
Proceedings of the 2004 IEEE
Workshop on Information Assurance and Security
United States Military Academy, West Point, NY, 10-11 June 2004

Towards the Specification of Access Control Policies on Multiple Operating Systems

Lawrence Teo and Gail-J oon Ahn

Ab5troct- In the past, operating systems tended to lack
well-defined access control policy specification languages
and syntax. For example, a UNIX operating system that is
based on the Discretionary Access Control (DAC) paradigm
has decentralized security policies based on technology that
has been developed over the years. W ith such policies, it
is difficult to identify the permissions given to each user,
and who has what access to which resources. With the ad­
vent of recent security-enhanced operating systems such as
SELinux, this is no longer the case; the access control policy
for almost all resources is now stored centrally and applied
universally throughout the system. This is certainly more
manageable but is not without costs. Firstly, such policies
tend to be complex. Secondly, as more of such systems are
developed, each system would have its own policy specifica­
tion syntax. A system administrator who intends to evaluate
01' migrate to a new system would have to learn the syntax of
the new system. In this paper, we propose a solution to this
problem by introducing the initial design of a new policy
specification language that can be used to represent access
control policies for multiple operating systems. To serve its
purpose, this language must be fiexible enough to cater to
many operating systems, while being sufficiently extensible
to support the specific features of each target operating sys­
tem. We present the criteria, features, and approach that
we are using to design the language. We also describe the
role of t""o systems - SELinux and Systrace - in the design
of our language. We also discuss our consideration of ASL as
a potential candidate language, and why we chose to design
our own language instead.

I. INTRODUCTION
In the past, operating systems that are based on the Dis­

cretionary Access Control (DAC) paradigm tended to lack
well-defined access control policies to resources. For ex­
ample, consider the filesystem of a typical UNIX system.
Each file in the UNIX filesystem is designated to have ei­
ther read (r), write (w), or execute (x) permissions for the
user/owner, group, and other users. However, there was no
central policy that specifically defines the permissions and
ownership for all files universally throughout the system.
As the number of users grow, the access control policy be­
comes even less clearly defined in such systems - this results
in a so-called "spaghetti of intent" scenario, which makes it
very difficult to identify the permissions of a resource and
who has access to it. It is clear that this ad-hoc method of
specifying policies is no longer sufficient.

L. Teo: University of North Carolina at Charlotte and Calyptix
Security Corporation, Charlotte, NC. Email: lcteo@uncc.edu

G.-J. Ahn: University of North Carolina at Charlotte, Charlotte,
NC. Email: gahn@uncc.edu

0-7803-8572-1104/$20.00 ©2004 IEEE

More recently, security-enhanced operating systems such
as NSA Security-Enhanced Linux (SELinux) [?] have intro­
duced a more structured way of specifying policies. Unlike
earlier UNIX systems, the SELinux policy is specified in a
central directory of files, which is then compiled by a spe­
cial SELinux utility. In terms of security, access control
in SELinux is more manageable from the administrator's
point of view. Access control to resources such as files and
directories are clearer to the system administrator.

Apart from SELinux, there are many other similar
security-aware or security-enhanced operating systems and
operating system-related applications that are available to­
day with like or different goals. A few of these are full­
fledged operating systems (such as Trusted Solaris) , while
others are enhancements that are applied to existing op­
erating systems (such as grsecurity [7] and OpenWall for
Linux) . Yet others are applications that provide security
features to an operating system that do not support those
features natively. An example of the latter is Systrace [7],
which is a tool that enforces system call policies on appli­
cations such as daemons and other programs, so that they
are only restricted to executing the system calls defined
in the system call policy. To simplify our discussion, we
shall refer to these operating systems and related applica­
tions collectively as "security-aware systems" throughout
this paper.

The number of such security-aware systems are bound to
increase in the future . These systems are written by sep­
arate groups of developers with different objectives. This
presents a problem to a system administrator. A systems
administrator who wishes to install or evaluate different
operating systems would have to learn the policy syntax
for each of these systems. Since the syntax for each system
varies in terms of complexity and notation, a lot of time
and resources would have to be spent in order to learn and
implement them effectively. This is also true when the sys­
tem administrator is trying to migrate an existing system
to a different one. How can the administrator be sure that
the policy implemented on the new system matches the old
policy? Are there any "leaks" or incompatibilities in the
new policy?

A solution to this problem is clearly needed. We believe
that an effective solution to the problem is to introduce a
new policy specification language that is both flexible and
extensible. Flexibility means that the language should be

210

able to cater to multiple operating systems. Extensibility
means that our language should be able to support the
specific features in the policies of each target operating
system or target application that the language is used for.

