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Ab5troct- In the past, operating systems tended to lack 
well-defined access control policy specification languages 
and syntax. For example, a UNIX operating system that is 
based on the Discretionary Access Control (DAC) paradigm 
has decentralized security policies based on technology that 
has been developed over the years. W ith such policies, it 
is difficult to identify the permissions given to each user, 
and who has what access to which resources. With the ad­
vent of recent security-enhanced operating systems such as 
SELinux, this is no longer the case; the access control policy 
for almost all resources is now stored centrally and applied 
universally throughout the system. This is certainly more 
manageable but is not without costs. Firstly, such policies 
tend to be complex. Secondly, as more of such systems are 
developed, each system would have its own policy specifica­
tion syntax. A system administrator who intends to evaluate 
01' migrate to a new system would have to learn the syntax of 
the new system. In this paper, we propose a solution to this 
problem by introducing the initial design of a new policy 
specification language that can be used to represent access 
control policies for multiple operating systems. To serve its 
purpose, this language must be fiexible enough to cater to 
many operating systems, while being sufficiently extensible 
to support the specific features of each target operating sys­
tem. We present the criteria, features, and approach that 
we are using to design the language. We also describe the 
role of t""o systems - SELinux and Systrace - in the design 
of our language. We also discuss our consideration of ASL as 
a potential candidate language, and why we chose to design 
our own language instead. 

I. INTRODUCTION 
In the past, operating systems that are based on the Dis­

cretionary Access Control (DAC) paradigm tended to lack 
well-defined access control policies to resources. For ex­
ample, consider the filesystem of a typical UNIX system. 
Each file in the UNIX filesystem is designated to have ei­
ther read (r), write (w), or execute (x) permissions for the 
user/owner, group, and other users. However, there was no 
central policy that specifically defines the permissions and 
ownership for all files universally throughout the system. 
As the number of users grow, the access control policy be­
comes even less clearly defined in such systems - this results 
in a so-called "spaghetti of intent" scenario, which makes it 
very difficult to identify the permissions of a resource and 
who has access to it. It is clear that this ad-hoc method of 
specifying policies is no longer sufficient. 
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More recently, security-enhanced operating systems such 
as NSA Security-Enhanced Linux (SELinux) [?] have intro­
duced a more structured way of specifying policies. Unlike 
earlier UNIX systems, the SELinux policy is specified in a 
central directory of files, which is then compiled by a spe­
cial SELinux utility. In terms of security, access control 
in SELinux is more manageable from the administrator's 
point of view. Access control to resources such as files and 
directories are clearer to the system administrator. 

Apart from SELinux, there are many other similar 
security-aware or security-enhanced operating systems and 
operating system-related applications that are available to­
day with like or different goals. A few of these are full­
fledged operating systems (such as Trusted Solaris) , while 
others are enhancements that are applied to existing op­
erating systems (such as grsecurity [7] and OpenWall for 
Linux) . Yet others are applications that provide security 
features to an operating system that do not support those 
features natively. An example of the latter is Systrace [7], 
which is a tool that enforces system call policies on appli­
cations such as daemons and other programs, so that they 
are only restricted to executing the system calls defined 
in the system call policy. To simplify our discussion, we 
shall refer to these operating systems and related applica­
tions collectively as "security-aware systems" throughout 
this paper. 

The number of such security-aware systems are bound to 
increase in the future . These systems are written by sep­
arate groups of developers with different objectives. This 
presents a problem to a system administrator. A systems 
administrator who wishes to install or evaluate different 
operating systems would have to learn the policy syntax 
for each of these systems. Since the syntax for each system 
varies in terms of complexity and notation, a lot of time 
and resources would have to be spent in order to learn and 
implement them effectively. This is also true when the sys­
tem administrator is trying to migrate an existing system 
to a different one. How can the administrator be sure that 
the policy implemented on the new system matches the old 
policy? Are there any "leaks" or incompatibilities in the 
new policy? 

A solution to this problem is clearly needed. We believe 
that an effective solution to the problem is to introduce a 
new policy specification language that is both flexible and 
extensible. Flexibility means that the language should be 
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able to cater to multiple operating systems. Extensibility 
means that our language should be able to support the 
specific features in the policies of each target operating 
system or target application that the language is used for. 

