
User-centric Privacy Management for Federated
Identity Management

Gail-Joon Ahn and Moonam Ko
College of Computing and Informatics

The University of North Carolina at Charlotte
{gahn,mnko}@uncc.edu

Abstract—We have witnessed that the Internet is now a prime
vehicle for business, community, and personal interactions. The
notion of identity is the important component of this vehicle.
Identity management has been recently considered to be a
viable solution for simplifying user management across enterprise
applications. The network identity of each user is the global set
of personal credentials and preferences constituting the various
accounts. The prevalence of business alliances or coalitions
necessitates the further evolution of identity management, named
federated identity management (FIM). The main motivation of
FIM is to facilitate the federation of identities among business
partners emphasizing on ease of user management. In this
paper, we propose systematic mechanisms to specify privacy
preferences in FIM, attempting to help users facilitate preferences
for managing their private information across domains.

I. INTRODUCTION

As enterprises have changed their business operation
paradigm from brick-and-mortar to click-and-mortar, they have
embraced a variety of enterprise applications for streamlin-
ing business operations such as emailing systems, customer
relationship management systems, enterprise resource plan-
ning systems, supply chain management systems, and so on.
However, a non-trivial problem has been compounded by
this reinforcing line of enterprise applications, the problem
of managing user profiles. The addition of such applications
has proved to be subject to bringing in a new database for
storing user profiles and it was quite costly and complex
to manage all those profiles, which were often redundant.
Considering business-to-business environments, where a set
of users consists of not only their employees or customers
but also those of their partners, the above-mentioned problem
became even worse. As a set of underlying technologies and
processes overarching the creation, maintenance, and termi-
nation of user identities, identity management (IM) has been
recently considered to be a viable solution for resolving such
issues.

Furthermore, the prevalence of business alliances or coali-
tions necessitates the further evolution of IM, so called fed-
erated identity management (FIM). The main motivation of
FIM is to enhance user convenience and privacy as well as
to decentralize user management tasks through the federation
of identities among business partners. As a consequence, a
cost-effective and interoperable technology is strongly required
in the process of federation. Web Services (WS) can be
a good candidate for such requirement as it has served to

provide the standard way for enabling the communication and
composition of various enterprise applications over distributed
and heterogeneous networks [1], [2].

Since identity federation is likely to go along with the
exchange of sensitive user information in a highly insecure
online environment, security and privacy issues associated with
such exchanges are key concerns in FIM. The concept of
federated identities provides the consumers with a convenient
way to create identities and move among various business
nexus. Apart from all the simplicity and convenience that it
provides the businesses with, the management of these feder-
ated identities becomes a crucial task since it needs to take
into consideration various threats against the vulnerable and
confidential user data. Any identity management framework
must adequately protect sensitive user information and must
adhere to important elements of privacy policy. In this paper,
we propose systematic mechanisms to specify privacy prefer-
ences in FIM, attempting to help users facilitate preferences
for managing their private information across domains.

The rest of this paper is organized as follows. Section II
overviews three approaches involved in IM and discusses
the prior research works in IM followed by an overview
of FIM models. Section III articulates business scenarios
for FIM and relevant privacy requirements. In addition, we
discuss our approach to support multi-level privacy policy
framework using privacy labels and proposes languages for
privacy policy and privacy preference expression along with
the related works. Section IV concludes this paper.

II. IDENTITY MANAGEMENT

In this section, we first start with the discussion of IM
approaches. We categorize IM approaches into the following
three styles: isolated IM, centralized IM, and distributed IM.
Thereafter, we discuss the related research works followed by
FIM.

The isolated IM model is the most conservative approach
of the three models. Each business forms its own identity
management domain (IMD) and has its own way of main-
taining the identities of users including employees, customers,
and partners. Hence, this model is simple to implement and
has a tight control over user profiles. However, it is hard
to achieve user convenience with this model since different
IMDs are likely to have different authentication processes or



mechanisms for their users and corresponding authentication
policies may vary between players.

The centralized IM model has a single identity provider
(IDP) that brokers trust to other participating members or
service providers (SP) in a Circle of Trust (CoT). IDP being
a sole authenticator has a centralized control over the identity
management task, providing easy access to all SP domains
with simplicity of management and control. The drawback
of this approach is a single point of failure within a CoT
infrastructure in case that IDP fails to provide authentication
service. User convenience can be also achieved partially in
case where the single sign-on (SSO) for users is only effective
within SPs which belong to the same CoT.