One of the most widely cited and accepted authorization
specification languages that may be suitable for this pur­
pose is the Authorization Specification Language (ASL) [?J,
[?J. ASL is a logical language that is designed with flex­
ibility in mind, ASL can flexibly adapt to many kinds
of systems, including databases, operating systems, and
filesystems. ASL has also been used to specify privacy poIi·
cies [?]. This demonstrates the viability of ASL as a flex­
ible authorization specification language. However, since
its introduction in 1997, ASL has not been fully practiced
in commercial systems, To examine the feasibility of ASL
to resolve the problems and issues we mentioned earlier, we
attempted to implement part of ASL to represent Systrace
policies, Through our implementation exercises, we discov·
ered that ASL lacks a number of design criteria that are
required t o specify the policies of security-aware systems,
Our main finding was that ASL is flexible, but it is not
extensible.

In this paper, we introduce the initial design of a new
language which we shall call Chameleos. Chame\eos is de­
signed to represent the access control policies of security­
aware systems in a flexible and extensible manner. We
discuss the criteria we determined to be important in or�
der for Chameleos to be developed, the approach we used,
features of Chameleos, and our ongoing work. We also dis­
cuss the role of Systrace and NSA SELinux in the design
of Chameleos.

The rest of the paper is organized as follows. We first
discuss background and related work in Section II. We
then describe ASL in greater detail , along with its ben­
efits and shortcomings in Section Ill. We also show our
implementation exercises with Systrace in this section. In
Section IV, we present the design, criteria, and features of
the new language Chameleos. This is followed by a dis­
cussion of our progress in developing the language based
on using actual system poli cies in Section V. We then pro­
ceed to describe our ongoing and future work in Section VI,
before concluding in Section VII.

II. RELATED WORK

The most relevant work that is related to our project
is the Authorization Specification Language (ASL) by Ja­
jodia et al [?J, [?J. ASL is a flexible and very expressive
language that can be used for multiple access control poli­
cies. It is a widely accepted language in the access control
community, as can be seen by its adoption and exploration
by researchers. working in different areas like modular au­
thorization [?] and logical access control frameworks [?).
ASL has also been extended to support other policies apart
from authorizations, such as privacy policies I?],

0-7803-8572� 1104/$20.00 ©2004 IEEE

Early projects on flexible languages include the work of
Woo and Lam [?], who used default logic to model autho­
rization rules. In the operating systems area, Rippert I?]
has proposed a kernel-based framework called THINK to
protect flexible operating system architectures.

Throughout t h is paper, we will frequently use two
security-aware systems as examples to demonstrate ASL
and Chameleos. The two systems are Systrace and
Security-Enhanced Linux (SELinux) . Systrace [?J is an
applicati on that enforces system call restrictions on pro­
grams. It currently runs on a variety of UNIX systems.
SELinux [?], [?) is a research prototype of the Linux ker­
nel, along with a number of specially patched programs to
use the kernel enhancements. Originally based on the Flask
operating system I?J, SELinux now includes new architec­
tural components that provide mandatory access control
policies involving type enforcement [?], role-based access
control, and multi-level security.

III. ACCESS CONTROL POLICIES ON OPERATING

SYSTEMS

In this section, we will examine an implementation exer­
cise , where we attempt to specify the access control poli­
cies of a real world security-aware system using ASL. The
system we will examine is Systrace, an application that en�
forces system call restrictions on individual programs. We
will first introduce Systrace, followed by our experiments
using an ASL implementation to represent its policies. We
then describe our findings.

A. Systrnce
Systrace [?J is a system that enforces system call poli­

cies by constraining the application's access to the system.
Systrace is currently available for the OpenBSD, NetBSD,
Linux, and Mac OS X platforms. By confining applications
to a restricted set of system calls, Systrace allows the ad­
ministrator to sandbox applications. This is particularly
useful to examine untrusted binaries and other suspicious
pro grams. It Can also act as part of an intrusion detec­
tion system that triggers whenever an application violates
system call policies.

An excerpt of a Systrace policy is shown in Figure 1.
This policy is for named, the DNS server that is part of the
BIND 9 distribution. The policy is rather intuitive. The
native- prefix states which Application Binary Interface
(AB!) the policy is for.

