Towards Realizing a Formal RBAC Model in Real Systems

Gail-Joon Ahn and Hongxin Hu
The University of North Carolina at Charlotte
{gahn,hxhu} @uncc.edu

ABSTRACT

There still exists an open question on how formal models
can be fully realized in the system development phase. The
Model Driven Development (MDD) approach has been re-
cently introduced to deal with such a critical issue for build-
ing high assurance software systems.

The MDD approach focuses on the transformation of high-
level design models to system implementation modules. How-
ever, this emerging development approach lacks an adequate
procedure to address security issues derived from formal
security models. In this paper, we propose an empirical
framework to integrate security model representation, secu-
rity policy specification, and systematic validation of secu-
rity model and policy, which would be eventually used for
accommodating security concerns during the system devel-
opment. We also describe how our framework can minimize
the gap between security models and the development of se-
cure systems. In addition, we overview a proof-of-concept
prototype of our tool that facilitates existing software engi-
neering mechanisms to achieve the above-mentioned features
of our framework.

Categories and Subject Descriptors

D.2.1 [Requirements/Specifications|: Language, Method-
ologies, Tools; D.2.4 [Software/Program Verification]:
Model Checking, Validation; K.6.5 [Management of Com-
puting and Information Systems]|: Security and Protec-
tion

General Terms

Design, Security, Languages, Verification

Keywords

Access Control, Policy Specification, Model Validation, Code
Generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.

Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

1. INTRODUCTION

Security is a crucial aspect in the development and man-
agement of modern software systems. Even though addi-
tional security countermeasures are integrated into existing
systems after significant security problems are identified in
the administration or usage phase, there exists a gap be-
tween security models and building secure systems with such
models. Several issues must be taken into account to mini-
mize this gap. More importantly, security models are gener-
ally described in some form of formalism. However, software
developers are unlikely to adopt a formal security model for
their development tasks. Therefore, it is very important
to have a mechanism and corresponding tool to help soft-
ware developers or system administrators understand and
articulate the security model and associated polices in the
software analysis and design stage. To address this issue, we
present an empirical methodology called Assurance Manage-
ment Framework (AMF) that ensures security models are
fully realized and employed in real systems. Our main con-
tribution in this paper is to show how the MDD approach
and our systematic tool can be applied to build secure sys-
tems through security model representation, policy specifi-
cation and validation, and automatic generation of security
enforcement codes.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly describe related technologies. Section 3
discusses our AMF approach including major components
and tasks followed by a proof-of-concept prototype of our
tool called RBAC Authorization Environment (RAE) in Sec-
tion 4. Several related works are discussed in Section 5.
Section 6 concludes the paper.

2. RELATED TECHNOLOGIES

2.1 Role-based Access Control Standard

RBAC standard was proposed by National Institute of
Standards and Technologies (NIST) in 2001 [16] and for-

mally adopted as an ANSI standard in 2004 [4]. The NIST/ANSI

RBAC standard is composed of two parts: RBAC Refer-
ence Model and RBAC System and Administrative Func-
tional Specification. The reference model defines sets of ba-
sic RBAC elements and relations, such as a set of roles,
a set of users, a set of permissions, relationships between
users, roles, and permissions. The system and administra-
tive functional specification identifies all necessary function-
alities required by role-based systems. These functionalities
are divided into three categories: administrative operations,
administrative reviews, and supporting system functions. In

addition, the NIST/ANSI RBAC standard has four compo-
nents: Core RBAC, Hierarchical RBAC, Static Separation
of Duty (SSD) Relations, and Dynamic Separation of Duty
(DSD) Relations. In this paper, we adopt this standard
model as a basis for security model and model representa-
tion.

2.2 Unified Modeling Language and Object
Constraint Language

Unified Modeling Language (UML) [21] is a general-purpose
visual modeling language in which we can specify, visualize,
and document the artifacts of software systems. It captures
decisions and understanding about systems that must be
constructed. UML has become a standard modeling lan-
guage in the field of software engineering. UML defines
notions for building many diagrams, such as use case di-
agram, class diagram, collaboration diagram and so on, to
depict a particular view of a system. In this paper, we fo-
cus on the class diagram and object diagram of UML. A
class diagram depicts a structural view of information in a
system. Classes are defined in terms of their attributes and
relationships. The relationships include association, gen-
eralization/specialization, and aggregation of classes. An
object diagram is an instance of a class diagram. It shows
the system states as a collection of objects at a particular
point in time. In this paper, we concentrate on class and
object diagrams for representing RBAC model and system
configuration, respectively.

The semi-formal semantics of UML has ambiguity and in-
consistency issues [17]. Object Constraint Language (OCL)
is a constraint expression language that enables us to de-
scribe constraints and expressions for UML-based models.
OCL constraints typically specify restrictions that state con-
ditions for all instances of the classes. In this paper, we
adopt OCL to specify RBAC policies. OCL offers a number
of advantages over the use of UML diagrams for modeling
a software system. First, OCL expressions make the defini-
tion of UML graphical models more consistent and precise.
Second, OCL has a formal semantic based on mathematical
set theory and predicate logic. Thus, it is possible to check
OCL expressions to ensure whether the expressions are cor-
rect and consistent with other elements of the model. Third,
UML diagrams and OCL expressions can be integrated to
support system development. As pointed out in [32], the
OCL can be regarded as a key ingredient of UML-based
model representation.

2.3 Role-based Constraints Language 2000

Role-based Constraints Language 2000 (RCL2000) [5] is
a formal specification language for RBAC policies and helps
identify useful role-based authorization constraints such as
prohibition, obligation and cardinality constraints. The users
of RCL2000 are security policy designers who understand
organizational objectives and articulate security policies to
support these objectives. RCL2000 also provides n-ary ex-
pressions and more flexibility in expressing access control
constraints [19].