The distributed IM model provides a frictionless IM so-
lution by forming a federation and making authentication a
distributed task. Every member agrees to trust user identi-
ties vouched for by other members of the federation. This
helps users maintain their segregated identities, making them
portable across autonomous policy domains. It also facilitates
SSO and trust, thereby allowing businesses to share the
identity management cost with its partners. Microsoft Passport
is based on the centralized IM model, while Liberty Alliance
aims to be the distributed IM model.

Earlier works related to user identity management were
mostly focused on a user-centric approach [11], where users
have control over IM functions. A simple idea of managing
user identities is described in [7]. They proposed the use of
personal card computers to handle all payments of a user,
thereby ensuring the privacy and security of the user’s identity
on the Web. Hagel and Singer [14] discussed the concept of
infomediaries where users have to trust and rely on a third
party to aggregate their information and perform IM tasks on
their behalf while protecting the privacy of their information.
The Novell digitalme technology [10] allows users to create
various identity cards that can be shared on the Internet
according to users’ preferences. Users can control both what
information is stored in each card and conditions under which
it may be shared.

Federated identity gives the ability to securely recognize and
leverage user identities owned by trusted organizations within
or across CoTs, and identity federation allows organizations
to securely share confidential user identities with trusted ones,
without requiring users to re-enter their name and password
when they access their network resources. Additionally, iden-
tity federation provides the ability to optionally and securely
share user information such as their profiles or other data
between various trusted applications which is subject to user
consent and organizational requirements. There are two well-
known FIM solutions, Liberty Alliance and Microsoft Pass-
port. These solutions have fundamentally the same goal of
managing web-based identification and authentication. Both
enable organizations to build IM systems that can federate
across many disparate sources. Therefore, each user can have
a single network identity that provides SSO to the web sites
that have implemented either or both of the systems. In this
paper, we mainly focus on Liberty Alliance since Microsoft

Passport is no longer available as FIM approach. Liberty
Alliance is a consortium of more than 150 companies working
together towards developing an open, interoperable standard
for FIM [15], [23]. It is aimed towards realizing the notion
of a cohesive, tangible network identity, which can facilitate
SSO and frictionless business operations. It is a distributed IM
model, relying on the notion of IDP and SP, as we discussed
earlier. IDP is responsible for carrying out identity federation.
Authentication messages or authentication requests are passed
between IDP and SP. IDP and SP in Liberty Alliance Model
actually facilitate WS to discover service locations and handle
incoming messages from other IDP and SP as shown in
Figures 1.

III. USER-CENTRIC PRIVACY MANAGEMENT

Privacy is a growing concern with FIM models due to
the voluminous exchange of sensitive information that occurs
across enterprises. Securing communication channels and en-
crypting messages may help preserve the privacy of relevant
information only up to some extent. The security concerns
that we discussed in [3], [21], [22] are obviously applicable
to privacy as well. In WS-enabled FIM where the receiver of a
message may not be its ultimate destination, improper security
measures may result in unauthorized access to user’s personal
information which leads to violation of privacy [16].

Protection of user identities and personal information can be
achieved by using the principle of pseudonymity. Obfuscating
message payloads can also preserve their privacy by making
them accessible only through authorized parties having proper
credentials or keys [20]. Privacy enhancing technologies like
Platform for Privacy Preference (P3P) [9] provide a solution
for point-to-point privacy protection based on user preferences.
However, such solutions do not scale for a more open, inter-
operable WS architecture.

Liberty Alliance’s SAML implementation uses pseudonyms
constructed using pseudo-random values that have no discern-
able correspondence with users’ identifiers at IDP or SP. The
pseudonym has a meaning only in the context of the rela-
tionship between the two communicating parties. The intent
is to create a non-public pseudonym so as to contravene the
linkability to users’ identities or activities, thereby maintaining
the privacy.

Organizations using FIM models are required to follow four
key principles of fair information practices which are discussed
in [12] and partially in [5]:
• Notice: Users should receive prior notice of the informa-

tion practices.
• Choice: Users have a choice to specify what information

will be used and the purpose for which the information
is collected.

