
Utilizing Network Science and Honeynets for Software Induced Cyber 
Incident Analysis 

 
                     Napoleon C. Paxton                                 Dae-il Jang                                  Stephen Russell 
          U.S. Naval Research Laboratory             Arizona State University            U.S. Naval Research Laboratory 
           napoleon.paxton@nrl.navy.mil                daelsmail@gmail.com                stephen.russell@nrl.navy.mil   

 
                        Gail-Joon Ahn                                  Ira S. Moskowitz                                 Paul Hyden 
               Arizona State University              U.S. Naval Research Laboratory      U.S. Naval Research Laboratory 
                        gahn@asu.edu                        ira.moskowitz@nrl.navy.mil               paul.hyden@nrl.navy.mil   

 
 

Abstract 
Increasing situational awareness and investigating the 
cause of a software-induced cyber attack continues to 
be one of the most difficult yet important endeavors 
faced by network security professionals.  Traditionally, 
these forensic pursuits are carried out by manually 
analyzing the malicious software agents at the heart of 
the incident, and then observing their interactions in a 
controlled environment.  Both these steps are time 
consuming and difficult to maintain due to the ever 
changing nature of malicious software.  In this paper 
we introduce a network science based framework 
which conducts incident analysis on a dataset by 
constructing and analyzing relational communities.  
Construction of these communities is based on the 
connections of topological features formed when 
actors communicate with each other.  We evaluate our 
framework using a network trace of the BlackEnergy 
malware network, captured by our honeynet.  We have 
found that our approach is accurate, efficient, and 
could prove as a viable alternative to the current status 
quo.  
 
 
1. Introduction  
 

Today the importance of developing effective 
methods to analyze and defend against cyber attacks is 
no longer in doubt.  Incidents such as recent data 
breaches at Target retail stores and the PF Chang 
restaurant chain as well as discovered and alleged 
attacks against Nation states, bring worldwide attention 
to the cyber attack problem [14, 9, 4].  This problem 
has been growing exponentially despite constant 
research geared towards reducing its impact.  One of 
the major issues causing this upward trend in attacks is 
the dependence on outdated analysis systems [3].  
Modern day attacks are often sophisticated and carried 

out at high speeds.  In order to effectively understand 
and defend against these attacks, it is necessary to 
identify key situational attributes and actions quickly, 
before the originators of the attack can cover their 
tracks or attack other targets. 

 When dealing with attacks where malicious 
software (malware) directly interacts with a victim 
computer, current methods of cyber incident analysis 
involve two major steps.  Step one is to discover and 
analyze the malware that was sent to the infected 
system.  This is also called the static step and is 
typically a manual analysis.  Step two is to run the 
discovered malware in a closed simulated network 
(sandbox) and evaluate its actions based on the 
intelligence that was learned in step one.  This is called 
the dynamic step.  In theory these two steps represent 
the most effective method to conduct a detailed 
analysis of the incident, if the analyst conducting the 
static analysis step is a highly competent expert in 
malware analysis.  Unfortunately, modern malware 
continues to evolve and become increasingly complex.  
Because of this, a detailed static step analysis is likely 
to take a significant amount of time for even the most 
highly qualified analyst to complete [3].  Furthermore, 
in the case of the dynamic step most sandbox analysis 
systems have limited network simulation capabilities.  
For instance, in order to completely simulate an 
environment, the sandbox would need to be configured 
to include every item and option in the network that 
could be modified in any way [20].  This level of 
customization is difficult to develop or operate and 
thus unrealistic for any affordable simulation system.  
Moreover, malware attacks are intrinsically driven by 
situational performers (actors) and incorporating this 
notion into the dynamic and static steps introduces 
significant additional complexity into the assessment 
process.  

We believe an approach that can improve the 
efficiency and effectiveness of analyzing cyber 

2015 48th Hawaii International Conference on System Sciences

1530-1605/15 $31.00 © 2015 IEEE

DOI 10.1109/HICSS.2015.619

5244



incidents should be able to identify the important 
actors involved in the incident without requiring a 
detailed internal description of the actor.  Awareness of 
actors’ roles and locations would reduce the time 
necessary for manually analyzing complex malware 
code.  We also believe an approach that enhances the 
effective static and dynamic steps needs to be able to 
identify and track the transactions that take place 
between actors.  Beyond further characterizing attack 
malware, transaction attribution would also reduce the 
dependence on sandboxes for the discovery of 
behavioral characteristics.  Community-based analysis 
from the multi-disciplinary field of network science 
provides techniques that can satisfy these requirements.  
Here actors and their interactions are modeled using 
graph theory, where each actor is represented by a 
graph vertex � and each interaction between actors is 
represented by a graph edge, �.  Communities are then 
extracted based on the context of the discovered 
interactions [5].  One of the findings we present in this 
paper shows that discovered community structures and 
the relationships within those communities can 
contribute to the understanding of the network as a 
whole.  This finding strengthens statements about the 
benefits of community detection made in other fields, 
such as biology and social networking [12, 16]. 

