
Towards Role-based Authorization for OSGi Service Environments

Gail-Joon Ahn
Arizona State University

gahn@asu.edu

Hongxin Hu
Arizona State University

hongxinh@asu.edu

Jing Jin
UNC Charlotte
jjin@uncc.edu

Abstract

OSGi framework enables diverse devices to conveniently
establish a local area network environment such as homes,
offices, and automobiles. Access control is one of the cru-
cial parts which should be considered in such emerging
environments. However, the current OSGi authorization
mechanism is not rigorous enough to fulfill security require-
ments involved in dynamic and open OSGi environments.
This paper provides a systematic way to adopt a role-based
access control approach in OSGi environments. We demon-
strate how our authorization framework can achieve impor-
tant RBAC features and enhance existing primitive access
control modules in OSGi service environments.

1. Introduction

The Open Services Gateway Initiative (OSGi) provides
an open, common architecture for service providers, devel-
opers, software venders, gateway operators and equipment
vendors to develop, deploy and manage services in a coop-
erative fashion. In addition, OSGi service platform is an ex-
tensible integration platform used to remotely and dynam-
ically deploy, provision, maintain and manage applications
and services with multiple devices in networked environ-
ments [1]. In OSGi service platform, the User Admin ser-
vice provides user authorization functionality. However, the
User Admin service’s authorization architecture in OSGi is
not sufficient enough to support the highly dynamic and
open OSGi environments. Thus, an enhanced access con-
trol mechanism is needed for achieving interoperability, ex-
tensibility, and ease of administration & management. To
overcome such issues, role-based access control (RBAC)
can be applied in such network environments to simplify au-
thorization management by associating users with roles, and
roles with permissions [10]. Because the roles within an or-
ganization typically have overlapping permissions, RBAC
supports a hierarchical structure of roles to provide permis-
sion inheritance, where a senior role can inherit all permis-
sions assigned to junior roles. As a fundamental aspect of

RBAC, constraints can also allow us to lay out higher-level
access control policies [3].

In this paper, we propose a systematic way to support a
well-known access control in OSGi environments. In our
proposed approach, the OSGi authorization mechanism is
configured and mapped to RBAC, demonstrating that OSGi
authorization requirements can be fully fulfilled by RBAC.
In addition, important RBAC features are studied to en-
hance existing access control modules in OSGi service en-
vironments.

In the remainder of this paper, we first briefly describe
current OSGi authorization mechanism. In Section 3, we
formalize OSGi authorization mechanism and demonstrate
how OSGi authorization can be accommodated in RBAC.
The implementation of our prototype is addressed in Sec-
tion 4. Several related work are discussed in Section 5. Fi-
nally, Section 6 concludes this paper.

2. OSGi Authorization Mechanism

In OSGi service platform, the User Admin service is uti-
lized to find out if the users attempting to access are autho-
rized or not [9]. In the User Admin service authorization
architecture, three components are defined:

User - A user is a human being who can be identified by
credentials such as a password and other identity attributes.

User Group - A user group is an aggregation of users
based on common properties. For example, all family mem-
bers belong to a user group named Residents.

Action Group - Every action that can be performed by
a bundle is associated with an action group. For example,
if a bundle could be used to control the alarm system, there
should be an action group named AlarmSystemControl.

In OSGi authorization, the authorization decision is
made based on the following two strategies:

ANY Strategy: a user could be allowed to carry out an
action if s/he belongs to Any member of the action group.
For example, the AlarmSystemControl action group con-
tains two user groups Administrators and Residents. Elmer,
Pepe and Bugs belong to Administrators user group, and

12th IEEE International Workshop on Future Trends of Distributed Computing Systems

1071-0485/08 $25.00 © 2008 IEEE

DOI 10.1109/FTDCS.2008.43

23

Table 1. User Groups with Basic User Mem-

bers

Elmer Fudd Marvin Pepe Daffy Foghorn

Residents Basic - - Basic Basic -
Buddies - - - - Basic Basic
Children - - Basic Basic - -
Adults Basic Basic - - - Basic

Administrators Basic - - Basic - Basic

Elmer, Pepe and Daffy belong to Residents user group as
follows:

Administrators = { Elmer, Pepe, Foghorn }
Residents = { Elmer, Pepe, Daffy }
AlarmSystemControl = { Administrators, Residents }

This ANY strategy allows any of four members, Elmer,
Pepe, Foghorn and Daffy, to activate the alarm system since
all users are a member of user groups and those user groups
belong to one action group.