• Access: Users should be able to access and modify their
personal information if necessary and when needed.

• Security: Users should be assured that the organizational
system is capable of securing their personal information.

Liberty Alliance specifications have proposed an approach
to sharing user attributes on the basis of user’s permission [15],



Fig. 1. Liberty Alliance model

Fig. 2. Indirect Interaction Case

[17]. The specifications also provide a set of guidelines that
will help businesses adhere to these principles. Microsoft Pass-
port’s approach to online privacy is also based on adherence
to these aforementioned principles.

Now we describe business scenarios that we utilize to
articulate necessary elements in dealing with privacy issues for
federated identity management, focusing on Liberty Alliance
specifications. Our scenarios have two hypothetical entities: a
financial service institution Mega Bank that has online banking
services and an online stock trading and brokerage company
Corporate.com. We assume that Mega Bank and other Web
Services Consumer (WSC) are Liberty enabled entities and
recognize each other as the member of their CoT. Also a WSC
has the ability to request one or many attributes which may
or may not contain Personally Identifiable Information (PII).
In addition, all WSCs and Mega Bank have a central policy
in the Usage Directives and the user has read and agreed to
the posted privacy policies at each service provider before
signing up with them. Finally, the user has stored her privacy
preferences at the Attribute Provider for some or all of her
PII.

We now categorize our scenarios from Mega Bank perspec-
tives. Mega Bank can act as either attribute provider or attribute
requester.

1) Mega Bank acting as an Attribute Provider 1

Under this scenario, we identify three different cases
based on the interaction service (IS) patterns that initiate
a communication channel with a user to obtain the user’s
consent.
a. Direct Interaction with the user for obtaining con-

sent: Mega Bank can initiate an IS for obtaining user
consent before actually releasing the attribute to the
WSC. The IS instance is initiated in case of a policy
level mismatch between user’s stored preferences
and the policy level for the intended usage.

b. Indirect Interaction through another WSC: Mega
Bank serves only the attribute request without in-
voking an IS by itself. The interaction service is
invoked by the same WSC who has requested a
user attribute. In this case, Mega Bank (Attribute
Provider) does not have a direct interaction with the
user.

c. Indirect Interaction through a third-party IS on
behalf of the user: Mega Bank communicates with a
third-party IS for obtaining user consent. The third-
party IS for the user is discovered using the ID-WSF
Discovery service [17]. Mega Bank and the WSC do
not have any direct interaction with the user.

1Mega Bank can also serve as an IDP or can have another IDP in the CoT.
However, since the role of an IDP is limited in our scenarios, we omit such
cases in this paper.



2) Mega Bank acting as an Attribute Requester
As an Attribute Requestor, Mega Bank sends attribute
requests to Corporate.com which provides PII as an
Attribute Provider. For this case, Mega Bank invokes
an IS to establish a direct interaction with the user for
obtaining a consent.

Our study is conducted with actual experimentations of each
case. For brevity, this paper focuses on Indirect Interaction
case as shown in Figure 2.

A. Privacy Labels

Liberty Alliance specifications also address multi-level pri-
vacy policy approach [18]. We introduce the concept of
Privacy Labels to meet such requirement. Privacy labels are
somewhat similar to security labels in mandatory access con-
trol (MAC). In MAC, every resource or object is tagged with
a security label representing the sensitivity of each resource.
A subject needs a legitimate security clearance to access
resources. Similarly, every CoT needs to create privacy labels
based on the nature of its business 2. The privacy labels
are used both in service provider’s privacy policy and user’s
privacy preferences. We first identify the requirements for
privacy labels as follows:
• Privacy labels are hierarchical and comparable.

We need to evaluate each attribute request comparing
privacy labels of a service provider with those of a
user. The requested information is released based on
the evaluation result.

• Privacy labels are user-friendly.
We observed that people tend to use labels to rep-
resent abstract concept like the levels of seriousness
or completeness. One example is that the United
States government uses the similar concept to lower
the national threat level from “Code Orange” to
“Code Yellow.” People may not fully understand the
exact definitions of those labels. However, through
the comparable hierarchical structure, people can
understand the ideas behind the labels much easier.

• Privacy labels work with a policy engine.
Instead of evaluating every element in privacy poli-
cies and user preferences, the policy engine needs to
compare privacy label for each attribute in privacy
policies and user preferences. It greatly reduces
the cost for processing all requests as well as for
invoking the interaction service.