RCL2000 has six entity sets called users (U), roles (R),
permissions (P), sessions (8), objects (0BJ) and operations
(0P). Additional elements used in RCL2000 are three con-
flicting sets CR, CP and CU. CR is defined as a collection of
conflicting role sets; CP is denoted as a collection of conflict-
ing permission sets; and CU is a collection of conflicting user

216

sets. RCL2000 supports six RBAC system functions user,
roles, sessions, permissions, operations and object.
Also, RCL2000 defines two nondeterministic functions, OE
(one element) and AO (all other). The OE(X) function al-
lows us to get one element form set X, and A0(X) is used to
get a set by taking out one element. In addition, RCL2000
successfully demonstrated its capability to articulate most
separation of duty properties [5]. In this paper, RCL2000 ex-
pressions are also used to specify formal authorization poli-
cies derived from the NIST/ANSI RBAC standard.

3. ASSURANCE MANAGEMENT FRAME-
WORK (AMF)

In this section, we propose an empirical assurance man-
agement framework (AMF) that is designed for the represen-
tation of security model, the specification of security policy,
and the validation of both the security model and security
policy. The AMF framework consists of four tasks as follows:

1. Model representation. The representation of secu-
rity model should enable software engineers to inte-
grate security aspects into the application without know-
ing all details of a security model. In this regard, a
well-designed visual representation can be considered
as a powerful means to represent the security model in
an intuitive fashion. Since UML is a general-purpose
visual modeling language and widely used in modeling
software systems as a de facto standard, our AMF fa-
cilitates UML features to represent the security model.
Furthermore, changes and evolutions in modeling se-
curity models should be considered as well.

Policy specification. Security policies are an impor-
tant means for laying out high level security rules for
organizations to avoid unauthorized access. A consid-
erable amount of work has been carried out in the area
of specifying security policies. The policy specifica-
tion languages can be classified into three categories:
formal logic-based language, high-level language and
visual specification language. Formal logic-based lan-
guages are precise and analyzable and can be used by
policy designer to create complicated and fine-grained
security polices. However, it is relatively hard for or-
dinary system developers to understand and to apply
them in developing secure systems. High-level lan-
guages are readable and understandable to both policy
designers and system developers but it is not suitable
for analyzing security policies. Visual specification ap-
proaches are intuitive and easy to use while it is dif-
ficult to specify complex polices. The formal logic-
based policy specification and visual policy specifica-
tion should be translated into high-level policy specifi-
cation in practical system development process so that
security policies can be integrated into system design
by system developers. Obviously, we need a support-
ing tool to achieve such functionalities.

Model and policy validation. It is necessary to
check the consistency and validity of security models
and policies before actual implementation commences.
In the AMF framework, we validate a security model
by producing a set of system states as snapshots and
checking these states against the security policies. These

Model Representation

RBAC Model

Represent

UML Diagrams

Constraint Specification

Formal Security
Model/Constraints

Conflict Detection/
Resolution

System-Oriented
Security Model/
Constraints

RCL Constraints

i

Validate
Translate

OCL Constraints

i

Generate

RBAC Enforcement Code

Figure 1: Realizing RBAC model and authorization
constraints in AMF.

MDD Transfomation

system states can be obtained by instantiating the se-
curity model and policies. For example, in the context
of UML, an object model is an instance of the class
model including objects and links and is also consid-
ered as a system state.

4. Conflict detection and resolution. The crucial as-
pect of a policy specification is to ensure that a policy
is not conflicted with other existing policies. The vali-
dation approach should be used to detect the conflicts
between security policies. Since it is not possible to
generate all system states, there is no guarantee to de-
tect all conflicts of policies. Therefore, conflict resolu-
tion mechanism is required for resolving the identified
conflicts systematically .

For building a secure system based on a particular access
control model, it is very important to have a system-oriented
representation of the access control model for software engi-
neers. Since UML is the standard language in modeling com-
munity, the usage of UML for the representation of security
models is an attractive aim [29]. Therefore, our framework
supports the representation of a formal RBAC model using
UML. The constraints in RBAC have been considered as
one of the important components that enforce the principal
motivation of RBAC models [18]. Our framework specifies
RCL2000-based authorization constraints. RCL2000 as a
formal specification language is powerful to specify compli-
cated constraints. In order to make RCL2000 expressions
more meaningful to ordinary system developers, our frame-
work translates RCL2000-based constraints into OCL spec-
ifications. Then UML-based modeling and OCL specifica-
tions are facilitated to automatically generate system mod-
ules, called RBAC enforcement codes which can be deployed
in a real system implementation to support RBAC features.

As we discussed above, formal access control model and
constraints are mapped to system-oriented system design,
which involves representing the RBAC standard model and
RCL2000-based authorization constraints with UML dia-

LOur validation approach only checks the current system
state as a snapshot (object model) against security con-
straints. In other words, the constraints are evaluated and
enforced whenever the system configuration is changed. At
the moment, we are not considering state transitions.

217

grams and OCL expressions. Then we validate the RBAC
model and constraints to detect and resolve conflicts in sys-
tem design as illustrated in Figure 1. We now demonstrate
how an existing RBAC model can be realized in system de-
velopment through the realization steps in Figure 1, identi-
fying specific mechanisms for each AMF task.

3.1 Model Representation

We adopt the NIST/ANSI RBAC standard as a basis
model since it includes most of well-recognized RBAC fea-
tures [28, 15] and has been widely cited in information assur-
ance community. The standard defines three models: Core
RBAC, Hierarchical RBAC and Constrained RBAC. The
Constrained RBAC in the standard adds separation of duty
relations. However, there are two limitations in the Con-
strained RBAC model. First, the SD constraints in the
standard are applied only to the activation of roles with-
out considering other components in RBAC model. Second,
the standard defines SSD relations with respect to user-role
assignments over pairs of roles and DSD relations with the
aspect of role activation in a user’s session. These two con-
straints in the standard mainly reflect the simplest separa-
tion of duty properties. More fine-grained constraints can-
not be defined adequately. Thus special constraint specifica-
tion languages should be used to provide much richer expres-
sion for RBAC constraints. To reduce these limitations, we
extend the Constrained RBAC to consider all aspects of role-
based constraints and specify separation of duty constraints
using RCL2000, which can express a variety of separation of
duty properties.