ALL Strategy: a user is allowed to carry out an ac-
tion if s/he belongs to All members of the action group.
In the above-mentioned AlarmSystemControl example, only
Elmer and Pepe would be authorized to activate the alarm
system, since Daffy and Bugs are not members of both Ad-
ministrators and Residents user groups.

The implementation of User Admin service in OSGi ser-
vice platform supports a combination of both strategies by
introducing two member sets, namely the basic member set
for the ANY strategy and the required member set for ALL
strategy. Basic membership defines a set of members that
can get access and required membership reduces this set
by requiring a user to be a required member of each action
group.

To accommodate this, OSGi assigns a user to a user
group then the user group is assigned to a specific action
group. Table 1 and 2 show an authorization example to
demonstrate the assignment relationships respectively.

The access decision is made based on the basic and re-
quired assignment relationships. For example, in Table 2
the action group WebCamAccess has two basic members,
Residents and Buddies, and two required members, Adults
and Administrators. Thus, all users belonging to at least
one of the basic members, Residents and Buddies, and all
required members, Adults and Administrators, are able to
carry out the webcam access action. From Table 1, we no-
tice that Elmer and Foghorn can meet this authorization re-
quirement.

3. Construction of OSGi-compliant RBAC

We found out that the current OSGi authorization mech-
anism is not intuitive for authorization administration. Fur-
thermore, it is not suitable for satisfying all security require-

Table 2. Action Groups with Basic and Re-

quired User Group Members

Residents Buddies Children Adults Admins

AlarmSystemControl Basic - - - Required
InternetAccess Basic - Basic Basic -
TemperatureControl Required - - Required -
WebCamAccess Basic Basic - Required Required
PhotoAlbumView Basic Basic - - -

ments for defining fine-grained access control policies in a
highly dynamic and open OSGi environment. Our objective
is to provide an efficient and effective authorization mecha-
nism for OSGi enabled network environments. To achieve
this, we adopt a role-based access control (RBAC) which is
a powerful mechanism for reducing the management com-
plexity, administration cost and potential configuration error
within the organization [10]. Hence, it is inevitable to iden-
tify and derive RBAC components from OSGi authorization
requirements.

We first attempt to formally define components in the
current OSGi authorization mechanism and these formal
definitions are used through the rest of this paper. There
are three sets of entities: users (U), user groups (UG) and
action groups (AG). The basic user-to-user group assign-
ment (BUA) is a many-to-many relation between U and UG.
There are two kinds of many-to-many relation between UG
and AG. One is basic action group-to-user group assignment
(BAA) that reflects the basic memberships for each action.
Another is required action group-to-user group assignment
(RAA) that reflects the required memberships for each ac-
tion. The following definitions formally summarize each
component:

• U is a set of users, U={u1, . . . un},

• UG is a set of user groups, UG={ug1, . . . ugn},

• AG = AGBasic ∪ AGRequired is a set of basic and required
action groups, AG={ag1, . . . agn},

• BUA ⊆ U × UG, is a many-to-many basic user-to-user group as-
signment relation,

• BAA ⊆ AGBasic × UG, is a many-to-many basic action group-
to-user group assignment relation, BAA[agi, ugi] = {basic},

• RAA ⊆ AGRequired × UG, is a many-to-many required ac-
tion group-to-user group assignment relation, RAA[agj , ugj] =
{required},

• users : UG → 2U , is a function mapping each user group ugi to
a set of users, users(ugi)={u ∈ U |(u, ugi) ∈ BUA},

• user groups : U → 2UG, is a function mapping each user ui

to a set of user groups, user groups(ui)={ug ∈ UG|(ui, ug) ∈
BUA},

• ba user groups : AGBasic → 2UG, is a function map-
ping each basic action group agi to a set of user groups,
ba user groups(agi)={ug ∈ UG|(agi, ug) ∈ BAA},

24

Figure 1. An OSGi Authorization Example

Figure 2. Overall Process of Constructing RBAC from an OSGi Authorization.