In order to address the above-mentioned requirements, we
need two policy schemas, PrivacyLabel and PrivacyHierarchy
for the content of the privacy label and the hierarchical
structure, respectively. The privacy label includes the following
elements and such elements of privacy label are illustrated in
Figures 3(a).
• Name: represents the privacy label.

2Liberty Alliance suggests only five privacy levels: Strict, Cautious, Mod-
erate, Flexible and Casual [18].

• Purpose: describes the intention of data collection or
usage of data.

• Access: indicates whether the SP provides access to the
collected data.

• Recipient: describes all intended recipients of the col-
lected data.

• Retention: indicates the retention policy applied to the
data.

• Remedies: specifies the possible remedies for the policy
mismatch.

• Disputes: indicates dispute resolution procedures.

B. Managing Privacy Preferences

Our investigation indicated that the current FIM practices
lack a well-defined and standardized structure for privacy
policies to support identified practical scenarios addressed in
section III. In addition, there is no systematic protocol for
obtaining and storing users’ preferences. Another important
component to match the privacy policies with users’ consent
has not been fully discussed in the literature. In order to
provide user-centric management, each user should be able
to specify their privacy preferences, even though the ID-
WSF [17] architecture provides a protocol for transferring the
privacy related information in the request and responses3. In
this section, we propose a preference specification language
called PREP, which stands for PReference Expression for
Privacy, to allow users to have control of the release and usage
of their information stored at the attribute providers.

We now introduce an example to elaborate our approach
and to highlight the need for PREP:

Consider that a user Cathy has requested a transaction
at one of the SPs in a CoT. We assume that Cathy has
been authenticated by the WSC at this point. The WSC may
require some information regarding Cathy in order to complete
the transaction. As a result the WSC makes an attribute
request to Cathy’s designated WSP which for simplicity in
our case would be the IDP. For preserving privacy of the
user information, which is the main goal of Liberty Alliance
specifications, the IDP should release the requested attribute
information with a proper user consent. IDP has already
stored the user’s preference regarding the release of informa-
tion based on a multi-level policy approach, meaning that the
user has categorized her personal information to be released
with different levels of strictness. These strictness levels are
directly pointed to the levels of standardized policies defined in
the CoT. In such a case, WSPs just need to compare the privacy
policy level in the request with the level in the preference and
release the information to attribute requester(s) accordingly.
In case of a mismatch, WSP can take appropriate actions
preferred by the user and already stored in some form at the
WSP.

It is obvious that we need to allow SPs and principals to
precisely specify the different aspects of their privacy policies,

3More detailed explanation can be found in [15], [17].



(a) PrivacyLabel Schema (b) PREP Schema

Fig. 3. Privacy Label and PREP

Fig. 4. PREP Example

respectively. The various approaches can be considered to
support the above scenarios. We may consider P3P [9] as
a privacy framework for our scenarios. The major drawback
for adopting the P3P based approach is the complexity in
determining an intersection of the attribute requestor’s privacy
policy and the user’s privacy preference policy in an automated
fashion.

Using a P3P based approach would require a language like
APPEL [8] for the WSPs to collect and store the user pref-
erences. APPEL is a privacy preference expression language
for P3P but it is very hard to understand and needs a special
engine for a browser agent. According to P3P specifications, a
single policy can have multiple statements covering different
purposes for data collection. In an environment like the one we
mentioned in our example, it would be a tough job for WSPs
to evaluate all the permutations and combinations between the
WSCs policies and the user’s set of preferences in APPEL.

There are other related approaches. EPAL [20] is a privacy

authorization language that can support authorization and is
more stringent for Liberty Alliance requirements. Also, the
enhanced SAML [13] can be considered as a way to support
user friendly privacy/preference expressions.

Considering all the issues we discussed above, there is
a clear need for languages to specify standardized privacy
policies and to store the user preferences for corresponding
such policies. The multi-level policy approach in Liberty
Alliance specifications addresses the purpose of defining a
set of standardizes policies for the CoT that both the users
and WSCs may refer to. However, it does not propose any
specification or rules for storing user preferences in a way that
would facilitate the WSPs in matching the privacy policy levels
in the attribute request with the levels in the user preferences.