In Figure 1, the first line permits named to invoke the
getuidO system call. The next two lines specify that
naJlled is allowed to perform read system calls on a file,
as long as the filename is either /etc/hesiod. conf or
/dev/arandom. Note that fsread is not actually a sys­
tem call. In the context of Systrace, fsread refers to the
group of system calls that perform read operations, such
as stat 0, readlinkO, access 0 and so on. We also see

211

native-getuid: pe�it
native-fsread; filename eq "/ete/hesiod.conf" then

permit
native-fsread: filename eq "/dev/arandom" then

permit
native-chroot; filename eq "/var/named" then permit
native-bind: soekaddr match "inet-*:53" then permit
native-bind: soekaddr eq "inet-[O.O.O.O]:O" then

permit
native-fehovn: fd eq "5" and uid eq "70" and

gid eq "70" then permit

Fig. 1. Subset of the systrace policy for "named", the DNS server.

that named is allowed to invoke the chroot 0 system call on
the Ivar fnamed directory. Systrace also supports regular
expressions, as we observe from the line that allows bind ()
to be invoked only on port 53 (linet-*:53"). Note that
expressions USing regular expressions use the match oper­
ator. The conjunction of boolean expressions is also sup­
ported, as seen from the last line, where fchownO is only
allowed on file descriptor 5 and when the UID and GID of
the process are both 70.

B. ASL Representations

We will now describe our experiments with using ASL to
represent the Systrace policy presented earlier. It should
be noted that ASL is a logical language, with no known im­
plementation at this time. As such, we have used ASL in
a "computer-readable syntax" based on Our own interpre­
tation of how ASL's logical syntax should look like if ASL
was actually implemented. Our methodology for these im­
plementation exercises are shown in Figure 2.

Also, because of the nature of the Systrace policies
described, we ascertained that the authorization rule of
ASL is the most appropriate rule to represent the policies.
Loosely defined, the authorization rule is a rule of the form:

cando(o, 8, < sign> a) +- L1&'" &Ln.

where 0 is an object, s is a subject, a is an action, <
sign> is either + or -, and each Li is a literal, where
o < i :::; n. The exact, formal defintion is given by the
authors in their original papers on ASL [?], [?].

We wrote Perl scripts to convert the original policies to
their ASL equivalent forms. The generated policies were
then compared to the original policies to identify any sim­
ilarities and differences. A semantic comparison was used;
we ignored syntactic entities like comments and blank lines.

B.1 Systrace

We shall now examine the Systrace policy (Figure 1) and
its ASL equivalent form (Figure 3). At first glance, the
ASL-equivalent policy seems to resemble the original pol­
icy. However, closer examination shows that it was difficult

0-7803-8572-1104/$20.00 ©2004 IEEE

Fig. 2. Our methodology for the implementation exercises.

cando (null , native-getuid, +permit) <- .

eando("/ete/hesiod. eanf" , native-fsread, +permit)
<- typeof(" lete/hesiad. eonf", filename)

cando (" /dev /arendom", nati ve-fsread, +permi t)
<- typeof("/dev/arandam", filename}

cando ("/var/named" , native-ehroat, +permit)
<- typeof("/var/named", filename)

eando("inet-*:53", native-bind, +permit)
<- typeof("inet-*:53", soekaddr}

eanda("inet-(O.O.O.O] :0", native-bind, +permit)
(- typeof("inet-[O.O.O.O]:O", soekaddr)

Fig. 3. The Systrsce policy subset from Fig. 1 represented in ASL.

to represent certain features like the conjunction of boolean
expressions. Handling similar but different operators like
match and eq was also not trivial. This demonstrates yet
again that ASL is not able to cater to specific features of
system policies.

C. Findings and Observations

The major observation from our implementation exer­
cises is that ASL excels as a theoretical, logical language,
but is challenging to use in practice. The main reason
is because ASL is flexible, but it is not extensible. ASL
can represent the access control policies for many systems;
however, it is difficult to support extensibility using ASL,
which is the ability to support the specific features of those
policies.

First of all, ASL lacks comprehensiveness. While ASL
provides excellent support to flexibly represent many access
control policies, it does not have a proper facility to specify
sets and groups in the first place. Apart from that, while
it is possible to assign permissions in ASL, it is impossible
to revoke those permissions.

Secondly, there are inconsistency issues. The syntax of
some ASL predicate symbols has not been fully discussed
in a consistent manner [?], [?].

212

Lastly, a few design characteristics of ASL make it dif­
ficult to use in practice. For example, ASL supports fine­
grained temporal access control (though it is not described
in detail). Fine-grained temporal access control is not
widely used in operating systems, as it can incur a large
performance overhead. Also, the syntax of ASL tends to
be repetitive (as we can see from Figure 3), which makes
it difficult to use in practice.