Figure 2 shows a UML class diagram which depicts a
complete representation of the NIST/ANSI RBAC model
including Core RBAC, Hierarchical RBAC and Constrained
RBAC. The representation can be decomposed to partially
support Core RBAC or different compositions of three ref-
erence models. It contains classes, relationships between
classes, and cardinalities in relationships. The basic entities
are user, role, permission, and session classes. The permis-
sion class is represented as a composition of operation and
object classes. The role hierarchy relationship is reflected in
role class as a recursive relationship. The standard RBAC
model only supports two separation of duty relations: SSD
and DSD relations. As discussed above, constraints should
be applied to all RBAC entities. Thus, in our model repre-
sentation, we introduce two components such as SCR (Static
Conflicting Roles) and DCR (Dynamic Conflicting Roles)
that support SSD and DSD relations in the standard. Four
new components SCP, DCP, SCU and DCU are created to
support constraints in other RBAC entities such as permis-
sions and users. These six components have dependency re-
lationships with corresponding RBAC components in UML
class diagram and are utilized by constraint expressions to
identify more fine-grained SD constraints. The notations of
those six components are derived from RCL2000 2.

The functional specification in the standard defines vari-
ous functions that role-based systems should provide. Since

2RCL2000 defines three collections, CR, CP and CU, for
the sets of conflicting roles, permissions, users respectively.
The static separation of duty constraints and the dynamic
separation of duty constraints employ separate conflicting
element sets, thus we extended CR to SCR and DCR, CP
to SCP and DCP, and CU to SCU and DCU, to support
SSD constraints and DSD constraints separately.

SCP
SetName: String

SCR

sCu

PermissionSet: Set{Pemmission)
SetCardinality: Integer

SetName: String
RoleSet: Set(Role)
SetCardinality: Integer

SetMName: String
UserSet: Set{User)
SetCardinality: Integer

AddPenmnissionToSCP {p: Permission)
DeletePermissionFromSCR (p: Permission)

AddRoleToSCR (r: Role)

AddUserToSCU (U: User)

DeleteRoleFromSCR (r: Role) DeleteUserFromSCU (u: User)
SetSCPCardinality (n: Integer) SetSCRCardinality (n: Integer) SetSCUCardinality (n: Integer)
SCPPermissions (): Set(Permission) SCRRoles (): Set{Role) SCUUsers () Set(User)
bcu SCPCardinality () Integer SCRCardinality () Integer SCUCardinality (): Integer
SetNarne: String A ST T~
UserSet: Set(User) / PN AN
SetCardinality: Integer // _ -7 \\
AddUserToDCU {u: User) N // /,/' \\\
DeleteUserFromDCU (u: User)| ™\ Y T L e
SetDCUCardinality (n: Integer) N J T \\ //
DCUUsers () Set{User) \ S N + | senior
DCUCardinality () Integer \
N User Role Permission
\ \
‘\\ N Name: String Narne: Sting e Name: String
\ -
ocR | \, | CreateSession () Session pssigned to e | AssignUser [User) PermissiorRoles () Sel(Role)
SetName: String \ N DeleteSession (s: Session) - TN - DeasignUser (u: User) <« Assigned to PermissionUsers () Set{User)
RoleSet: Set(Role) “ 7 UserSessions (): Set(Session) user } role GrantPermission {p: Permission) . L | AuthorizedRoles () Set(Role)
SetCardinality: Integer - /| AssignedRoles (): Set(Role) 1 RevokePermission {p: Permission) role permission | AuthorizedUsers (). Set(User)
\ J/ UserPermissions (): Set(Pemmission) | AssignedUsers (): Set{User) CheckStaticConstraints () Boolean
AddRoleToDCR (r: Role) o AuthorizedRoles (1 Set{Rale) ! RolePemissions () Set(Permission)
DelsteRoleFromDCR (r Role) {1 \ S AuthorizedPermissions () Set{Permission) I AuthorizedUsers () Set(User) + | permission permission| *
SetDCRCardinality (n: Integer}| Y\, CheckStaticConstraints (): Boolean 1 AuthorizedPermissions () SetfPermission) Has Has
DCRRoles () Set(Role) A CheckDynamicConstraints (): Boolean ! AddSenior (m Role)
DCRCardinality (): Integer X oo T | DeleteSenior (1 Role) + | operation object | =
AN \ } AddJunior (r: Role) Objoct
2N Establishes {subset} | i‘e‘\setwum?)r(sr EOR\QI)) Operation Operates Jec
IR i eniors (): Set(Role - -
ber Y v 1 Alluniors () Set(Role) Name: String I A Name: String
SetName: Sting \ \\ session |« } CheckStaticConstraints () Boolean
PermissionSet: Set(Permission) \ \ Session 1 + | role
SetCardinality: Integer \ \‘ }
AddPermissionT oDCP (p: Permission) Y \\\\ Name: String !
DeletePemmissionFromDCP {p: Permission)| SN A !
SetDCP Cardinality (n- Integer) Ss. o\ | AddActiveRole (1 Role) « | Activates B
DCPPermissions () Set{Permission) \\ ‘; DropActiveRole (r: Role) .
DCPCardinality) Integer > SessionRoles (): Set(Role) session
SessionPermissions (): Set(Permission)
SessionUser () User
AuthonizedRoles () Set{Role)
AuthorizedPermissions () Set(Permission)
CheckAccess (op: Operation,
ob: Object): Boalean
CheckDynamicConstraints (): Boolean

Figure 2: RBAC model representation in UML class diagram.