Our work partially adopts P3P to contain various elements
that define the web sites privacy policies regarding the purpose
of information gathering, release procedures of information
and various other factors such as access control to the col-



Policy Match Prompt Action: Prompt Action: Prompt Action:
(True or False) Always Mismatch Never Return Value

True True False False 1100 (Policy match, Prompt user)
True False True False 1010 (Policy match, Do not prompt)
True False False True 1001 (Policy match, Never prompt)
False True False False 0100 (Policy mismatch, Prompt user)
False False True False 0010 (Policy mismatch, Prompt user)
False False False True 0001 (Policy mismatch, Never prompt)
True True True True 1111 (No Operation)
False False False False 0000 (Missing Attribute)

- - - - Other cases (Invalid Preference)

TABLE I
DECISION MATRIX

Fig. 5. Message Flows

lected data, dispute resolution methods, and so on. We name
our privacy policy framework as P3PLite. For the privacy
preference, we use the preference language called PREP that
is much similar to APPEL. PREP shares the same extension
formats of APPEL but is more restrictive than APPEL. The
important drawback of APPEL in our work is that it cannot
be customized to fit our scenarios because it does not support
a multi-level policy approach suggested in Liberty Alliance
specifications.

C. Elements, Operations and Semantics in PREP

PREP is a language used by the attribute provider to collect
and store the user’s privacy preferences. It further facilitates
the decision process in legitimately releasing attributes at
the attribute provider by comparing the policy level in the
request with the level in PREP at the attribute provider’s
site. Also, PREP supports multi-level privacy policy approach
in Liberty Alliance specifications. The set of standardized
privacy policies should be formalized by a mutual agreement
between all the entities of the CoT. There are a couple of
assumptions that PREP inherits directly from Liberty Alliance
specifications [18]:

• The WSP has previously collected a principal’s consent,
access and privacy preferences/policies for the attributes
in question.

• The CoT has a web site of its own, or uses an external
“Policy Broker” web site, where the privacy policies are
available online.

• The SP/WSC sets the Privacy Policy and the principal
specifies the Usage Policy (such as preferences).

• The consistent naming is used to indicate who decides
which policy is applied to what attributes. In other
words, the following hypothetical relationship should be
supported: PrivacyPolicyX = UsagePolicyX .

The WSP collects the user’s privacy preference at the time
of sign-up. Irrespective of the methods used for collecting
the user’s preferences, the preference should be stored in the
format specified in the PREP structure. Just like other stan-
dardized protocols proposed by Liberty Alliance, all entities
in the CoT should be mandated to follow the PREP structure
for managing privacy preferences, as each entity acts as an
attribute provider.

The PREP contains a set of elements that help the attribute
provider store privacy preferences provided by the user into a
standardized machine readable XML format. The conversion
of the user preferences from a high level to XML is done by
the PREP generator. The PREP generator is a program that
takes the input from the user and converts it into an XML file
satisfying the PREP structure for the user preferences. The
PREP elements and an example are illustrated in Figures 3(b)



and 4.

D. Parsing PREP: PREParser

Based on the proposed structure, we also developed a
mechanism, named PREParser, to process user preferences
specified in PREP. PREParser is an XML based rule engine
for PREP. It evaluates the user preferences upon receiving
an attribute request message. We utilize the decision matrix
to expedite the evaluation process. The matrix includes all
possible policy levels and preference types. PREParser firstly
checks whether the incoming policy level matches with the
user defined privacy preferences using this matrix then returns
a corresponding decision. The matrix scales down the number
of expected outputs from the parser as shown in Table I.
The returned decision value eventually triggers the interaction
service based on the specified prompt action. PREParser pro-
cesses the PREP rule set according to the following guidelines:

• A PREP rule set should start with a <leppl: Preference>
tag and should contain the xmlns extension that specifies
the namespace for the XML Schema for PREP. The
absence of <leppl:Preference> tag invalidates the rule
set and any further processing should be aborted.

• Every PREP rule set can have only one <leppl:
Preference> element but can have multiple <leppl:
Policy> elements.

• Every <leppl: Policy> element should include mandatory
extensions, containing the name of the policy in the
CoT. The policy contained in ref follows the same
nomenclature or is similar to the one that is in the attribute
request.