IV. THE DESIGN OF CHAMELEOS

Through the discussion in Section Ill, it is interesting to
note the various compromises that authors of flexible lan­
guages have to make in order to support various systems.
Designing such languages is clearly not a trivial task. In
this section, we describe how we think those issues should
be addressed, and what we think would be a good way to
address them.

A. Objectives

We begin the discussion of our language by describing
its two main objectives, as follows:

1. Support for multiple security-aware systems.
The language must be able to specify access control policies
for multiple security-aware systems. Recall that our def­
inition of security-aware systems includes both operating
systems and progra.rns that work with operating systems.
2. Focus on implementation. We strive to build a lan­
guage that can be implemented and used in practice, as
opposed to a theoretical, logical language.

We name our language Chameleos, which we derive from
the chameleon. We chose the name due to the chameleon's
ability to blend into the specific features of different envi�
ronments. The name ends with "as" to demonstrate the
language's focus on operating systems.

B. Approach

We now discuss the approach that we take to design the
language. We present the two key decisions that we made
in the design of the language , and why we made them.

Firstly, we have to decide whether to develop an exten­
sion of ASL or develop an entirely new language altogether.
Developing an extension of ASL has some benefits, since
most of the groundwork has already been done by ASL's
authors. ASL is also a suitable candidate for flexible sys­
tems. However, as demonstrated earlier in Section III, ASL
may not be suitable for operating systems and is not very
adaptable to practical systems. With this in mind, we
chose to develop a new language, which we design based
on lessons learned from ASL. Developing a new language
would also allow us to design syntax that is consistent with
what system administrators are familiar with.

Secondly, we need to consider whether to use a top-down
approach or a bottom-up approach. In other words, we

0-7803-8572-1/04/$20.00 ©2004 IEEE

need to decide whether to develop our language by test­
ing it regularly with general concepts, or on actual op­
erating systems. General concepts in this context refer
to implementation-independent paradigms, such as access
control lists and role-based access control. The top-down
approach is suitable for flexibility, and is the approach used
by ASL. For Chameleos, however, we believe that develop­
ing for actual systems (the bottom-up approach) would be
more beneficial in the long run, since Chameleos has to be
implemented on real systems in the end.

These decisions lead to an evolutionary design model for
Chameleos. By evolution, we mean that the development
of Chameleos will go through a number of iterations until
the actual language design and syntax is finalized. This
also implies that we will use a small number of security­
aware systems as target systems initially, and increase the

number as development progresses. By using this evolu­
tionary process, we believe that we will be able to support
the specific features of each system more effectively.

C. Criteria
We now present the criteria for Chameleos, which we

have developed based on the objectives and approach out­
lined in the previous sections. Each criterion is explained
as follows:
1. Flexibility. First and foremost, Chameleos should be
able to support the access control policies of multiple op­
erating systems.
2. Extensibility. Of equal importance is the extensibility
of Chameleos. Chameleos must be able to support the spe­
cific features of operating system access control policies. A
benefit of this is that it can allow a system to use only the
features that it requires and nothing more. For example,
Systrace works with system calls and does not have any­
thing to do with type enforcement. Chameleos should be
able to allow Systrace to work within its environment.
3. Able to be implemented. Chameleos must be a prac­
tical language as opposed to a theoretical one.
4. Well-defined syntax. Chameleos must have a well­
defined syntax to promote clarity and reduce the ability to
introduce ambiguity.
5. Comprehensiveness. Chameleos must provide facil­
ities to enable the support for any target system. This
includes the ability to define groups and sets.
6. Policy specification only. In order to support flex­
ibility, we separate policy specification from mechanism.
This allows us to focus on developing a language that is
superior for policy specification.
7. Text-based language. By text-based language, we
mean that the language will not be confined to a GUI IDE.
The language itself should be expressible in ASCII text.
This is in contrast to "languages" such as Visual Basic,
which has to be edited and compiled via a graphical user
interface .

213

�.;.s '1-t r I-==-�-�'I i
1 r ••• � ••• d� ••••••• H •••••••• l _._]

H==:

Fig. 4. The Chameleos architecture.

8. System independence. We strive to develop a lan­
guage that can work across multiple systems, with the ma­
jor requirement that the system must be in the operating
systems domain.

D. Design

The three major objectives of the system are high flex­
ibility, extensibility, and practicality. With this in mind,
we will now discuss the design of the components that are
needed to implement the language. The overall architec­
ture is shown in Figure 4.