One of the most widely cited and accepted authorization 
specification languages that may be suitable for this pur­
pose is the Authorization Specification Language (ASL) [?J, 
[?J. ASL is a logical language that is designed with flex­
ibility in mind, ASL can flexibly adapt to many kinds 
of systems, including databases, operating systems, and 
filesystems. ASL has also been used to specify privacy poIi· 
cies [?]. This demonstrates the viability of ASL as a flex­
ible authorization specification language. However, since 
its introduction in 1997, ASL has not been fully practiced 
in commercial systems, To examine the feasibility of ASL 
to resolve the problems and issues we mentioned earlier, we 
attempted to implement part of ASL to represent Systrace 
policies, Through our implementation exercises, we discov· 
ered that ASL lacks a number of design criteria that are 
required t o  specify the policies of security-aware systems, 
Our main finding was that ASL is flexible, but it is not 
extensible. 

In this paper, we introduce the initial design of a new 
language which we shall call Chameleos. Chame\eos is de­
signed to represent the access control policies of security­
aware systems in a flexible and extensible manner. We 
discuss the criteria we determined to be important in or� 
der for Chameleos to be developed, the approach we used, 
features of Chameleos, and our ongoing work. We also dis­
cuss the role of Systrace and NSA SELinux in the design 
of Chameleos. 

The rest of the paper is organized as follows. We first 
discuss background and related work in Section II. We 
then describe ASL in greater detail , along with its ben­
efits and shortcomings in Section Ill. We also show our 
implementation exercises with Systrace in this section. In 
Section IV, we present the design, criteria, and features of 
the new language Chameleos. This is followed by a dis­
cussion of our progress in developing the language based 
on using actual system poli cies in Section V. We then pro­
ceed to describe our ongoing and future work in Section VI, 
before concluding in Section VII. 

II. RELATED WORK 

The most relevant work that is related to our project 
is the Authorization Specification Language (ASL) by Ja­
jodia et al [?J, [?J. ASL is a flexible and very expressive 
language that can be used for multiple access control poli­
cies. It is a widely accepted language in the access control 
community, as can be seen by its adoption and exploration 
by researchers. working in different areas like modular au­
thorization [?] and logical access control frameworks [?). 
ASL has also been extended to support other policies apart 
from authorizations, such as privacy policies I?], 
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Early projects on flexible languages include the work of 
Woo and Lam [?], who used default logic to model autho­
rization rules. In the operating systems area, Rippert I?] 
has proposed a kernel-based framework called THINK to 
protect flexible operating system architectures. 

Throughout t h is paper, we will frequently use two 
security-aware systems as examples to demonstrate ASL 
and Chameleos. The two systems are Systrace and 
Security-Enhanced Linux (SELinux) . Systrace [?J is an 
applicati on that enforces system call restrictions on pro­
grams. It currently runs on a variety of UNIX systems. 
SELinux [?], [?) is a research prototype of the Linux ker­
nel, along with a number of specially patched programs to 
use the kernel enhancements. Originally based on the Flask 
operating system I?J, SELinux now includes new architec­
tural components that provide mandatory access control 
policies involving type enforcement [?], role-based access 
control, and multi-level security. 

III. ACCESS CONTROL POLICIES ON OPERATING 

SYSTEMS 

In this section, we will examine an implementation exer­
cise , where we attempt to specify the access control poli­
cies of a real world security-aware system using ASL. The 
system we will examine is Systrace, an application that en� 
forces system call restrictions on individual programs. We 
will first introduce Systrace, followed by our experiments 
using an ASL implementation to represent its policies. We 
then describe our findings. 

A. Systrnce 
Systrace [?J is a system that enforces system call poli­

cies by constraining the application's access to the system. 
Systrace is currently available for the OpenBSD, NetBSD, 
Linux, and Mac OS X platforms. By confining applications 
to a restricted set of system calls, Systrace allows the ad­
ministrator to sandbox applications. This is particularly 
useful to examine untrusted binaries and other suspicious 
pro grams. It Can also act as part of an intrusion detec­
tion system that triggers whenever an application violates 
system call policies. 