we use an object-oriented approach to express these func-
tionalities of the standard, some subtle changes must be
conducted in the definition of each function. For example,
the RBAC standard defines two functions, AddInheritance
and AddAscendant, to support building a new role inheri-
tance relationship in role hierarchy. The standard explains
AddInheritance is used to establish a new immediate inheri-

tance relationship between two existing roles and AddAscendant

is used to create a new role and to add this new roles as an
immediate ascendant of an existing role. In object-oriented
system design, every function is attached to a class. There-
fore, the function AddInheritance cannot be used as a single
class (role class in our model representation). On the other
hand, since CreateRole function can be implicitly derived
from role class in the UML class diagram at the imple-
mentation stage, AddAscendant may not include the oper-
ation for creating a new role. In our model representation,
we define a function named AddSenior which adds an im-
mediate senior role object to current role object instead of
adopting two functions proposed in the standard. For role
hierarchy, we also add two review functions Al1Seniors and
AllJuniors to query all seniors and juniors of a role ob-
ject, because these two functions can frequently be called by
many other functions, as well as by constraints in the pres-
ence of role hierarchy. Similarly, several review functions re-
lated to role hierarchy are added into our model representa-
tion. For example, two review functions, AuthorizedRoles
and AuthorizedUsers, for a permission to find a set of roles
that authorize the given permission and to get a set of users
that can authorize the given permission through their roles,
respectively. For brevity, we elaborate a few typical func-

218

tional definitions of three components in the standard and
corresponding OCL-based definitions.

1. Functional definition of Core RBAC

Administrative commands: These commands are for
the creation and maintenance of RBAC element sets and
relations by administrators. The functions for adding and
deleting an element such as AddRole and DeleteRole can
be created from UML class diagrams in the implementation

step. A command specification for AssignUser is defined as
follow:

context Role: :AssignUser(u:User)
pre self.user->excludes(u)
post: self.user->includes(u)

Review functions: These functions are for administra-
tors to query RBAC element sets and relations. Query op-
erations do not change the system states and they return a
value or a set of values. In OCL, they are defined as a body

expression. The following OCL definition supports a review
function UserPermissions:

context User::UserPermissions():Set(Permission)
body: self.role.permission->asSet()

Supporting system functions: The functions are ap-
plied to create and maintain RBAC dynamic properties with
regard to users’ sessions and access control decisions.
CheckAccess checks whether an operation on an object is
allowed to be performed in a particular session. OCL repre-
sentation for this function is defined as follows:

context Session::CheckAccess(op:0Operation,
ob:0bject) :Boolean

pre : true

post: self.SessionRoles()->exists(r|r.permission
->exits(plp.operation->includes (op)
and p.object->includes(ob)))

2. Functional definition of Hierarchical RBAC

As illustrated in Figure 2, we have four major functions

such as AddSenior, DeleteSenior, AddJunior and DeleteJunior.

These functions are used for administrators to maintain in-
heritance relationships among roles. We define two new re-
view functions Al1Seniors and AllJuniors for role hierar-
chy. The following definition is for A11Seniors:

context Role::AllSeniors():Set(Role)
body: self.senior->union(self.senior
->collect(r|r.AllSeniors()))->asSet ()

3. Functional definition of Constrained RBAC

In our approach, the definitions related to constraint ex-
pressions are incorporated with corresponding components
in UML-based model representation. We introduce two new
system functions CheckStaticConstraints and
CheckDynamicConstraints for RBAC model to enforce con-
straint expressions and to check conflicts. The functions for
constraint checking can be used by other related functions
in RBAC model as well®>. The following definition is for
AssignUser function.

context Role::AssignUser(u:User)
pre : self.user->excludes(u)
post: self.user->includes(u) and
if (not self.CheckStaticConstraints()) or
(not u.CheckStaticConstraints())
then
self.user->excludes (u)
endif

In AssignUser, the assignment operation can affect the
status of two objects, user and role objects. Hence, the static
constraints for user and role classes should be enforced at
the same time to prevent possible conflicts resulted from the
assignment operation.

3.2 RBAC Constraint Specification

In NIST/ANSI RBAC standard, SSD constraints are de-
fined with two arguments: a role set rs that includes two
or more roles, and a natural number n, called the cardi-
nality, with the property that 2 < n < |rs| which means
a user can be assigned to fewer than n roles from role set
rs. The similar definition is used in DSD constraints with
respect to the activation of roles in sessions. The definition
of constraints in the standard has limitations. To overcome
such obstacles for considering other components in RBAC,
we use RCL2000 that defines three sets, CR, CP and CU, as
the collections for conflicting role sets, conflicting permission
sets and conflicting user sets, respectively. Each conflicting
set can include two or more elements. However, there is no

3For example, AssignUser and GrantPermission utilize
CheckStaticConstraints to check the static assignment
relations, and CreateSession and AddActiveRole employ
CheckDynamicConstraints to check dynamic attributes re-
lated to sessions.

Input: RCL2000 expression;
Output: OCL expression;

Let Simple-OE term be either OE(set), or OE(function(element)),
where set is an element of {U, R, OP, OBJ, P, S, SCR, DCR,
scp, DCP, SCU, DCU, scr, dcr, scp, dcp, scu, dcu} and function
is an element of {user, roles, roles™, sessionms, permissions,
permissions™, operations, object}

1. AO elimination
Replace all occurrences of A0(expr) with (expr-0E(expr));

2. OE elimination
‘While There exists Simple-OE term in RCL2000 expression
case (1) Simple-OE term is OE(set)
choose set term;
call set_reduction procedure;
case (2) Simple-OE term is OE(function(element))
choose function(element) term;
call reg_function_reduction procedure;
End
Procedure set_reduction
case (1) set is U
put u:User=User.alllnstances->any(true) to top of existing
quantifier(s);
replace all occurrences of OE(U) with u;
case (2) set is R
put r:Role=Role.alllnstances->any(true) to top of existing
quantifier(s);
replace all occurrences of OE(R) with r;
End
Procedure reg_function_reduction
case (1) function(element) term is user(r)
put ul:User=r.user->any(true) to top of existing quanti-
fier(s);
replace all occurrences of OE(user(r)) with ul;
case (2) function(element) term is roles(u)
put ril:Role=u.role->any(true) to top of existing quanti-
fier(s);
replace all occurrences of OE(roles(u)) with ri;

3. System Functions elimination
‘While There exists function(element) term in RCL 2000 expression
choose function(element) term;
call sys_function_reduction procedure;
End
Procedure sys_function_reduction
case (1) function(element) term is user(element)
replace all occurrences of user(element) with element.user;
case (2) function(element) term is roles(element)
replace all occurrences of roles(element) with element.role;

4. Operators elimination
replace all occurrences of setl € set2 with set2->include(setl);
replace all occurrences of setl N set2 with
setl->intersection(set2);
replace all occurrences of set1 U set2 with setl->union(set2);
replace all occurrences of |set| with set->size();
replace all occurrences of = with implies;
replace all occurrences of A with and;
replace all occurrences of # with <>;
replace all occurrences of < with <=;
replace all occurrences of > with >=;
replace all occurrences of @ with {};

“Due to the page limit, we omitted the detailed procedures
for OE elimination and system function elimination.