• There can be only one <leppl: DataGroup> element in a
single <leppl: Policy> element. A <leppl: DataGroup>
should have at least one <pp: Data> element depending
upon the type of data contained in it.

In order to validate the feasibility of the proposed P3PLite
and PREP languages, we have implemented prototypes for the
scenarios identified in Section III. We developed the meta-
information of the APIs for the basic functions derived from
our approach 4. Meta-information consists of the class name,
the class description and the signature of the corresponding
methods under each class. The method signature includes
method name, return type, the number and order of the
parameters, and the types of the parameters. The purpose of
this approach is to provide a blueprint to the developers so
that they can follow, modify or enhance each class based on
their own needs. This approach is also platform- and program
language independent. Figure 5 illustrates the message flows
in our prototype of Figure 2. We also developed several classes
to support our approach and the PREParser as follows:
• UserPreferences Class This class represents the PREP

user’s preferences XML document object. When an in-
stance of UserPreferences is created, this class parses the
user’s preferences automatically.

4In Appendix, we include the meta-information of such APIs.

• PolicyUtils Class This class is a collection of methods
to handle privacy policy. Obviously, the service provider
has more chance to use this class because the methods
provided are mainly the preparation of the request SOAP
message to and the handle of response SOAP message
from the attribute provider.

• PreferenceUtils Class This class is a collection of meth-
ods to handle user’s preference. The attribute provider has
more chance to use this class since the methods provided
are mainly the preparation of the response SOAP message
to and the handle of request SOAP message from the
service provider.

• PolicyEngineUtils Class This class is a collection of
methods to handle intersection of the privacy policy and
user’s preferences. The attribute provider uses this class
for determining whether the information is released or
not.

IV. CONCLUSION AND FUTURE WORKS

Information security and privacy issues are the key concerns
in FIM because identity federation requires the exchange
of sensitive user information in a highly insecure and open
network. In this paper, we have focused on Liberty Alliance
approach along with privacy issues in FIM through possible
business scenarios. In addition, we have proposed a user
preference expression language and a simplified privacy pol-
icy language that are crucial to manage users’ PII in FIM.
We believe our work can be leveraged by the research and
industry communities working on privacy issues in identity
management.

Our future work will focus on an enhanced privacy attribute
management framework which can provide users with a high
level of confidence in protecting and controlling their per-
sonal data. Developing appropriate information assurance (IA)
metrics for user-centric identity management is another issue
that we intend to work on in the near future. It is generally
believed that no single perfect set of IA metrics can be applied
to all systems [4]. Thus, we would attempt to investigate IA
metrics specifically designed for user-centric identity systems.
In addition, we would apply the proposed framework to our
on-going project on Microsoft’s CardSpace [6], evaluating and
validating the IA metrics.

ACKNOWLEDGEMENTS

This work was partially supported at the Laboratory of In-
formation of Integration, Security and Privacy at the University
of North Carolina at Charlotte by the grants from e-Business
Technology Institute, National Science Foundation (NSF-IIS-
0242393), and Department of Energy Early Career Principal
Investigator Award (DE-FG02-03ER25565). We are grateful
to Todd Inskeep, Sam Phillips, and Larry Hollowood for their
support and encouragement in making this work possible. The
opinions expressed in this paper are of course our own and
should not be taken to represent the views of these individuals.



REFERENCES

[1] W3C Note: Simple object access protocol v 1.1. Technical report,
Available at www.w3.org, 2000.

[2] W3C note: Web services description language (WSDL) v 1.1. Technical
report, Available at www.w3.org/, 2001.

[3] G.-J. Ahn, D. Shin, and S.-P. Hong. Information assurance in federated
identity management: Experimentations and issues. In Proceedings of
5th Web Information Systems Engineering Conference, Lecture Notes
in Computer Science (LNCS3306), pages 79–90, Brisbane, Australia,
November 2004.

[4] A. Bhargav-Spantzel, J. Camenisch , T. Gross and D.Sommer. User
Centricity: A Taxonomy and Open Issues. In Proc. of ACM workshop
on Digital Identity Management, November 2006.

[5] K. Cameron. The Laws Of Identity. Microsoft Corporation, White Paper,
May 2005.

[6] K. Cameron. Microsoft Identity Metasystem. Available at
www.identityblog.com, 2006.