An excerpt of a Systrace policy is shown in Figure 1. 
This policy is for named, the DNS server that is part of the 
BIND 9 distribution. The policy is rather intuitive. The 
native- prefix states which Application Binary Interface 
(AB!) the policy is for. 

In Figure 1, the first line permits named to invoke the 
getuidO system call. The next two lines specify that 
naJlled is allowed to perform read system calls on a file, 
as long as the filename is either /etc/hesiod. conf or 
/dev/arandom. Note that fsread is not actually a sys­
tem call. In the context of Systrace, fsread refers to the 
group of system calls that perform read operations, such 
as stat 0, readlinkO, access 0 and so on. We also see 
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native-getuid: pe�it 
native-fsread; filename eq "/ete/hesiod.conf" then 

permit 
native-fsread: filename eq "/dev/arandom" then 

permit 
native-chroot; filename eq "/var/named" then permit 
native-bind: soekaddr match "inet-*:53" then permit 
native-bind: soekaddr eq "inet-[O.O.O.O]:O" then 

permit 
native-fehovn: fd eq "5" and uid eq "70" and 

gid eq "70" then permit 

Fig. 1. Subset of the systrace policy for "named", the DNS server. 

that named is allowed to invoke the chroot 0 system call on 
the Ivar fnamed directory. Systrace also supports regular 
expressions, as we observe from the line that allows bind () 
to be invoked only on port 53 (linet-*:53"). Note that 
expressions USing regular expressions use the match oper­
ator. The conjunction of boolean expressions is also sup­
ported, as seen from the last line, where fchownO is only 
allowed on file descriptor 5 and when the UID and GID of 
the process are both 70. 

B. ASL Representations 

We will now describe our experiments with using ASL to 
represent the Systrace policy presented earlier. It should 
be noted that ASL is a logical language, with no known im­
plementation at this time. As such, we have used ASL in 
a "computer-readable syntax" based on Our own interpre­
tation of how ASL's logical syntax should look like if ASL 
was actually implemented. Our methodology for these im­
plementation exercises are shown in Figure 2. 

Also, because of the nature of the Systrace policies 
described, we ascertained that the authorization rule of 
ASL is the most appropriate rule to represent the policies. 
Loosely defined, the authorization rule is a rule of the form: 

cando(o, 8, < sign> a) +- L1&'" &Ln. 

where 0 is an object, s is a subject, a is an action, < 
sign> is either + or -, and each Li is a literal, where 
o < i :::; n. The exact, formal defintion is given by the 
authors in their original papers on ASL [?], [?]. 

We wrote Perl scripts to convert the original policies to 
their ASL equivalent forms. The generated policies were 
then compared to the original policies to identify any sim­
ilarities and differences. A semantic comparison was used; 
we ignored syntactic entities like comments and blank lines. 

B.1 Systrace 

We shall now examine the Systrace policy (Figure 1) and 
its ASL equivalent form (Figure 3). At first glance, the 
ASL-equivalent policy seems to resemble the original pol­
icy. However, closer examination shows that it was difficult 
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Fig. 2. Our methodology for the implementation exercises. 

cando (null , native-getuid, +permit) <- . 

eando("/ete/hesiod. eanf" , native-fsread, +permit) 
<- typeof(" lete/hesiad. eonf", filename) 

cando (" /dev /arendom", nati ve-fsread, +permi t) 
<- typeof("/dev/arandam", filename} 

cando ("/var/named" , native-ehroat, +permit) 
<- typeof("/var/named", filename) 

eando("inet-*:53", native-bind, +permit) 
<- typeof("inet-*:53", soekaddr} 

eanda("inet-(O.O.O.O] :0", native-bind, +permit) 
(- typeof("inet-[O.O.O.O]:O", soekaddr) 

Fig. 3. The Systrsce policy subset from Fig. 1 represented in ASL. 

to represent certain features like the conjunction of boolean 
expressions. Handling similar but different operators like 
match and eq was also not trivial. This demonstrates yet 
again that ASL is not able to cater to specific features of 
system policies. 

C. Findings and Observations 

The major observation from our implementation exer­
cises is that ASL excels as a theoretical, logical language, 
but is challenging to use in practice. The main reason 
is because ASL is flexible, but it is not extensible. ASL 
can represent the access control policies for many systems; 
however, it is difficult to support extensibility using ASL, 
which is the ability to support the specific features of those 
policies. 