• re user groups : AGRequired → 2UG, is a function map-
ping each required action group agi to a set of user groups,
re user groups(agi)={ug ∈ UG|(agi, ug) ∈ RAA},

• ba action groups : UG → 2AGBasic , is a function map-
ping each user group ugi to a set of basic action groups,
ba action groups(ugi)={ag ∈ AGBasic|(ag, ugi) ∈ BAA},
and

• re action groups : UG → 2AGRequired , is a function map-
ping each required user group ugi to a set of required action groups,
re action groups(ugi)={ag ∈ AGRequired|(ag, ugi) ∈
RAA}.

Next, we demonstrate how RBAC components and fea-
tures can be utilized to support components of OSGi au-
thorization. We describe how we can identify basic RBAC
component, role hierarchy and constraints to enforce OSGi
authorization requirements.

3.1. Constructing basic RBAC components

The essence of RBAC is the notion of roles to abstract
users and permissions. Permissions are grouped through
roles, and users obtain permissions by being assigned to
roles. Users, roles, permissions and the corresponding as-
signment relations are core components in RBAC.

We noticed that the User set (U) and the Action Group
set (AG) essentially can be treated as users and permissions
in the RBAC model, respectively. In addition, the User

Group set (UG) in OSGi can be represented as roles in such
that actions are abstracted through User Groups and those
actions can be exercised by a member of the specific User
Group. However, normally OSGi uses two types of assign-
ments, namely the basic assignment (BAA) and the required
assignment (RAA) that can allow us to achieve the abstrac-
tion of actions through User Groups. However, RBAC can-
not accommodate this characteristic directly . So, we pro-
pose several properties to bridge this gap in the course of
OSGi-compliant RBAC construction.

First, we construct the role (R) by introducing a con-
cept of Private Membership. In particular, we treat the user
groups in OGSi as the private members of each role in role
construction, which can be further characterized as basic
members and required members depending on the property
of the OSGi BAA relation and RAA relation. The detailed
role construction process is explained through an OSGi au-
thorization example as shown in Figure 1. In this example,
Table (a) reflects the assignment relation between U and
UG, and Table (b) shows the assignment relation between
AG and UG. In Table (b), there are two types of assignment
relations, Basic and Required to reflect BAA and RAA rela-
tions respectively. For a particular action group, we identify
that there exist three possible combinations on Basic and
Required assignments as follows:

Case 1: Contains both basic assignments and re-
quired assignments as shown in the row of

25

ag1, ba user groups(ag1) = {ug1, ug2} and
re user groups(ag1) = {ug4, ug5}.

Case 2: Contains only basic assignments as shown in the
row of ag3, ba user groups(ag3) = {ug1, ug2, ug3}.

Case 3: Contains only required assignments as
shown in the row of ag2, re user groups(ag2) =
{ug1, ug4, ug5}.

As specified in the OGSi authorization strategies, a user
must be assigned to ALL required user groups and ANY
basic user groups before s/he can exercise a particular ac-
tion. Also, while accommodating the identified basic and
required assignment patterns, we define the following map-
ping rules on action group basis:

Rule 1. Introduce one role and one permission-to-role
assignment for each OSGi basic action group-to-user
group assignment in BAA. The role contains only one
basic private member of the basic user group and ALL
required members of the required user groups. The
particular action group in BAA is constructed as one
permission and the permission is assigned to the role.