In this paper, we present and discuss our honeynet-
based framework that captures network traces of cyber 
incidents, identifies actors within the traced network, 
and constructs communities based on the interactions 
of the discovered actors.  Our initial evaluation of the 
framework is very encouraging.  Distinct communities 
were extracted from the data and the discovered 
relationships within and outside of the communities 
strongly suggest the role of the actor and the purpose 
of the network.   

The remainder of the paper is structured as follows.  
In Section 2 we discuss related work in the area of 
software-based cyber incident analysis, honeynet 
technology, and network community detection using 
network science methods.  Section 3 discusses the 
components of the honeynet-based framework.  In 
Section 4 we discuss the results of each module within 
the framework, and Section 5 concludes the paper. 
 
2. Background 
 
     In this section we discuss previous research that 
focused on analyzing software induced incidents.  We 
also provide a background on important elements that 
play a key role in our approach, such as honeynets, 
network science based community detection, and the 
dataset we collected and used for our evaluation of the 
framework’s operation.   

2.1. Related Work  
 

In a recent survey on network-based botnet 
detection methods by Garcia et al. [7], the authors took 
an in-depth look at the most widely used and 
researched botnet detection tools available.  In this 
review there was a discussion which highlighted the 
fact that bot detection mechanisms have different 
requirements than botnet detection mechanisms due to 
the difference in detecting one machine as opposed to a 
group of machines.  Detecting a bot fits in the realm of 
this paper since a bot is software that induces the cyber 
incident.  Of these methods, "BotMiner" [9], 
"BotSniffer" [10], "N-gram" [1], and "Tamed" [23], 
were similar to our method based on their detection 
approach.  Our method is different from these and all 
the other approaches found in this review because once 
the malware is discovered using our system, it is 
grouped into communities, which can then be analyzed 
to determine relationships between actors located in the 
same community and throughout multiple 
communities.  The methods presented in this survey 
employ clustering techniques in their detection 
algorithms.  Clustering is conducted based on a metric 
of distance and does not take into account relationships 
[5]. 

In another recent review, which compared dynamic 
malware analysis techniques, Egele et al. conducted a 
study on methods that look to dynamically analyze 
malware in an attempt to reduce the time gap between 
discoveries of the malware to gaining intelligence from 
it [4].  In this survey the authors acknowledge that 
most forms of malware analysis still rely heavily on 
manual static based analysis.  They also discuss the 
major forms of malware discovered on the Internet 
today.  The methods discussed in this work seek to 
conduct an analysis of the malware without first 
performing the manual static analysis step.  They also 
use clustering techniques and automated dynamic 
analysis reports to describe observed actions.  These 
actions are then turned into behavioral profiles.  Our 
approach also focuses on behaviors, but instead of 
using arbitrary or metric-based node clustering 
techniques, we use node relationship based community 
detection techniques which allows us to identify 
relationships for a more fine grained and relational 
analysis.   

Two works which developed systems to detect and 
analyze software induced malware networks are "In 
Mining Botnet Behaviors on the Large-scale Web 
Application Community" [6] and "Botnet Detection 
Based on Traffic Behavior Analysis and Flow 
Intervals" [24].  In this research the authors used 
machine learning techniques to discover patterns 
within the network that attempted to explain botnet 

5245



behaviors.  Our framework has the same goal of 
identifying patterns, but machine learning techniques 
suffer from their dependence on generating a training 
set of data.  Also, this type of analysis does not make 
any connections between identified nodes of interest. 
Our approach uses characteristics of the connections 
between the nodes of interest to identify patterns.  