First of all, ASL lacks comprehensiveness. While ASL 
provides excellent support to flexibly represent many access 
control policies, it does not have a proper facility to specify 
sets and groups in the first place. Apart from that, while 
it is possible to assign permissions in ASL, it is impossible 
to revoke those permissions. 

Secondly, there are inconsistency issues. The syntax of 
some ASL predicate symbols has not been fully discussed 
in a consistent manner [?], [?]. 
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Lastly, a few design characteristics of ASL make it dif­
ficult to use in practice. For example, ASL supports fine­
grained temporal access control (though it is not described 
in detail). Fine-grained temporal access control is not 
widely used in operating systems, as it can incur a large 
performance overhead. Also, the syntax of ASL tends to 
be repetitive (as we can see from Figure 3), which makes 
it difficult to use in practice. 

IV. THE DESIGN OF CHAMELEOS 

Through the discussion in Section Ill, it is interesting to 
note the various compromises that authors of flexible lan­
guages have to make in order to support various systems. 
Designing such languages is clearly not a trivial task. In 
this section, we describe how we think those issues should 
be addressed, and what we think would be a good way to 
address them. 

A. Objectives 

We begin the discussion of our language by describing 
its two main objectives, as follows: 

1. Support for multiple security-aware systems. 
The language must be able to specify access control policies 
for multiple security-aware systems. Recall that our def­
inition of security-aware systems includes both operating 
systems and progra.rns that work with operating systems. 
2. Focus on implementation. We strive to build a lan­
guage that can be implemented and used in practice, as 
opposed to a theoretical, logical language. 

We name our language Chameleos, which we derive from 
the chameleon. We chose the name due to the chameleon's 
ability to blend into the specific features of different envi� 
ronments. The name ends with "as" to demonstrate the 
language's focus on operating systems. 

B. Approach 

We now discuss the approach that we take to design the 
language. We present the two key decisions that we made 
in the design of the language , and why we made them. 

Firstly, we have to decide whether to develop an exten­
sion of ASL or develop an entirely new language altogether. 
Developing an extension of ASL has some benefits, since 
most of the groundwork has already been done by ASL's 
authors. ASL is also a suitable candidate for flexible sys­
tems. However, as demonstrated earlier in Section III, ASL 
may not be suitable for operating systems and is not very 
adaptable to practical systems. With this in mind, we 
chose to develop a new language, which we design based 
on lessons learned from ASL. Developing a new language 
would also allow us to design syntax that is consistent with 
what system administrators are familiar with. 

Secondly, we need to consider whether to use a top-down 
approach or a bottom-up approach. In other words, we 
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need to decide whether to develop our language by test­
ing it regularly with general concepts, or on actual op­
erating systems. General concepts in this context refer 
to implementation-independent paradigms, such as access 
control lists and role-based access control. The top-down 
approach is suitable for flexibility, and is the approach used 
by ASL. For Chameleos, however, we believe that develop­
ing for actual systems (the bottom-up approach) would be 
more beneficial in the long run, since Chameleos has to be 
implemented on real systems in the end. 

These decisions lead to an evolutionary design model for 
Chameleos. By evolution, we mean that the development 
of Chameleos will go through a number of iterations until 
the actual language design and syntax is finalized. This 
also implies that we will use a small number of security­
aware systems as target systems initially, and increase the 

number as development progresses. By using this evolu­
tionary process, we believe that we will be able to support 
the specific features of each system more effectively. 