Figure 3: Translation algorithm

Instantiate

Evolve

RBAC Model (UML
Class Diagram)

System States
(UML Object Diagram)

Instantiate

Instantiated Conflicting
Collections (UML Obijects)

Generic RBAC ;
Constraints (RCL/OCL) |parameterize

Validation of RBAC model and con-

Parameterized RBAC
Constraints

Figure 4:
straints

notation for the cardinality attribute in conflicting sets it-
self. Normally, we can regard the cardinality number n in
RCL2000 always equals to two for each conflicting set.

Policy designers can employ RCL2000 to specify complex
authorization policies to meet high-level security require-
ments along with the NIST/ANSI RBAC standard. In our
framework, the next important step is that RCL2000 policy
specifications need to be realized in UML-based RBAC rep-
resentation which, in turn, we need to translate RCL2000
expressions to OCL expressions. In the previous section,
we have defined several review functions. Using such defini-
tions, roles™ and permissions™ function can be translated.
For example, roles™(u) and permission™(r) are converted
to AuthorizedRoles(u) and AuthorizedPermissions(x).
Each term in RCL2000 is converted to corresponding OCL
operator or function. For example, operators like #, <, >,
=, and A are replaced by <>, <=, >=, implies, and and
operation correspondingly. The detailed translation algo-
rithm is described in Figure 3.

Given a complicated constraint expression in [5] such that
conflicting roles in the conflicting role set cannot be assigned
to multiple conflicting users who are members of mutually
exclusive roles, the translation algorithm generates an equiv-
alent OCL expression as follows. This specific SD propriety
is useful in a practical application system because it is nec-
essary to prevent conflicting users such as family members
from committing fraud.

RCL2000 Expression:
| roles™ (0E(U)) N GS(OE(SCR)) |< GC(OE(SCR))
A | user(GS(OE(SCR))) N GS(OE(SCU)) |< GC(OE(SCU))

Translated OCL Expression:
context User

inv: let
scr:SCR = SCR.alllnstances()->any(true)

let
scu:SCU = SCU.allInstances()->any(true)

in

self.AuthorizedRoles()->intersection(scr.
roleset)->size()<=scr.cardinality

and

scr.roleset.allInstances()->select(r|r.
user->intersection(scu.userset)->size()
<=scu.cardinality)

In this paper, we mainly focus on separation of duty con-
straints. Other types of constraints can be defined in OCL
as well [6, 30]. Obviously, such OCL expressions can be
produced from RCL2000 expressions using this translation
algorithm.

220

O\
®& & ®
® &
®)

Conflicting roles cannot be indirectly
assigned to (or activated by) the assigned to (or activated by) the
same user same user via inheritance

(@ (b)

relation

Conflicting roles cannot be directly

[—

relation |

Figure 5: Conflict checking for SOD.

&)
& ® ®
®) ®
®) ®)

Conflicting roles should not have the
common senior role

®

& ®
®)
®

Conflicting roles should not have the
inheritance relation

(@) (b)

inheritance relation ‘

Figure 6: Conflict checking for role hierarchy.

3.3 RBAC Model and Constraint Validation

As we discussed earlier, our validation uses a set of system
states and checks such states against authorization policies.
Figure 4 presents our approach to validate RBAC model and
constraints. In UML-based representation, a system state is
a UML object diagram, which can be changed by creating
and deleting objects as well as inserting and removing links
between objects. Our validation approach supports both
RCL and OCL expressions. In Figure 2, we have six compo-
nents, SCR/DCR, SCP/DCP and SCU/DCU that are used
to specify conflicting sets for roles, permissions and users.
Constraint expressions employ these components to spec-
ify separation of duty constraints. These components are
instantiated as objects which include conflicting object sets.

Figure 5 shows two typical examples. It illustrates con-
flicting roles cannot be directly or indirectly (via inheri-
tance) assigned to (or activated by) the same user. On the
contrary, two roles that have been assigned to (or activated
by) the same user cannot be defined as statically (or dy-
namically) mutual exclusive. In our approach, a conflicting
role set is extended to static conflicting role set and dynamic
conflicting role set to support SSD and DSD constraints re-
spectively. Figure 5 (a) shows that the user Ui owns (or
activates) both roles Ra and Rb simultaneously. However,
since Ra is statically (or dynamically) mutually exclusive to
Rb, this assignment (activation) operation cannot be permit-
ted. Figure 5 (b) depicts a more complex example taking
role hierarchy into account. The user Ui acquires (or acti-
vates) two conflicting roles Ra and Rb through permission
inheritance. Figure 6 shows two conflicts arising in role hi-
erarchy. Figure 6 (a) depicts Ra and Rb are two mutually
exclusive roles, however, they are owned by a common se-
nior role R1 via inheritance relation. This state should not
be allowed in role hierarchy. Figure 6 (b) illustrates another
conflict in role hierarchy. Two roles Ra and Rb are mutual
exclusive, but now Rb is defined as ancestor of Ra. The inher-

1 public boolean CheckStaticConstraints () {
2 boolean result = true;
3 try |
4 Constraint_SSD_CR(); //Performing the SSD_CR constraint
5 } ecatch (ConstraintException e) {
6 throw new ConstraintError{e.getInstance(}, e.getMessage()};
7 result = false;
8)
9 try {
Constraint_SSD_CP(); //Performing the SSD_CP constraint
} eatch (ConstraintException e) {
throw new ConstraintError(e.getInstance(), e.getMessage());
result = false;
14 1}
return result;

16 }

Figure 7: Generated Java code for

CheckStaticConstraints function.

itance relation between conflicting roles should be avoided.
On the other hand, when conflicting role sets are modified,
or the SSD or DSD constraints related to the role hierarchy
are established, the conflicts can also be identified through
checking conflicting sets or constraints expressions.