 
2.2. Honeynet Technology Overview  
 

Honeynets are networks composed of machines that 
are geared to attract and capture transactions of 
malicious users [11].  If one machine is configured to 
collect this data it is called a honeypot.  This 
technology has proven very useful in studying and 
defending against malicious networks.  In most cases a 
general honeypot with a simple vulnerability will 
receive many attack attempts within minutes.  Virtually 
any analysis tool or method can be plugged into the 
honeynet in order to run analysis on the discovered 
attacks.  Honeynets can be configured in a variety of 
ways, based on the desired level of interaction from the 
malicious software.  Simple implementations seek only 
to capture traces of automated attacks which search for 
vulnerabilities within systems on a subnet.  These types 
of honeynets are considered low interaction.  Other 
forms of honeynets allow the malware to connect to 
locations outside of the network.  These types of 
honeynets are considered high interaction.  The 
connections are normally limited so as not to allow the 
malware to damage outside sources from the honeynet.  
These types of implementations can become very 
elaborate.  It is possible to create a framework which is 
an exact replica of a production network.  Creating 
such a honeynet would allow the system administrator 
or researcher to investigate the effect a piece of 
malware would have on the corresponding production 
network.  The goal of a successful honeynet is to 
record data and discover patterns in malicious traffic, 
without alerting the attacker, in order to discover a way 
to render the attack useless.  Researchers and security 
professionals have used these methods to identify and 
shutdown attacks from all over the world.  For our 
research we implement a high interaction honeynet in 
order to discover enough information to track and 
record all the interactions of the botnet.  Recording this 
information gives us details of the full botnet, which is 
needed in order to verify the validity of our approach. 
 
2.3. Network Science Based Community 
Detection 
 

Network Science is an inter-disciplinary field that 
studies the network representations of physical, 

biological, and social phenomena.  It includes methods 
and theories from a wide range of fields.  The basis of 
our approach, which is detecting the community 
structure of graphs, is a graph theoretic approach that 
fits into this area. A network is said to have community 
structure if the nodes of the network can be grouped 
into multiple sets of nodes, where the sets of nodes are 
more connected internally than externally [13].   

Community detection is different from node 
clustering because community detection group nodes 
based on context and not just distance [5].  This fact 
becomes especially useful when considering node 
overlap.  Node overlap is when a node is a member of 
two distinct communities at the same time [22].  By 
investigating the context and the semantics of both 
community memberships we can begin to understand 
the purpose of the memberships.  We can also begin to 
understand the connections between the two 
communities.  

 

 
 
 

Figure 1:  Three communities that overlap 

There are several methods used to construct the 
communities.  The most prevalent methods are 
hierarchy based [21], modularity (null model) based 
[18], information theory based [19], and clique based 
[17].  Each model has its drawbacks and advantages.  
In this paper we utilized the clique based method due 
to its natural ability to discover overlaps within 
communities.  The clique based method forms 
communities by the percolation of fully connected 
adjacent sub-graphs [17].  Sub-graphs are said to be 
adjacent when they share k-1 nodes.  The major 
drawback to this approach is it is not considered the 
most efficient community detection approach, but 
recent tests show that it tested very well for networks 
up to several million [17].  This is sufficient for our 
initial tests, but we will explore optimizing our 
algorithm in future work.  
 
 
 

5246



2.4. BlackEnergy Botnet Dataset 
 
     We chose the BlackEnergy 1.8 Botnet Tool Kit for 
our malicious dataset analysis.  The BlackEnergy Tool 
Kit functions using HTTP as its means to communicate 
with the command and control server.  After a machine 
is infected, it initiates a POST message to a PHP script.  
This script is hosted on the command and control 
server, logs all information from each infected 
machine, and stores that content in a MySQL database.  
Bots that are controlled using HTTP each have their 
own separate connection channel to the command and 
control.  This is different from bots that are part of 
IRC-administered botnets, which can view all other bot 
commands and transactions if they are part the same 
botnet channel.  The dedicated communication channel 
makes analysis of the entire botnet more difficult and 
requires internal access of the command and control 
server.  To gain this level of access, we first installed 
and executed the BlackEnergy toolkit on our honeynet, 
using a Windows based machine on VMware as the 
honeypot.  Once an initial POST command was sent to 
the command and control server, we were able to use 
this information to masquerade as the command and 
control server and capture communications sent to it 
from other infected machines.  Figure 2 shows the 
initial POST after executing BlackEnergy and figure 3 
shows a second infected machine sending its initial 
POST to the command and control.  In both figures the 
bots send the initial message in red, which is the POST 
request to stat.php.  Stat.php is the php script that 
collects messages from bots on the command and 
control server.  We also see the Host (anonymized 
here), which is the command and control IP address.  
The content length is also shown, which is the size of 
the message and the build_ID is also displayed.  The 
build_ID is created when the bot is built and it consists 
of the SMB hostname of the infected system as well as 
the System Volume ID from the C:\ drive.  
  

 
 

Figure 2: Initial Connect to Command and Control 

 

 
 
Figure 3: New Bot Connecting to Command and Control 

    
3. Cyber Incident Analysis Framework  
 
     Our incident analysis framework is composed of 
five modules which can each act as a standalone 
method for malware analysis.  In this particular 
application we are conducting an analysis of a botnet 
which is a network of computers that has been infected 
by agents.  This network is controlled by one or more 
commanders, which are called botmasters or 
bothearders.  We chose a botnet as our first test dataset 
because the important actors (Bots, Botnets, and 
Command and Control Centers) are well defined and 
network traffic concerning each actor can be detected 
by our honeynet.  These factors made it a good choice 
for community detection.  Figure 4 shows the 
framework. 
  