Rule 2. In case of no basic assignment, introduce one role
that contains ALL required members of the required
user groups and one permission-to-role assignment by
assigning the permission to the role.

Rule 3. In terms of user-to-role assignment, a user can
be assigned to a role when the corresponding user in
OSGi authorization is assigned to all the private mem-
bers of that role.

Now we discuss how to use these three rules to con-
struct the RBAC for each case we have identified. First,
we map all users and action groups in OSGi authorization
to users and permissions of RBAC directly. As identified in
Case 1, the action group ag1 has both basic member and re-
quired member. Following Rule 1, we construct roles such
as two roles r1 and r2 for the action group ag1 in our ex-
ample. r1 contains a basic member ug1 and two required
members ug4 and ug5. r2 is constructed by a basic mem-
ber ug2 and all required members ug4 and ug5. Formally,
members(r1) = {ug1, ug4, ug5}, and members(r2) =
{ug2, ug4, ug5}. Using the same rule, the permission p1

corresponding to the action group ag1 is assigned to roles
r1 and r2. Following Rule 3, a user is assigned to a role
only if the user has been assigned to all private members of
this role. In the example (Figure 1 (a)), u1 is assigned to
ug1, ug4 and ug5. Since ug1, ug4 and ug5 are private mem-
bers of r1, u1 should be assigned to r1 in RBAC. For the
same reason, u5 is assigned to r2. From Figure 2, u1 and
u5 can hold the same action group ag1, and u1 and u5 own

Figure 3. Mapping Algorithm from OSGi Au-

thorization to RBAC Authorization.

the same permission p1 via r1 and r5, respectively. Hence,
the same authorization requirements are fulfilled through
the process of configuring RBAC.

In Case 2, the action group has only three basic mem-
bers ug1, ug2 and ug3. Using Rule 1, three roles r4, r5

and r6 are constructed by these three basic members of ag3

as shown in Figure 2. Formally, members(r4) = {ug1},
members(r5) = {ug2} and members(r6) = {ug3}. Cor-
responding assignment relations as a result of Rule 1 and 3
are shown as well.

In Case 3, the action group has only required members.
The second row of the OSGi authorization example (Fig-
ure 1 (b)) shows an action group ag2 has three required
members ug1, ug4 and ug5. Using Rule 2, one role r3

is constructed that contains all three required members of
ag2. Formally, members(r3) = {ug1, ug4, ug5}. Figure 2
depicts the role construction and assignment relationships.

To realize the basic RBAC construction from OSGi au-
thorization, a mapping algorithm is given in Figure 3,
which can be performed to map OSGi authorization to ba-

26

sic RBAC as we discussed above. Some elements and func-
tions in these algorithms–such as USER, AG, user groups(),
ba user grous() and re user groups()–are adopted from our
formal representation of OSGi authorization mechanism.
Some other elements and functions are based on the formal
RBAC model.

3.2. Supporting role hierarchies and con-
straints

We construct role hierarchy to define an inheritance rela-
tionship, reducing the cost of administration. For example,
all managers in the same organization may have a certain set
of core “management privileges”, even though they work in
different departments. This commonality can be exploited
through a role hierarchy that makes each department man-
ager role to inherit a generic “management” role. Role hi-
erarchy allows the policy designer to write generic access
polices once by simplifying the complexity of access con-
trol policies.

In our mapping approach, roles are constructed based
on basic members and required members of action groups
of OSGi authorization mechanism. Considering the private
member sets of every role, we discover inclusion relations
between them. In Figure 2(a), r1 is constructed by a basic
private member ug1 and two required private members ug4

and ug5, while r7 is constructed by a basic private mem-
ber ug1 and a required private members ug4. Formally, the
following condition is true.

