossible to bypass for a mutational fuzzer (or

symbolic execution engine). Our proposed technique, transfor-

mational fuzzing, extends the notion of mutational fuzzing to

the program as well, mutating both program and input.

In our prototype implementation T-Fuzz we detect whenever

a baseline mutational fuzzer (AFL in our implementation) gets

stuck and no longer produces inputs that extend coverage. Our

lightweight tracing engine then infers all checks that could

not be passed by the fuzzer and generates mutated programs

where the checks are negated. This change allows our fuzzer

to produce input that trigger deep program paths and therefore

find vulnerabilities hidden deep in the program itself.

We have evaluated our prototype on the CGC dataset,

the LAVA-M dataset, and 4 real-world programs (pngfix,

tiffinfo, magick and pdftohtml). In the CGC dataset,

T-Fuzz finds true bugs in 166 binaries, improving the re-

sults by 45 binaries compared to Driller and 61 binaries

compared to AFL alone. In the LAVA-M dataset, T-Fuzz

shows significantly better performance in the presence of

“hard” checks in the target program. In addition, we have

found 3 new bugs in evaluating real-world programs: two

in magick and one in pdftohtml. T-Fuzz is available at

https://github.com/HexHive/T-Fuzz.

Future work includes developing heuristics on combining

program transformation and input mutation to better cover the

large search space and better approaches to filter the set of

candidate crashes.
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[30] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in CCS. ACM, 2016, pp. 1032–1043.
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