C. Criteria 
We now present the criteria for Chameleos, which we 

have developed based on the objectives and approach out­
lined in the previous sections. Each criterion is explained 
as follows: 
1. Flexibility. First and foremost, Chameleos should be 
able to support the access control policies of multiple op­
erating systems. 
2. Extensibility. Of equal importance is the extensibility 
of Chameleos. Chameleos must be able to support the spe­
cific features of operating system access control policies. A 
benefit of this is that it can allow a system to use only the 
features that it requires and nothing more. For example, 
Systrace works with system calls and does not have any­
thing to do with type enforcement. Chameleos should be 
able to allow Systrace to work within its environment. 
3. Able to be implemented. Chameleos must be a prac­
tical language as opposed to a theoretical one. 
4. Well-defined syntax. Chameleos must have a well­
defined syntax to promote clarity and reduce the ability to 
introduce ambiguity. 
5. Comprehensiveness. Chameleos must provide facil­
ities to enable the support for any target system. This 
includes the ability to define groups and sets. 
6. Policy specification only. In order to support flex­
ibility, we separate policy specification from mechanism. 
This allows us to focus on developing a language that is 
superior for policy specification. 
7. Text-based language. By text-based language, we 
mean that the language will not be confined to a GUI IDE. 
The language itself should be expressible in ASCII text. 
This is in contrast to "languages" such as Visual Basic, 
which has to be edited and compiled via a graphical user 
interface . 
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Fig. 4. The Chameleos architecture. 

8. System independence. We strive to develop a lan­
guage that can work across multiple systems, with the ma­
jor requirement that the system must be in the operating 
systems domain. 

D. Design 

The three major objectives of the system are high flex­
ibility, extensibility, and practicality. With this in mind, 
we will now discuss the design of the components that are 
needed to implement the language. The overall architec­
ture is shown in Figure 4. 

The design of ASL has shown that separation of pol­
icy specification and mechanism is very important in or­
der to allow flexible representation of policies [?], [?]. We 
have taken that notion into consideration in the design of 
Chameleos. The Chameleos architecture primarily involves 
the translation of a Chameleos policy file into a system­
specific policy. If we have two similar systems, the architec­
ture is sufficiently flexible to allow the same Chameleos pol­
icy to be translated into specific policies for the two sys­
tems. 

The Chameleos architecture consists of three main com­
ponents: the meta language, extensions, and a transla­
tor. The meta language is the core Chameleos language 
itself. The meta language consists of the generic syntax 
of Chameleos. This includes operators, statement termina­
tors, reserved keywords, variable types, and other related 
entities. The meta language would also clearly show how 
functions and procedures should be defined. 

To write a Chameleos policy for a specific system, say 
SELinux, we would need to use the specific features of 
that system. For example, a Chameleos SELinux policy 
would need support for specifying type transitions and 
roles. A Chameleos policy for another system like Sys­
trace would focus on system calls. To support such exten­
sibility, a Chameleos extension can be used. An extension 
would consist of the necessary variables, library of func­
tions (which can be implemented as a well-defined API), 
and other state variables of a specific system. For exam­
ple, a Chameleos SELinux extension would consist of con­
venience functions to specify users, user-role assignments, 
type transitions and so forth. We could think of an exten­
sion as a module, much like a C #include file, or a Java 
class package that could be imported into a Java program. 
It is clear that the meta language has to be generic enough 
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to support a wide variety of extensions in order for exten­
sibility to be achieved. 

Having extensions in this manner would also allow fu­
ture systems to be supported easily in the Chameleos ar­
chitecture. A new extension could be developed for a new 
system, which could then be integrated into an existing 
Chameleos system. Another advantage of using exten­
sions this way is that it isolates the components needed 
for a given system. For instance, if we are working with 
SELinux, we could just load the SELinux extension, and to­
tally ignore the other irrelevant extensions like Systrace's. 
This results in less system overhead when actually running 
the translator, which we shall describe next. 

The last component of the Chameleos architecture is the 
translator. As its name implies, a translator would convert 
a Chameleos policy into a system-specific policy. For ex­
ample, a translator would translate a Chameleos Systrace 
policy into an actual Systrace policy. The translator would 
need to know the meta language natively, and be able to 
load extensions into the system when required. 

E. Language Features 
We now discuss the features of the language that are 

required to conform to the criteria and objectives discussed 
earlier. At a minimum, Chameleos should consist of the 
following features: 