The design of ASL has shown that separation of pol­
icy specification and mechanism is very important in or­
der to allow flexible representation of policies [?], [?]. We
have taken that notion into consideration in the design of
Chameleos. The Chameleos architecture primarily involves
the translation of a Chameleos policy file into a system­
specific policy. If we have two similar systems, the architec­
ture is sufficiently flexible to allow the same Chameleos pol­
icy to be translated into specific policies for the two sys­
tems.

The Chameleos architecture consists of three main com­
ponents: the meta language, extensions, and a transla­
tor. The meta language is the core Chameleos language
itself. The meta language consists of the generic syntax
of Chameleos. This includes operators, statement termina­
tors, reserved keywords, variable types, and other related
entities. The meta language would also clearly show how
functions and procedures should be defined.

To write a Chameleos policy for a specific system, say
SELinux, we would need to use the specific features of
that system. For example, a Chameleos SELinux policy
would need support for specifying type transitions and
roles. A Chameleos policy for another system like Sys­
trace would focus on system calls. To support such exten­
sibility, a Chameleos extension can be used. An extension
would consist of the necessary variables, library of func­
tions (which can be implemented as a well-defined API),
and other state variables of a specific system. For exam­
ple, a Chameleos SELinux extension would consist of con­
venience functions to specify users, user-role assignments,
type transitions and so forth. We could think of an exten­
sion as a module, much like a C #include file, or a Java
class package that could be imported into a Java program.
It is clear that the meta language has to be generic enough

0-7803-8572-1104/$20.00 ©2004lEEE

to support a wide variety of extensions in order for exten­
sibility to be achieved.

Having extensions in this manner would also allow fu­
ture systems to be supported easily in the Chameleos ar­
chitecture. A new extension could be developed for a new
system, which could then be integrated into an existing
Chameleos system. Another advantage of using exten­
sions this way is that it isolates the components needed
for a given system. For instance, if we are working with
SELinux, we could just load the SELinux extension, and to­
tally ignore the other irrelevant extensions like Systrace's.
This results in less system overhead when actually running
the translator, which we shall describe next.

The last component of the Chameleos architecture is the
translator. As its name implies, a translator would convert
a Chameleos policy into a system-specific policy. For ex­
ample, a translator would translate a Chameleos Systrace
policy into an actual Systrace policy. The translator would
need to know the meta language natively, and be able to
load extensions into the system when required.

E. Language Features
We now discuss the features of the language that are

required to conform to the criteria and objectives discussed
earlier. At a minimum, Chameleos should consist of the
following features:

1. Generic subjects and objects. In order to be flex­
ible, Chameleos must be able to support generic subjects
and objects.
2. Subject types and object types. Closely related to
generic subjects and objects, Chameleos must be able to
label the subjects and objects with types. For example, a
subject can be of type process, while an object can be of
type file.
3, Variables. Variables clearly need to be supported for
various applications.
4. Macros. Macros would allow a convenient way of ex­
pressing repetitive patterns in the Chameleos policy.
5. Arbitrary sets. Since many systems use the notion
of sets in their access control policies, support for arbi­
trary sets is required. Facilities to perform the regular set
operations, such as union and intersection , should also be
provided.
6. Groups. Groups are closely related to sets. One way
to implement a group is to implement it as a set, but allow
it to be manipulated from a higher level of abstraction.
Depending on the system's specific features, a group can
be restricted so that it can never be changed once it is
defined. Groups are also generic enough to represent roles,
and role hierarchy implementations need to be addressed
as well.
7. Compound expressions. Compound expressions
would allow multiple expressions to be joined together,
such as the conjunction of multiple boolean expressions.

214

8. Association. Associations allow us to link one entity
to another, such as assigning a user to a role.
g. Arbitary comparison operators. A system could
use a new comparison operator that other systems do not
have. For example , most of the time, the equality operator
is present. However, Systrace has a comparison operator
match that matches regular expressions instead of being
strictly an equality operator. This presents the need for
arbitrary comparison operators.
10. Aliases. Aliases are similar to the typedef functional­
ity in C. Aliases allow us to substitute one word for another.
If used correctly, this promotes readability and clarity, and
it would make it easier to u nderstand the policy writer 's
intentions.
11. Mode of operation. The motivation for implement­
ing mode of operation came from observing the differences
between the Systrace and SELinux policies. In a Systrace
policy, every single statement is strictly a part of a sys­
tem call policy. However, in SELinux, different statements
specify different things; for example, one statement spec­
ifies a type transition rule, while another may specify a
user-role assignment. Therefore, we could use the mode of
operation feature to define statements which have different
functionalities.

.