The analyzer in Figure 4 is responsible for model and con-
straint validation. The main task of the analyzer component
is to parameterize and interpret RBAC constraint expres-
sions and evaluate these constraints against the current sys-
tem state. When conflicting element sets are changed, or
constraint expressions are established or modified, the an-
alyzer checks if the constraints are violated by the current
system states. Also, if the system state is changed, the ana-
lyzer also evaluates all authorization constraints against the
changed system state. If any of the authorization constraint
is violated during this process, it indicates that the autho-
rization constraint is false, or the system state is undesirable.
If the system state violates the RBAC constraints, the re-
sult component gives a conflict report to indicate root causes
of the conflict. The conflict report assists users to find the
reasons for the conflict and make decisions for resolving the
conflict.

The result of the validation process may lead to two cases.
Firstly, if there are reasonable system states that do not
satisfy the authorization constraints, this may indicate that
the constraints are too strong or the model is not adequate
in general. Hence, we should modify the design, such as
reducing the restriction of constraints. The other case is that
the constraints may permit undesired system states, which
points out the constraints are too week. As a result, the
constraints must be further refined to exclude the undesired
system states.

3.4 Code Generation

The code generation part of our approach enables users
to build a real application by creating a platform indepen-
dent model and then transforming it to platform dependent
codes. Our objective for code generation is to generate secu-
rity enforcement codes with some degree of assurance based
on model specification represented by UML and OCL. As
we addressed in the previous section, all model components
and constraints are evaluated so the enforcement codes gen-
erated from our model representation should fully reflect
features and functionalities of a formal security model, es-
pecially the NIST/ANSI RBAC standard in this paper. Al-
though we select the Java language as the target language in
this paper, we believe our mechanisms can be used for other

221

RBAC Authorization Environment

Specification Component

RBAC Model Presentation

System State Presentation

Constraint Specification Conflicting Collection Management
Syntax and | Translating
Type RCL2000 SCR/DCR
Checking | to OCL

Validation Component
Constraint Checking Conflict G
RCL2000 ocL
Constraints Constraints

Constraint

Template SCP/DCP

Scu/bcu

System State Checking

Role Activation

SCR/DCR | SCP/DCP | SCU/SCU

Code Generation Component

Jave Code Generation AspectJ Code Generation

Figure 8: Structural overview of the RAE.

languages as well. The process of mapping model specifica-
tion to enforcement codes may be performed by the adoption
of the tools such as Octopus [3] and Dresden OCL toolkit
[2]. In this paper, we omit the details of the translating pro-
cess from UML and OCL to Java codes. Instead, we discuss
some issues and solutions related to this translating process.

In our specification of RBAC model, RBAC model ele-
ments and relations are defined using the UML class diagram
and the functionalities and constraints of RBAC model are
specified with OCL expressions. To implement UML model
elements, the classes, attributes, operations and associations
need to be translated into corresponding Java classes or op-
erations. Then, each class in the model is mapped to one
Java class; an operation for the class is created by one op-
eration in Java class; and an attribute and its association
with the class in the model generate a private class mem-
ber and a get and set operations in the Java class. Also,
the basic types of OCL are mapped to corresponding Java
types. For example, Real in OCL is mapped to float in
Java. OCL collection type is implemented as a library using
Set or List of Java language. It is a little complicated when
implementing this library, because OCL collections have a
large amount of predefined operations, such as select and
collect. These operations should be defined as standard
operations using Java. Based on the implemented standard
OCL library, OCL expressions can directly generate Java
codes.

In our implementation, two special system functions,
CheckStaticConstraints and CheckDynamicConstraints,
for Constrained RBAC are created automatically to collect
and enforce static and dynamic constraint expressions re-
spectively for corresponding components. Although we can
use a universal function, such as a CheckConstraints func-
tion, to check all constraints for one component, for the pur-
pose of making checking procedures more efficient, we pro-
vide two system functions for constraint checking. Session-
related constraint expressions are performed by
CheckDynamicConstraints, and other constraints are en-
forced by CheckStaticConstraints. Figure 7 generated
Java codes for CheckStaticConstraints function of user
class. Note that CheckStaticConstraints function includes
the code for checking two static constraints with CR and CP
as well.

' RBAC Authorization Environment - RAE =]
Fie T vew Ciests Arange Gerersthn Tods Hep
B S > oz - o
BOHS »BE X LT B b b R) R
F Disgram-centric Y'N4{ BB —---+~-% 8% t- 8820~
= Wreac -
= r = ~
33 ot Dagram
"\ Tom_sccourtinghanager
"\ Tom_internalauditor
B customerservizeRen
2 customerServieRin
R deketevepost
2 loanofeer
B teter
= &) reac
— actvates
— hosgineito
— sasgneats
— Ectblshes
— s
— s
— ety
— operdes
% 5o
@ Bocr
B oo <
© B oObject XL
< >
A Presentation | A Properties| 4 Constraints | & Source
% @ [RCL2000 Syntax Assistant [7] RCL2000 Constrirts Template [] OCL Syntax Assistant [] OCL Constrainis Templsts
5500 Constrants Ipson constrarts ~Joercnatty Constrarts m
£k constrant
ol O ~ GSIOR(SCR) & GS(OE(SCR)
RBAC Constraint
Specification
-

Figure 9: RBAC model and constraint specification.

4. RBACAUTHORIZATION ENVIRONMENT
(RAE)

To demonstrate the feasibility of our framework, we devel-
oped a tool called RAE which is based on ArgoUML, an open
source UML-based modeling tool [1]. RAE tool is composed
of three major components as shown in Figure 8: specifica-
tion component, validation component and code generation
component. Specification component is responsible for spec-
ifying RBAC model and constraints. Validation component
is in charge of conflict checking so as to validate RBAC
model and constraints. Code generation component is used
to automatically generate enforcement codes.