1. Generic subjects and objects. In order to be flex­
ible, Chameleos must be able to support generic subjects 
and objects. 
2. Subject types and object types. Closely related to 
generic subjects and objects, Chameleos must be able to 
label the subjects and objects with types. For example, a 
subject can be of type process, while an object can be of 
type file. 
3, Variables. Variables clearly need to be supported for 
various applications. 
4. Macros. Macros would allow a convenient way of ex­
pressing repetitive patterns in the Chameleos policy. 
5. Arbitrary sets. Since many systems use the notion 
of sets in their access control policies, support for arbi­
trary sets is required. Facilities to perform the regular set 
operations, such as union and intersection , should also be 
provided. 
6. Groups. Groups are closely related to sets. One way 
to implement a group is to implement it as a set, but allow 
it to be manipulated from a higher level of abstraction. 
Depending on the system's specific features, a group can 
be restricted so that it can never be changed once it is 
defined. Groups are also generic enough to represent roles, 
and role hierarchy implementations need to be addressed 
as well. 
7. Compound expressions. Compound expressions 
would allow multiple expressions to be joined together, 
such as the conjunction of multiple boolean expressions. 
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8. Association. Associations allow us to link one entity 
to another, such as assigning a user to a role. 
g. Arbitary comparison operators. A system could 
use a new comparison operator that other systems do not 
have. For example , most of the time, the equality operator 
is present. However, Systrace has a comparison operator 
match that matches regular expressions instead of being 
strictly an equality operator. This presents the need for 
arbitrary comparison operators. 
10. Aliases. Aliases are similar to the typedef functional­
ity in C. Aliases allow us to substitute one word for another. 
If used correctly, this promotes readability and clarity, and 
it would make it easier to u nderstand the policy writer 's 
intentions. 
11. Mode of operation. The motivation for implement­
ing mode of operation came from observing the differences 
between the Systrace and SELinux policies. In a Systrace 
policy, every single statement is strictly a part of a sys­
tem call policy. However, in SELinux, different statements 
specify different things; for example, one statement spec­
ifies a type transition rule, while another may specify a 
user-role assignment. Therefore, we could use the mode of 
operation feature to define statements which have different 
functionalities. 

. 

12. Arbitrary permissions. Permissions vary wildly 
across different systems. For example, a getattr permis­
sion may be relevant when dealing with obtaining the at­
tributes of a file, but it is not required when working with 
roles. Furthermore, one filesystem may support more per­
missions than another. For instance, the Andrew File Sys­
tem (AFS) allows users to specify the permission to list files 
in a directory. Such functionality is not present in regular 
UNIX systems without AFS. 
13. Allow/Deny. This feature is related to permissions, 
and allows the administrator to allow or deny a permission . 
14. Hierarchies. Hierarchies are usually difficult to im­
plement , but are necessary to implement operating systems 
that support role hierarchies. 
15. Constraints. Constraints allow us to restrict the 
number of ways in which a policy statement or a set of 
policy statements can be specified. This helps us to val­
idate policies. For example, we could use constraints to 
limit the range of values that can be assigned to a certain 
variable. 
16. Specification of defaults. When developing exten­
sions, it is important to be able to specify defaults for each 
extension. This way, even if certain system-specific vari­
ables are not used, they would a lready have been initialized 
with reasonable default values. 

V. REPRESENTING ACCESS CONTROL POLICIES 

As mentioned earlier, we are developing Chameleos using 
an evolutionary approach. We are still in the process of 
defining the final language . We now present our progress at 
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Subject Object Arbitrary comparison operators 
IT I· )  (Type: frlena�e) ype: nil rva I �l • permrion 

native-chroot: filename eq 'fva� amed' then permit 

native-bind: sockaddr match' inel-':53' then permit I... . .. .. . . . " .. " ... .J 

1 I 1 • EX1ension 
native-bind: sockaddr eq 'inet-[O.O.O.O]:O· then permit 

nalive-fchown: 
fd eq '5' and uid eq '70' and gid eq '70' then permit 
I I 

Compound expression 

Fig. 5. Excerpt of Systrace policy, shown with Chameleos directives. 

representing access control policies using Chameleos. Since 
we are employing a bottom-up approach, we chose to use 
specific target systems to develop the language. 

The selection of the initial systems is very important , 
since it influences all futUre development phases of the 
language. In this initial development phase, we focus on 
SELinux and Systrace as our target systems. We believe 
that these two systems are different enough to help us de­
velop a language that provides flexibility and extensibility. 