12. Arbitrary permissions. Permissions vary wildly
across different systems. For example, a getattr permis­
sion may be relevant when dealing with obtaining the at­
tributes of a file, but it is not required when working with
roles. Furthermore, one filesystem may support more per­
missions than another. For instance, the Andrew File Sys­
tem (AFS) allows users to specify the permission to list files
in a directory. Such functionality is not present in regular
UNIX systems without AFS.
13. Allow/Deny. This feature is related to permissions,
and allows the administrator to allow or deny a permission .
14. Hierarchies. Hierarchies are usually difficult to im­
plement , but are necessary to implement operating systems
that support role hierarchies.
15. Constraints. Constraints allow us to restrict the
number of ways in which a policy statement or a set of
policy statements can be specified. This helps us to val­
idate policies. For example, we could use constraints to
limit the range of values that can be assigned to a certain
variable.
16. Specification of defaults. When developing exten­
sions, it is important to be able to specify defaults for each
extension. This way, even if certain system-specific vari­
ables are not used, they would a lready have been initialized
with reasonable default values.

V. REPRESENTING ACCESS CONTROL POLICIES

As mentioned earlier, we are developing Chameleos using
an evolutionary approach. We are still in the process of
defining the final language . We now present our progress at

0-7803-8572-1/04/$20.00 ©2004 IEEE

Subject Object Arbitrary comparison operators
IT I·) (Type: frlena�e) ype: nil rva I �l • permrion

native-chroot: filename eq 'fva� amed' then permit

native-bind: sockaddr match' inel-':53' then permit I... " .. "J

1 I 1 • EX1ension
native-bind: sockaddr eq 'inet-[O.O.O.O]:O· then permit

nalive-fchown:
fd eq '5' and uid eq '70' and gid eq '70' then permit
I I

Compound expression

Fig. 5. Excerpt of Systrace policy, shown with Chameleos directives.

representing access control policies using Chameleos. Since
we are employing a bottom-up approach, we chose to use
specific target systems to develop the language.

The selection of the initial systems is very important ,
since it influences all futUre development phases of the
language. In this initial development phase, we focus on
SELinux and Systrace as our target systems. We believe
that these two systems are different enough to help us de­
velop a language that provides flexibility and extensibility.

For instance, SELinux provides a basis for the develop­
ment of comprehensive access control policies. Being an
emerging open source operating system, SELinux is eas­
ily available and a lot of research still needs to be done.
Apart from that, SELinux is highly suitable to develop
Chameleos because a lot of its policies are based on the
m4 language. m4 may not be a language that many sys­
tem administrators are familiar with. An administrator
who can develop an SELinux policy in Chameleos can have
it translated to an actual SELinux policy without having
to learn m4.

We will now discuss each system and show how
Chameleos can be used to represent the policies of each
system. We also give consideration to the features of the
language that we presented in Section IV-E.

A. Systrace

Consider the Systrace policy excerpt in F igure 5.
native-chroot is designated as a subject. In the context
of ASL, we could use a C hameleos extension to specify the
subject's type as "native" to use the host system's ABI.
Likewise, we denote filename as an object of type "file­
name."

Since Systrace supports various comparison operators,
we demonstrate the use of arbitary comparison operators
in its policy. In Figure 5, eq and match are denoted as com­
parison operators. Regular expressions and other specific
syntax, such as II inet-*: 53", could be implemented using
extensions. Compound expressions, such as the one in the
statement on native-fchown, must also be supported.

215

Modeoi
operation

1
SubjeC1 lTypQ: domain)
1

allow sshd_t sshd_tmp_t:tile {

Object __ L_··_----Jr·----1
(TypQ: We)

Object

PemlissionlSj (AlloW)
[--------L------1

create tead write gatattr satattr link
unlink rename I;

(Type:Sel(nOldevlile .. class selJ) So\iPcnnissi<)r1�I<;roate.JilopP.rms))

j I 1 I rl '--------,1
allow sshd_t sshd_trnp_t:notdevfile3Iass_set create_filoJlorms;

Fig. 6. Excerpt of an SELinux policy, shown with Chameleos direc­
tives.

B. Security-Enhanced Linux (SELinux)
SELinux has a very comprehensive access control policy,

which also makes it difficult to implement. We introduce
the reader to an excerpt of an SELinux policy shown in
Figure 6, which shows two equivalent statements.