[7] D. Chaum. Security without identification: Card computers to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044,
1985.

[8] L. Cranor, M. Langheinrich, and M. Marchiori. A P3P preference
exchange language 1.0 (APPEL1.0). Technical report, Available at
www.w3.org, 2002.

[9] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and
J. Reagle. The platform for privacy preferences 1.0 (P3P1.0) specifica-
tion. Technical report, Available at www.w3.org, 2002.

[10] L. F. Cranor. Agents of choice: Tools that facilitate notice and choice
about web site data practices. Proceedings of the 21st International
Conference on Privacy and Personal Data Protection, September, 1999,
pp 19-25, Hong Kong SAR, China.

[11] H. Damker, U. Pordesch, and M. Reichenbach. Personal reach ability
and security management - negotiation of multilateral security. In
Proceedings of Multilateral Security in Communications, Stuttgart, Ger-
many, 1999.

[12] Federal Trade Commission. Online Profiling - A Report to Congress,
part 2. Technical report, 2002.

[13] P. Hallam-Baker and E. Maler. Assertions and protocols for OASIS
SAML. Technical report, Available at www.oasis-open.org, 2002.

[14] J. Hegel and M. Singer, editors. Net Worth: Shaping Market When
Customers Make the Rule. Harvard Business School Press, 1999.

[15] J. Hodges and T. Watson. Liberty architecture overview v 1.2-03.
Technical report, Available at www.sourceid.org, 2003.

[16] IBM. Web services security (WSS) specifications 1.0.05. Technical
report, Available at www-106.ibm.com, 2002.

[17] Liberty Alliance. ID-WSF security and privacy best practices. Technical
report, Available at www.projectliberty.org.

[18] Liberty Alliance. Privacy preference expression languages. White report,
Available at www.projectliberty.org.

[19] Mircrosoft Corporations. Microsoft .Net Passport Review Guide. Tech-
nical report, Available at www.microsoft.com, 2003.

[20] M. C. Mont, S. Pearson, and P. Bramhall. Towards accountable
management of identity and privacy: Sticky policies and enforceable
tracing services. Technical report, Available at www.hpl.hp.com, 2003.

[21] P. Shenoy, D. Shin, and G.-J. Ahn. Towards IA-Aware web services for
federated identity management. In Proceedings of IASTED International
Conference on Communication, Network, and Information Security,
pages 10–15, New York, USA, December 2003.

[22] D. Shin, G.-J. Ahn, and P. Shenoy. Ensuring information assurance in
federated identity management. In Proc. of the 23rd IEEE International
Performance Computing and Communications Conference (IPCCC),
Phoenix, Arizona, April 2004.

[23] T. Watson. Liberty ID-FF implementation guidlines v 1.2.02. Technical
report, Liberty Alliance Project, 2003.

APPENDIX: CLASSES

USERPREFERENCES CLASS
This class represents the PREP user’s preferences XML document

object. When an instance of UserPreferences is created, this class
parses the user’s preferences automatically. The typical initiation is
as follows:

UserPreferences userpreferences
= new UserPreferences ("c:/temp_prep")

Constuctor
There is a constructor in this class.

UserPreferences(String PreferencesFile){
parseUserPreferences(PreferencesFile);}

Methods

String getDefaultAction()
//return the default action of the user’s preferences

String getPrivacyHierachyURI()
//return the URI of the Privacy Hierarchy definition
//of the user’s preferences

ArrayList getAttributes()
//return an array list of the attributes inside
//the user’s preferences

ArrayList getAttributesAll()
//return an array list of five objects related to
//attributes
//1st object is an array list of the attributes
//inside the user’s preferences
//2nd object is an array list of the URIs of the
//Privacy labels in 1st object
//3rd object is an array list of the URIs of the
//base data schema in 1st object
//4th object is an array list of the action of the
//each attribute in 1st object
//5th object is an array list of the prompt action
//in 1st object

String getExpirationDate()
//return the expiration date of the user’s
//preferences

POLICYUTILS CLASS

This class is a collection of methods to handle privacy policy.
Obliviously, the service provider has more chance to use this class
because the methods provided are mainly the preparation of the
request SOAP message to and the handle of response SOAP message
from the attribute provider.

Constuctor
No constructor in this class.