For instance, SELinux provides a basis for the develop­
ment of comprehensive access control policies. Being an 
emerging open source operating system, SELinux is eas­
ily available and a lot of research still needs to be done. 
Apart from that, SELinux is highly suitable to develop 
Chameleos because a lot of its policies are based on the 
m4 language. m4 may not be a language that many sys­
tem administrators are familiar with. An administrator 
who can develop an SELinux policy in Chameleos can have 
it translated to an actual SELinux policy without having 
to learn m4. 

We will now discuss each system and show how 
Chameleos can be used to represent the policies of each 
system. We also give consideration to the features of the 
language that we presented in Section IV-E. 

A. Systrace 

Consider the Systrace policy excerpt in F igure 5. 
native-chroot is designated as a subject. In the context 
of ASL, we could use a C hameleos extension to specify the 
subject's type as "native" to use the host system's ABI. 
Likewise, we denote filename as an object of type "file­
name." 

Since Systrace supports various comparison operators, 
we demonstrate the use of arbitary comparison operators 
in its policy. In Figure 5, eq and match are denoted as com­
parison operators. Regular expressions and other specific 
syntax, such as II inet-*: 53", could be implemented using 
extensions. Compound expressions, such as the one in the 
statement on native-fchown, must also be supported. 
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Modeoi 
operation 

1 
SubjeC1 lTypQ: domain) 
1 

allow sshd_t sshd_tmp_t:tile { 

Object __ L_··_----Jr·----1 
(TypQ: We) 

Object 

PemlissionlSj (AlloW) 
[--------L------1 

create tead write gatattr satattr link 
unlink rename I; 

(Type:Sel( nOldevlile .. class .... selJ) So\iPcnnissi<)r1�I<;roate.JilopP.rms)) 

j I 1 I rl '--------,1 
allow sshd_t sshd_trnp_t:notdevfile3Iass_set create_filoJlorms; 

Fig. 6. Excerpt of an SELinux policy, shown with Chameleos direc­
tives. 

B. Security-Enhanced Linux (SELinux) 
SELinux has a very comprehensive access control policy, 

which also makes it difficult to implement. We introduce 
the reader to an excerpt of an SELinux policy shown in 
Figure 6, which shows two equivalent statements. 

The first statement allows a subject in the sshd_t do­
main to create, read, write, link, unlink, rename, and set 
and get the attributes of an object of type sshd_tmp_t 

of object class file. Suppose we intend to give the same 
permissions to multiple files. To use the similar statement 
for each single file would require a lot of repetitive state­
ments. This may reduce the readability of the policy. In­
stead of repeating the statements, the SELinux policy al­
lows the administrator to group similar entities into sets. 
This can be seen in the second statement. A subject in 
the domain sshd_t can now perform any of the permis­
sions given in the create_file_perms set to any object 
of type sshd_ tmp_ t as long as it is in the object class 
notdevfile_class_set set. In other words, sshd can now 
create, read, modify, delete, and rename any non-device file 
if it is of type sshd_tmp_t. 

The second statement provides a more convenient way 
to express the first statement. However, in the process, it 
may lose some granularity in terms of its intent. For exam­
ple, if the create_file_perms set includes more than the 
permissions declared in the first statement, the administra­
tor might allow more permissions than originally intended. 
Sets and other convenience functions should therefore be 
used with care. Nevertheless, sets do have many uses if 
used correctly, and the pros far outweigh the cons. 

We can support both statements in Figure 6 with 
Chameleos. In the first statement, alloW' can be de­
clared as a mode of operation, since SELinux supports 
many types of operation in a single file. sshd_t is de­
clared as a subject of type domain, and sshd_tmp_t 

is declared as an object of type file to represent the 
SELinux object class. The multiple permissions can 
also be specified as Chameleos permissions. Similarly, 
we can use the Chameleos set facilities to represent the 
notdevfile_class_set and create_file_perms sets in 

0-7803-8572-1/04/$20.00 ©2004 IEEE 

Macro 
1 I I 

domain.Jrans(sshd_l, shell_exec_l, sysadm_l) 

Mode of 
operation 

! 
Association 

(roles) 

l 
user root roles { user_ r sysadm _r ) 

t I 
I 

I 

Subject Group 

(Type: user) 

Fig. 7. Excerpt of another SELinux policy, shown with Chameleos di­
rectives. 

the second statement. 