The first statement allows a subject in the sshd_t do­
main to create, read, write, link, unlink, rename, and set
and get the attributes of an object of type sshd_tmp_t

of object class file. Suppose we intend to give the same
permissions to multiple files. To use the similar statement
for each single file would require a lot of repetitive state­
ments. This may reduce the readability of the policy. In­
stead of repeating the statements, the SELinux policy al­
lows the administrator to group similar entities into sets.
This can be seen in the second statement. A subject in
the domain sshd_t can now perform any of the permis­
sions given in the create_file_perms set to any object
of type sshd_ tmp_ t as long as it is in the object class
notdevfile_class_set set. In other words, sshd can now
create, read, modify, delete, and rename any non-device file
if it is of type sshd_tmp_t.

The second statement provides a more convenient way
to express the first statement. However, in the process, it
may lose some granularity in terms of its intent. For exam­
ple, if the create_file_perms set includes more than the
permissions declared in the first statement, the administra­
tor might allow more permissions than originally intended.
Sets and other convenience functions should therefore be
used with care. Nevertheless, sets do have many uses if
used correctly, and the pros far outweigh the cons.

We can support both statements in Figure 6 with
Chameleos. In the first statement, alloW' can be de­
clared as a mode of operation, since SELinux supports
many types of operation in a single file. sshd_t is de­
clared as a subject of type domain, and sshd_tmp_t

is declared as an object of type file to represent the
SELinux object class. The multiple permissions can
also be specified as Chameleos permissions. Similarly,
we can use the Chameleos set facilities to represent the
notdevfile_class_set and create_file_perms sets in

0-7803-8572-1/04/$20.00 ©2004 IEEE

Macro
1 I I

domain.Jrans(sshd_l, shell_exec_l, sysadm_l)

Mode of
operation

!
Association

(roles)

l
user root roles { user_ r sysadm _r)

t I
I

I

Subject Group

(Type: user)

Fig. 7. Excerpt of another SELinux policy, shown with Chameleos di­
rectives.

the second statement.

We now refer the reader to Figure 7. The first statement
in Figure 7 shows an SELinux domain transition macro
called domain_trans that accepts macros. Chameleos can
also be developed to support macros . Macros help to
avoid excessive repetition and encourage the development
of readable policies. The second statement assigns the root
user to two roles user_r and sysadm_r. As mentioned
earlier in Section IV-E, Chameleos groups can be used to
represent roles. Also, the roles keyword in the SELinux
policy qualifies as a Chameleos association.

VI. ONGOING WORK

At present, we are concurrently developing the design of
the Chameleos language and working on an implementation
of the Chameleos architecture. We believe that a flexible,
extensible, and well-defined language can be produced af­
ter a number of evolutionary phases. At the moment, our
aim is to provide a full syntax description of Chameleos in
Backus-Naur Form (BNF). We are currently developing the
language, architecture, and associated tools on a develop­
ment platform consisting of a Linux/SELinux system and
an OpenBSD 3.5 system with Systrace policies.

We determined that we would need three additional com­
ponents for inclusion into the Chameleos architecture in
the future: a syntax checker, an analyzer, and a reverse
translator. The syntax checker would be used as the foun­
dation for all syntax checking requirements in the other
components. The role of the analyzer would be to analyze
a Chameleos policy to check for conflicts and ambiguity.
This is extremely important, since ambiguity in a policy
may degrade the security of a system. The analyzer would
also have to load Chameleos extensions to fulfill this pur­
pose. The reverse translator would be used to translate a
system-specific policy into a Chameleos policy. Such func­
tionality would be useful when performing a comparison of
system policies, or during system migration.

Two issues that need to be further investigated are safety
analysis and safety checks. These concepts are similar to
type safety checks on programming languages. W ithout

216

safety checks built into the language architecture, enforcing
a policy may result in some unintended consequences due to
ambiguity in the policy definition. For example, if we define
a policy to deny access to a user on a language architecture
without safety analysis and checks, the user may be able to
gain access by invoking a series of operations that involve
an ambiguous part of the policy.

Another important issue to look into is conflict resolu­
tion. A single system could produce many conflicts in its
security policy I?] . If we are working with multiple sys­
tems, it is inevitable that the systems will produce even
more conflicts. The question that needs to be asked is
whether checking for conflicts should be done while the
system is running, or whether the design of the language
itself should include mechanisms for preventing or resolving
conflicts. Constant checking would ensure that no conflicts
occur; however, it incurs a high performance overhead. In
line with our criterion for system independence, we suggest
that conflict prevention and resolution facilities should be
built into the language itself. This issue is one that defi­
nitely warrants further exploration.