(ba member(r7)=ba member(r1)) ∧ (re members(r7) ⊂
re members(r1))

Since the private members of r1 include all private mem-
bers of r7, a user who is assigned to r1 should be assigned
to r7 as well according to Rule 3. Thus a user assigned to r1

should have all permissions of r7. In other words, r1 should
possess all permissions of r7 and r1 is more powerful than
r7. Therefore, a role hierarchy relation can be built between
r1 and r7. As a senior role, r1 inherits all permissions of r7.
Commonly, if any of the following two conditions is true, ri

is senior to rj . With this methodology, two role hierarchies
can be identified and shown in Figure 2(c).

1. (ba member(rj)�=φ) ∧ (ba member(ri)�= φ)
∧ (re member(ri)�=φ)∧(ba member(rj)=ba member(ri))
∧ (re members(rj) ⊂ re members(ri))

2. (ba member(rj)=φ) ∧ (re member(ri)�=φ)
∧ (re member(rj)�=φ)
∧ (re members(rj) ⊂ re members(ri))

RBAC is a policy oriented approach and allows to spec-
ify well-known security principles, such as separation of
duty and least privilege. These security principles can be
defined as constraints in RBAC. Also we have proved that

OSGi authorization requirements can be satisfied by RBAC
in the previous discussion. We briefly elaborate how RBAC
constraints can help enhance OSGi authorization in this sec-
tion.

Separation of duty (SOD). SOD is a well-known princi-
ple for preventing fraud by identifying conflicting roles. In
home network environments, some roles cannot be assigned
to the same user, such as Residents and Buddies, Adults and
Children. These roles can be defined as conflicting roles
and the corresponding SOD constraints help avoid having
undesired assignments.

Prerequisite constraints. This constraint is based on the
concept of prerequisite roles. For example, a user can be
assigned to the Administrators role only if the user is al-
ready a member of the Residents role. It ensures that only
users who are already assigned to the Residents role can be
assigned to the Administrators role.

4. Implementation Details

In order to prove the feasibility of our approach, we de-
sign a prototype system. A security-enhanced OSGi autho-
rization architecture is depicted in Figure 4. This authoriza-
tion architecture is composed with two distinct parts, policy
management and policy enforcement.

4.1. Policy management

OSGi authorization mechanism has been defined in the
standard of OSGi service platform specification [9]. How-
ever, there is lack of available tools for managing OSGi
authorization. In our implementation, a web-based OSGi
authorization management tool is designed to support our
policy management framework. The tool is composed of
two major GUIs: (1) OSGi authorization management GUI
communicates with OSGi authorization engine to manage
standard OSGi authorization policy 1 and (2) RBAC autho-
rization management GUI is used to manage RBAC autho-
rization through the RBAC authorization engine. Trans-
formation handler is responsible for mapping OSGi au-
thorization to RBAC components, building role hierarchies
and reconstructing OSGi authorization by performing cor-
responding algorithms.

XACML [8] is a standard and general purpose access
control policy language defined in XML, which is flexible
enough to accommodate most access control policy needs.
Since core and hierarchical RBAC implementation can be
specified by using XACML [7], the XACML policy gener-
ator generates XACML policies from RBAC authorization

1The current OSGi authorization mechanism can coexist with the
OSGi-compliant RBAC authorization mechanism.

27

�
��
�
��
�
�
	�
�
�

�
�

�
�

�

�
��
�
�
��
�
	�
�
�

�
�
�
�
�
�

�
�
�
�
��
�
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��

Figure 4. A Security-Enhanced OSGi Authorization Architecture.

specification. Three types of XACML policies are gener-
ated: Role Policy Set, Permission Policy Set and Role As-
signment Policy Set. All generated policies are stored in an
authorization policy DB.

4.2. Policy enforcement

A typical authorization system includes a policy decision
point (PDP) and a policy enforcement point (PEP). Existing
solutions in authorization management can be divided into
two kinds of architectures: pull mode and push mode. In
push approach, each subject presents the required informa-
tion to the PDP and the decision is sent to PEP, while the
PEP collects the related information of subjects and queries
the PDP for policy decision in pull approach.