Specification component consists of four sub-components:
RBAC model representation, system state presentation, con-
straint specification and conflicting collection management.
Figure 9 shows the implementation of the RBAC model pre-
sentation and constraint specification components.

e RBAC model representation employs UML diagrams
to represent RBAC model. This component is imple-
mented based on ArgoUML.

System state presentation is responsible to create snap-
shots of the system model at particular points using
UML object diagrams, which is composed of a set of
objects and a set of association links.

Constraint specification provides an editing environ-
ment to easily specify authorization constraints using
RCL2000 and OCL. It is further divided into four sub-
components: constraints template, syntax assistant,
syntax and type checking, and translating RCIL2000
to OCL. To simplify the constraint definition, some
reusable constraint templates for typical RBAC con-
straints are provided in the constraints expression edi-
tor. Also it has a syntax assistant for user to construct
complicated RCL2000 or OCL constraint expressions

222

conveniently. The syntax checking verifies the con-
straints expression against the grammar of the speci-
fication language.

Conflicting collection management. In the RAE tool,
conflicting collections (SCR/DCR, SCP/DCP and
SCU/DCU) are maintained separately from the con-
straint expressions.

Validation component is composed of three sub-components:
constraint checking, system state checking and conflicting
collection checking.

e (Constraint checking tests whether the constraint is vi-
olated by the current system state (snapshot), when
a new constraint is established or an old constraint is
modified. It supports both RCL2000 constraint check-
ing and OCL constraint checking.

System state checking is response for identifying the
conflicts whenever a system state is changed. The
RAE tool supports four kinds of assignment relation
checking: UA (user-to-role assignment), PA (permission-
to-role assignment), RH (role-to-role assignment) and
role activation. When any assignment occurs, all re-
lated authorization constraints are evaluated against
the changed system state.

Conflicting collection checking is in charge of detect-
ing the conflicts resulting from any changes of con-
flicting collections. Changing a conflicting collection
affects the semantics of relevant SD constraint expres-
sions. Figure 10(a) gives a snapshot of checking con-
flicts when static conflicting role sets are modified.

Code generation component is used to generate java code
automatically for RBAC model and constraints. The en-
forcement codes are used by developers for role-based sys-
tems.

&

Fle EGt View Creste Aange Generstion Toos Help

BéHs cBBExON Q" REREEBEE System State
E Disponcene M4 @ g — - Presentation
= g B Conflicting Collection o
L p—
N Management ‘
RBAC Authorization Simulation System
oo accountinaMarager Role costumergeniceRen: Role :
- 2 w
— Seastons
8 ccoortnghenag
- e
8 oo B [sssstontrte | ey
g\aanonmev gwsmmevSsmteRep S T = Session: 61 [v]
e Q) e e] Bl Telle
" ctvetes . Resson] Actvate | (Do
oo e Ueerole
-
e Fole Hierarchies Session User Activated Role(s) Delete
— Hos st ‘Tom CustomerServiceRep, LoanOfficer, Teller X
- ‘g::ﬁ:v @2 Alan A coountingManagerLoanOffizer x
® B oo 3 Bob LoanOfficer, hecountingManager x
; E gzz ‘ 54 John Internal®uditor, Accountant x
B object v
B operatior 2] DCU
[« s B D Operstion s dexind:
ha — ° o1 cannot antfvate SafeDepositValt
s Pesenaton] & rom T by oot
Nk o x Connectlnserior Constraint DSOD_User is viclated in user Tor’
Name customerServiceRep_teler ' Constraint DSOD_User is vinlated in nser 'Alan’
Associion|— pertedby Check ACCEss: Canstaaint DSOD _Usex is vialated in usez Baly
T T ~
]

(a) Model and constraint validation.

Figure 10: RAE tool and

In addition, we developed a testbed environment to eval-
uate our RAE tool. We use a small banking system taken
from [11] as a real application to test the functionality of
RAE. Our experimental results clearly confirmed our ex-
pectations and functionalities mentioned in our framework.
Figure 10(b) shows the simulation of creating session, acti-
vating role and checking dynamic constraints in our testbed
environment.

5. RELATED WORK

There are several works concerning the specification of
access control policies such as formal logic-based languages
[12, 20, 8], high-level languages [14, 25, 26] and visualiza-
tion of access control policies [31, 23]. In our framework,
we combine three approaches to specify authorization poli-
cies. In [13], Crampton introduced a constraint monitor for
enforcing authorization constraints. The constraint monitor
checks whether granting the request would violate an autho-
rization constraint and takes appropriate action. However,
this approach omitted the policy enforcement issues during
the modeling stage. In [30], we demonstrated how the USE
tool, a validation tool for OCL constraints, can be utilized
to validate authorization constraints against RBAC config-
urations. The policy designers can employ the USE-based
approach to detect certain conflicts between authorization
constraints and to identify missing constraints. However,
the USE tool mainly focuses on the analysis of OCL con-
straints and has some limitations for specifying models and
policies.

There are few works [22, 24, 27, 7] on UML-based mod-
eling of security model. All of these approaches accommo-
dated security requirements without considering the valida-
tion of security model and policy, and the translation to a
concrete implementation. Our approach uses the standard
UML to represent security model, supports the model and

223

(b) Simulation of creating session, activating role and
checking dynamic constraints.

testbed environment

policy validation, and translates security model to enforce-
ment codes.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an empirical framework
that is designed to reduce the gap between security mod-
els and system development. We also discussed how the
identified components and features in our framework can be
utilized for representing the NIST/ANSI RBAC standard
model using UML and OCL, and specifying authorization
policies using RCL2000 and OCL. In addition, we imple-
mented a systematic tool called RAE. We believe that this
is the first attempt to implement such an intuitive tool in-
cluding critical features such as the validation and code gen-
eration for role-based systems.