Another notion to explore is on dependencies among ex­
tensions. As we develop extensions for more systems, we
will undoubtedly find that many of these systems and ex­
tensions are related. For example, a UNIX system, whether
it is SELinux or OpenBSD, would have at least three per­
missions - read, write, and execute - for each file. We could
abstract common requirements into another extension, and
have other extensions that use those common requirements
to reference the former extension. This form of modularity
is certainly very desirable. At the same time, however, hav­
ing a large number of extensions that are dependent on each
other would introduce complexity. We believe that the an­
swer would be a compromise between the two extremes of
entirely no dependencies and heavy dependencies. In line
with our evolutionary, bottom-up approach, we intend to
explore this issue by implementing Chameleos on our target
systems and examing the feasibility of each approach.

VII. CONCLUSION

In this paper, we presented the initial development of
a new language called Chameleos that is designed to sup­
port access control policies of mUltiple operating systems.
Having such a language would be very beneficial to system
administrators, since they would no longer need to re-learn
the syntax of each and every new access control policy spec­
ification language for every system they encounter.

We also discussed ASL as a potential candidate language
for this purpose. Despite its flexibility and expressiveness,
we found that ASL is difficult to use as a practical lan­
guage for operating systems. We demonstrated this by im­
plementing ASL to represent Systrace policies. This led us
to develop an entirely new language instead of extending
ASL.

0-7803-8572-1 /04/$20.00 ©2004 1EEE

We presented the objectives, criteria, and initial design
of Chameleos along with the roles of two systems - Systrace
and SELinux � in the development of Chameleos.

ACKNOWLEDGMENTS

The work of Gail Ahn was partially supported at the Lab­
oratory of Information of Integration, Security and Pri­
vacy at the University of North Carolina at Charlotte by
the grants from National Science Foundation (NSF-lIS-
0242393) and Department of Energy Early Career Principal
Investigator Award (D E-FG02-03ER25565) .

REFERENCES
III NSA, "Security-enhanced linux." http://www.nsa.gov/selinuxj.
12] B. Spengler, "grsecurity." http://www.grsecurity.net/.

[3J N. Provos, "Improving host security with system call policies,"
in Proceedings of the 12th USENIX Security Symposium, (Wash­
ington , DC) , August 2003.

[4\ S. Jajodia, P. Samarati, and V. Subrahmanian, "A logical lan­
guage for expressing authorizations," in Proceedings of the IEEE
Symposium on Security and Privacy, (Oakland, CA), pp. 31-42,
May 1997.

[5\ S. Jajodia, P. Samarati, V. Subrahmanian, and E. Bertino, "A
unified framework for enforcing mUltiple access control policies,"
in Proceedings of the A CM SIGMOD International Conference
on Management of Data, pp. 474-485, May 1997.

[6] G. Karjoth and M. Schunter, "A privacy policy model for en­
terprises ," in Proceedings of the 1 5th IEEE Computer Security
Foundations Workshop, (Nova Scotia, Canada), IEEE Computer
Society Press, June 2002.

[7] H. F. WOOde and M. Lischka, "Modular authorization," in Pro­
ceedings of the 6th A CM Symposium on Access Control Mode!s
and Technologies, (Chantilly, VA), pp. 97-105, 200l.

18] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, "A logical
framework for reasoning about access control models," in Pro­
ceedings of the 6th ACM Symposium on Access Control Models
and Techn% gies, (Chantilly, VA), pp. 41-52, 200l.

[9] T. Woo and S. Lam, "Authorizations in distributed systems: A
new approach," Journal of Computer Science, vo!' 6, no. 2,3,
pp. 107-136, 1993.

[10] C. Rippert, "Protection in flexible operating system architec­
tures," A CM S[GOPS Operating System. Review, vol. 37, pp. 8-
18, October 2003.

[l1J P. Loscocco and S. Smalley, "Integrating flexible support for se­
curity policies into the Iinux operating system," in Proceedings
oj the FREENIX Track: 2001 USENIX Annual Technical Con­
ference. (FREENIX '01), June 200l.

[12] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen,
and J. Lepreau, "The fiMk security architecture: System support
for diverse security policies," in Proceedings of the 8th USENIX
Security Symposium, pp. 123-139, August 1999.

[13] W. Boebert and R. Kain, "A practical alternative to hierarchical
integrity policies," in Proceedings of the 8th National Computer
Security Conference, 1985.

114] T. Jaeger, A. Edwards, and X. Zhang, "Managing access control
policies using access control spaces," in Proceedings oj the 1th
A CM Symposium on Access Control Models and Technologies,
(Monterey, CAl, pp. 3-12, June 2002.

2 1 7