We now refer the reader to Figure 7. The first statement 
in Figure 7 shows an SELinux domain transition macro 
called domain_trans that accepts macros. Chameleos can 
also be developed to support macros . Macros help to 
avoid excessive repetition and encourage the development 
of readable policies. The second statement assigns the root 
user to two roles user_r and sysadm_r. As mentioned 
earlier in Section IV-E, Chameleos groups can be used to 
represent roles. Also, the roles keyword in the SELinux 
policy qualifies as a Chameleos association. 

VI. ONGOING WORK 

At present, we are concurrently developing the design of 
the Chameleos language and working on an implementation 
of the Chameleos architecture. We believe that a flexible, 
extensible, and well-defined language can be produced af­
ter a number of evolutionary phases. At the moment, our 
aim is to provide a full syntax description of Chameleos in 
Backus-Naur Form (BNF). We are currently developing the 
language, architecture, and associated tools on a develop­
ment platform consisting of a Linux/SELinux system and 
an OpenBSD 3.5 system with Systrace policies. 

We determined that we would need three additional com­
ponents for inclusion into the Chameleos architecture in 
the future: a syntax checker, an analyzer, and a reverse 
translator. The syntax checker would be used as the foun­
dation for all syntax checking requirements in the other 
components. The role of the analyzer would be to analyze 
a Chameleos policy to check for conflicts and ambiguity. 
This is extremely important, since ambiguity in a policy 
may degrade the security of a system. The analyzer would 
also have to load Chameleos extensions to fulfill this pur­
pose. The reverse translator would be used to translate a 
system-specific policy into a Chameleos policy. Such func­
tionality would be useful when performing a comparison of 
system policies, or during system migration. 

Two issues that need to be further investigated are safety 
analysis and safety checks. These concepts are similar to 
type safety checks on programming languages. W ithout 
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safety checks built into the language architecture, enforcing 
a policy may result in some unintended consequences due to 
ambiguity in the policy definition. For example, if we define 
a policy to deny access to a user on a language architecture 
without safety analysis and checks, the user may be able to 
gain access by invoking a series of operations that involve 
an ambiguous part of the policy. 

Another important issue to look into is conflict resolu­
tion. A single system could produce many conflicts in its 
security policy I?] . If we are working with multiple sys­
tems, it is inevitable that the systems will produce even 
more conflicts. The question that needs to be asked is 
whether checking for conflicts should be done while the 
system is running, or whether the design of the language 
itself should include mechanisms for preventing or resolving 
conflicts. Constant checking would ensure that no conflicts 
occur; however, it incurs a high performance overhead. In 
line with our criterion for system independence, we suggest 
that conflict prevention and resolution facilities should be 
built into the language itself. This issue is one that defi­
nitely warrants further exploration. 

Another notion to explore is on dependencies among ex­
tensions. As we develop extensions for more systems, we 
will undoubtedly find that many of these systems and ex­
tensions are related. For example, a UNIX system, whether 
it is SELinux or OpenBSD, would have at least three per­
missions - read, write, and execute - for each file. We could 
abstract common requirements into another extension, and 
have other extensions that use those common requirements 
to reference the former extension. This form of modularity 
is certainly very desirable. At the same time, however, hav­
ing a large number of extensions that are dependent on each 
other would introduce complexity. We believe that the an­
swer would be a compromise between the two extremes of 
entirely no dependencies and heavy dependencies. In line 
with our evolutionary, bottom-up approach, we intend to 
explore this issue by implementing Chameleos on our target 
systems and examing the feasibility of each approach. 

VII. CONCLUSION 

In this paper, we presented the initial development of 
a new language called Chameleos that is designed to sup­
port access control policies of mUltiple operating systems. 
Having such a language would be very beneficial to system 
administrators, since they would no longer need to re-learn 
the syntax of each and every new access control policy spec­
ification language for every system they encounter. 

We also discussed ASL as a potential candidate language 
for this purpose. Despite its flexibility and expressiveness, 
we found that ASL is difficult to use as a practical lan­
guage for operating systems. We demonstrated this by im­
plementing ASL to represent Systrace policies. This led us 
to develop an entirely new language instead of extending 
ASL. 
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We presented the objectives, criteria, and initial design 
of Chameleos along with the roles of two systems - Systrace 
and SELinux � in the development of Chameleos. 
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