Our authorization architecture currently utilizes the pull
mode. By integrating the Sun’s XACML library [2] into
OSGi service platform, the Authorization Service as the
PDP module interprets XACML polices and makes access
decisions. The User Admin Service as the PEP module
queries the Authorization Service and enforces the relevant
operations.

5. Related Work

Several related work investigated the access control
mechanism for home network environments where the
OSGi service platform is operated. Cho et al. [4, 5]
proposed an authorization policy management framework
based on RBAC for OSGi service platform. Through the
comparison of several access control models, they claimed

that RBAC model is more flexible than DAC model for
home network environments operated by the OSGi service
platform. However, they did not consider the established
authorization mechanism in current OSGi standard. Also,
they omitted to address how important RBAC features, such
as role hierarchy and constraints, can be effectively utilized
in OSGi service platform. Lim et al. [6] presented a mecha-
nism to bundle authentication and authorization services for
the OSGi service platform. Their approach uses XACML
to specify RBAC polices for the authorization of service
bundles. However, they also ignored existing OSGi autho-
rization mechanism and attempted to employ RBAC in the
OSGi platform directly. To the best of our knowledge, our
approach illustrated in this paper is the only RBAC autho-
rization solution that is compatible to the existing OSGi au-
thorization standard.

6. Concluding Remarks

In order to prove RBAC can fulfill OSGi authorization
requirements and to leverage important RBAC features in
the OSGi environment,

We have introduced a systematic mechanism to con-
struct RBAC-compliant OSGi authorization modules. Our
approach fulfilled OSGi authorization requirements while
leveraging important RBAC features in the OSGi environ-
ment. A proof-of-concept prototype has been implemented
to demonstrated the feasibility of our approach as well. Cur-
rently, we seek a way to validate whether changes in the
RBAC-based environment can also be reflected in OSGi
authorization environment. In addition, we plan to study

28

the specification of complicated access control policies, and
verification and testing of access control policy specifica-
tion in OSGi environments.

7. Acknowledgments

This work was supported, in part, by funds provided
by National Science Foundation (NSF-IIS-0242393) and
Department of Energy Early Career Principal Investigator
Award (DE-FG02-03ER25565).

References

[1] OSGi Initiative. http://www.osgi.org.
[2] Sun’s XACML implementation.

http://sunxacml.sourceforge.net/.
[3] G.-J. Ahn and R. S. Sandhu. Role-based authorization con-

straints specification. ACM Transactions on Information and
System Security, 3(4):207–226, November 2000.

[4] E.-A. Cho, C.-J. Moon, D.-H. Park, and D.-K. Baik. Access
control policy management framework based on RBAC in
OSGi service platform. In CIT ’06: Proceedings of the Sixth
IEEE International Conference on Computer and Informa-
tion Technology, page 161, Washington, DC, USA, 2006.
IEEE Computer Society.

[5] E.-A. Cho, C.-J. Moon, D.-H. Park, and D.-K. Baik. An ef-
fective policy management framework using RBAC model
for service platform based on components. In SERA ’06:
Proceedings of the Fourth International Conference on Soft-
ware Engineering Research, Management and Applications,
pages 281–288, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[6] H.-Y. Lim, Y.-G. Kim, C.-J. Moon, and D.-K. Baik. Bundle
authentication and authorization using XML security in the
OSGi service platform. In ICIS ’05: Proceedings of the
Fourth Annual ACIS International Conference on Computer
and Information Science, pages 502–507, Washington, DC,
USA, 2005. IEEE Computer Society.

[7] OASIS. Core and hierarchical role based access control
(RBAC) profile of XACML v2.0. http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-rbac-
profile1-spec-os.pdf.

[8] OASIS. XACML 2.0 Core: eXtensible Access Control
Markup Language (XACML) Version 2.0. http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-core-spec-
os.pdf.

[9] OSGi. User Admin Service Specification Version 1.1.
http://www.osgi.org.

[10] R. Sandhu, E.Coyne, H.Feinstein, and C.Youman. Role-
based access control model. IEEE Computer, 2(29), Febru-
ary 1996.

29