There is still a lot of work to be done in this research.
Other constraints, such as history-based constraints and context-
aware constraints, need to be considered. Also, different
types of access control model including TRBAC [9] and
GEO-RBAC [10] should be studied using our tool as well.
Another possible direction for RAE tool is to investigate how
the generated codes can be refined when the change of sys-
tem requirements occurs, maintaining the same assurance
level.

ACKNOWLEDGMENTS

This work was partially supported by the grants from Na-
tional Science Foundation (NSF-I1IS-0242393 and NSF-DUE-
0416042), Department of Energy Early Career Principal In-
vestigator Award (DE-FG02-03ER25565) and Department
of Defense (H98230-04-1-0210).

7. REFERENCES
[1] The ArgoUML Project. http://argouml.tigris.org.

2]

7]

[11]

Dresden OCL toolkit.
http://dresden-ocl.sourceforge.net.

The Octopus Project. http://www.klasse.nl/octopus.
American National Standards Institute Inc. Role
Based Access Control, ANSI-INCITS 359-2004, 2004.
G.-J. Ahn and R. S. Sandhu. Role-based authorization
constraints specification. ACM Trans. Inf. Syst. Secur.
(TISSEC), 3(4):207-226, November 2000.

G.-J. Ahn and M. E. Shin. Role-based authorization
constraints specification using object constraint
language. In Proceedings of the 10th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pages
157-162, 2001.

K. Alghathbar and D. Wijesekera. authUML: a
three-phased framework to analyze access control
specifications in use cases. In Proceedings of the 2003
ACM workshop on Formal methods in security
engineering, pages 77-86, New York, NY, USA, 2003.
ACM Press.

J. Bacon, K. Moody, and W. Yao. A model of OASIS
role-based access control and its support for active
security. ACM Trans. Inf. Syst. Secur. (TISSEC),
5(4):492-540, 2002.

E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A
temporal role-based access control model. ACM Trans.
Inf. Syst. Secur. (TISSEC), 4(3):191-233, 2001.

E. Bertino, B. Catania, M. L. Damiani, and

P. Perlasca. GEO-RBAC: a spatially aware RBAC. In
Proceedings of the tenth ACM symposium on Access
control models and technologies (SACMAT), pages
29-37, New York, NY, USA, 2005. ACM Press.

R. Chandramouli. Application of XML tools for
enterprise-wide RBAC implementation tasks. In
Proceedings of the fifth ACM workshop on Role-based
access control, pages 11-18, Berlin, Germany, July
2000.

F. Chen and R. S. Sandhu. Constraints for role-based
access control. In Proceedings of the first ACM
Workshop on Role-based access control, Gaithersburg,
Maryland, United States, 1995.

J. Crampton. Specifying and enforcing constraints in
role-based access control. In Proceedings of the eighth
ACM symposium on Access control models and
technologies(SACMAT), pages 43-50, June 2003.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The ponder policy specification language. In
Proceedings of the International Workshop on Policies
for Distributed Systems and Networks, pages 18-38,
Bristol, UK, 2001.

D. Ferraiolo and D. Kuhn. Role based access control.
In Proceedings of the fifth National Computer Security
Conference, pages 554-563, 1992.

D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R.
Kuhn, and R. Chandramouli. Proposed NIST
standard for role-based access control. ACM Trans.
Inf. Syst. Secur. (TISSEC), 4(3):224-274, 2001.

R. France. A problem-oriented analysis of basic UML
static requirements modeling concepts. In Proceedings
of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 57-69, New York, NY, USA, 1999.

224

(18]

23]

24]

30]

(31]

(32]

T. Jaeger. On the increasing importance of
constraints. In Proceedings of the fourth ACM
workshop on Role-based access control, pages 33-42,
1999.

T. Jaeger and J. Tidswell. Practical safety in flexible
access control models. ACM Trans. Inf. Syst. Secur.
(TISSEC), 4(3):158-190, 2002.

S. Jajodia, P. Samarati, and V. S. Subrahmanian. A
logical language for expressing authorizations. In
IEEE Symposium on Security and Privacy, pages
31-42, Oakland, CA, May 1997.

J.Rumbaugh, I. Jacobson, and G.Booch. The Unified
Modeling Language Reference Manual, Second Edition.
Object Technology Series, Addison Wesley Longman,
Reading, Mass, 2004.

J. Jirjens. UMLsec: Extending UML for secure
systems development. In Proceedings of the 5th
International Conference on The United Modeling
Language, pages 412-425. Springer Verlag, 2002.

M. Koch, L. V. Mancini, and F. Parisi-Presicce. A
graph-based formalism for RBAC. ACM Trans. Inf.
Syst. Secur. (TISSEC), 5(3):332-365, 2002.

T. Lodderstedt, D. Basin, and J. Doser. SecureUML:
A UML-based modeling language for model-driven
security, 2002.

V. V. M. Hitchens. Tower: a language for role-based
access control. In Proceedings of the International
Workshop on Policies for Distributed Systems and
Networks, pages 88—106, Bristol, UK, 2001.

OASIS. XACML Language Proposal, Version 0.8.
Technical Report, Organization for the Advancement
of Structured Information Standards, 2002, Available
electronically from
http://www.oasisopen.org/committees/xacml.

I. Ray, N. Li, R. France, and D.-K. Kim. Using UML
to visualize role-based access control constraints. In
Proceedings of the ninth ACM symposium on Access
control models and technologies(SACMAT), pages
115-124, 2004.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38-47, 1996.

M. E. Shin and G.-J. Ahn. UML-based representation
of role-based access control. In Proceedings of the 9th
IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, pages 195-200, 2000.

K. Sohr, G.-J. Ahn, and L. Migge. Articulating and
enforcing authorisation policies with UML and OCL.
In Proceedings of the 2005 workshop on Software
engineering for secure systems building trustworthy
applications, pages 1-7, 2005.

J. Tidswell and T. Jaeger. An access control model for
simplifying constraint expression. In Proceedings of the
7th ACM conference on Computer and
communications security, pages 154-163, Athens,
Greece, November 2000.

J. Warmer and A. Kleppe. The Object Constraint
Language: Getting your models ready for MDA.
Addison-Wesley, Reading/MA, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