Methods
ArrayList getAllRequestedAttributes(

String PrivacyPolicyURI)
//return an array list of attributes from
//the privacy policy with given URI

ArrayList GetDataGroupHierachy(
String BaseURI, String ref)

//return an array list of all attributes under
//the attribute group ref with reference to the
//base data schema with given URI

String getAttributeProvider(
String attribute, String pseudonym)

//return the AP’s endpoint for a specific user
//with the given pseudonym and a specific attribute

SOAPMessage CreateSoapMessage(
String pseunym,
ArrayList all_attributes,
String PrivacyPolicyURI,
String messageID)

//return a soap message which is going to send to
//the AP. The inputs are: a specific user with the



//given pseudonym, an array list of all_attributes
//to that AP, the privacy policy with given URI,
//and the message ID

String genMessageID()
//return a random number for the message ID

String getRedirectRequestURL(SOAPMessage msg)
//return the redirect URL from the soap message msg

String getMessageID(SOAPMessage msg)
//return the message ID from the soap message msg

SOAPMessage sendSoapMessageAndgetResponse(
SOAPMessage attrQuery,
String endPointURI)

//return a response soap message from the AP with
//the endpoint endpoint URI by sending a request
//soap message attrQuery to that AP

ArrayList parseAttributeQueryResponse(
SOAPMessage msg,
ArrayList tmp_attrs)

//return an array list of the values of the
//attributes tmp_attrs from the response soap
//message

String getAlternativeAttributeName(
String attribute)

//return the attribute in the implementation.
//For example, user.name.given in base data schema
//becomes first_name in a database or a HTML
//field name

PREFERENCEUTILS CLASS

This class is a collection of methods to handle user’s preference.
The attribute provider has more chance to use this class since the
methods provided are mainly the preparation of the response SOAP
message to and the handle of request SOAP message from the service
provider.

Constuctor
No constructor in this class.

Methods
String getUserPreferences(String pseudonym)
//return the user’s preferences for a specific
//user with the given pseudonym

String getStorageAttributeName(String attribute)
//return the name of the attribute in a storage
//e.g. database, file, LDAP, etc

String getAttributeValue(String pseudonym,
String storageAttributeName)

//return the value of an attribute for a specific
//user with the given pseudonym in the storage

SOAPMessage CreateSoapMessage(
ArrayList attributes,
ArrayList attributeResults,
String CorrelationMessageID)

//return a soap response message which is going
//to send to the SP. The inputs are: an array
//list of requested attributes, the values of
//those requested attributes, and the
//correlated message ID

SOAPMessage sendSoapMessageAndgetResponse(
SOAPMessage response,
String endPointURI)

//return a response soap message from the SP

//with the endpoint endpoint URI by sending
//a soap message "response" to that SP

String getStatusCode(SOAPMessage SPResponse)
//return the status code form the response soap
//message form SP

POLICYENGINEUTILS CLASS

This class is a collection of methods to handle intersection of the
privacy policy and user’s preferences. The attribute provider uses this
class for determining whether the information is released or not.

Constuctor
No constructor in this class.

Methods
boolean isPrivacyPolicyExpired(

String PrivacyPolicyURI)
//return true if the Privacy Policy is already
//expired.
//Return False, otherwise.

boolean isUserPreferencesExpired(
String PreferencesFile)

//return true if the user’s preferences is already
//expired.
//Return False, otherwise.

boolean comparePrivacyLabels(
String userPrivacyLabel,
String spPrivacyLabel,
String PrivacyLabelURI)

//return true if spPrivacyLabel is equal or
//stricter than userPrivacyLabel.
//Return False, otherwise.

boolean comparePrivacyHierachyURIs(
String spPrivacyHierachyURI,
String userPrivacyHierachyURI)

//return true if spPrivacyHierachyURI and
//userPrivacyHierachyURI are the same to see
//whether they are from the same Privacy
//Labeling System.
//Return False, otherwise.

boolean compareBaseURIs (String spBaseURI,
String userBaseURI)

//return true if spBase and userBase are the same
//to see whether they are from the same Privacy
//Labelling System.
//Return False, otherwise.

int getHierachyPostion (String PrivacyLabel,
String PrivacyHierachyURI)

//return an integer to represent the position of
//a PrivacyLabel in a hierarchy defined in the
//given URI (PrivacyHierachyURI)