3.1. Traffic and Log Collection Module 
 

The traffic and log collection module is the entry 
point to the framework.  It aims to capture and monitor 
network traffic at the edge of networks and at each 
sensor of installed honeypots within the honeynet. This 
module has two modes.  It can capture live traffic from 
a network in the form of packets by using the PCAP 
library and it can load captured files stored on a file 
system.  Currently the types of stored traffic that can be 
read with this module are PCAP, Netflow, Argus, and 
Sebek. Other forms of log data can be formatted to be 
included in the framework.  Collected data is 
forwarded to the Traffic processing module. 

 

5247



3.2. Traffic Processing Module  
The Traffic processing module aims to pre-process 

the traffic for flow correlation. The Traffic separator 
module within the component separates the traffic into 
10 minute time windows in order for us to observe 
changes in behavior over time.  The time window was 
set at 10 minutes because it is the default time 
programmed into the malware for connection intervals.  
In the future we will modify the time window and 
evaluate whether or not 10 minutes is the optimal value 
for community detection.  The packet parsing module 
extracts header level information from the traffic such 
as source IP (SrcIP), destination IP (DstIP), source 
port, destination port, TCP/UDP payload size, source 
to destination packet count and data size, destination to 
source packet count and data size, and session interval.  
And this module generates plain text and comma 
separated value (CSV) files based on above 
information.  The Flow aggregation module generates 
an input file for flow correlation.   

   3.3. Flow Correlation Module 
 

The flow correlation module creates communities from 
the normalized data inputted from the flow aggregation 
module located in the traffic processing component.  
We use a clique based method to generate 
communities.  In order to discover communities using 
cliques, we first needed to identify the nodes and 
edges.  We modified the original k-clique percolation 
algorithm [17] to perform our analysis.  Instead of 
identifying one entity to be a node, we added a 
secondary node.  Particularly, for our analysis each IP 

address was equal to a "Primary" Node, and the 
message size was equal to the "Secondary" Node.  The 
link between nodes is a tuple of 
{Time,SrcIP,DstIP,MsgLen}.  For the purpose of 
constructing the communities, we do not consider 
direction.  Once the communities were formed we use 
the tuple {SrcIP, DstIP} to add direction in order to 
identify the role of each Primary Node.  The purpose of 
the Secondary Node is to identify all relevant 
communications.  For instance, many botmaster 
communications only include the botmaster and the 
command and control node.  By adding the message 
size as a secondary node, we are able to separate each 
meaningful communication into a community even if it 
only contains two nodes.  Figure 5 shows three 
communities constructed using our method.  The first 
two communities are composed of a botmaster 
connecting to the command and control with different 
message lengths and the third community shows 2 bots 
connected to a command and control using the same 
message length.  Since the message length is the same, 
it becomes the node that connects the two bots into the 
same community. 

 
 Figure 5:  Three communities 

Figure 4:  Community Based Cyber Incident Analysis Framework 

5248



     The botnet community graph generator component 
inside the flow correlation module produces a graph of 
the communities within a 10 minute time period.  This 
time interval was set based on the default time interval 
for bots to poll the command and control server.  The 
graph is then passed to the botnet behavior monitoring 
module.   

 
3.4. Botnet Behavior Monitoring Module 

 
In the botnet behavior monitoring module we use a 

custom python script to analyze the current community 
graph and then compare it to previous graphs to 
determine comparisons that have occurred over time.  
Here we can discover the evolution of nodes and fluid 
relationships within the same community and across 
multiple communities. 

 
3.5. Bot Master and C&C Detection Module 

 
The Bot master and C&C detection module is 

where the results from the other modules are combined 
and correlated to produce intelligence.   

The botnet behavior modeling results component 
gives a display of what has changed over time within 
the community graphs.   

The packet parsing results module captures and 
displays parsing results from each data source that was 
used in the analysis.  This module was included to 
provide the analyst with a lens into the lower level data 
in case there is a question about the validity of the 
monitoring results. For instance, the full packet from 
PCAP data is available here.  By including the payload 
of the monitoring results, which is based on flows, we 
add context to the analysis by being able to drill down 
into the payload content.  The analyst can also 
manipulate the data before correlation is facilitated. 

The correlation module adjusts the output of the 
behavior monitoring results depending on what has 
changed in the packet parsing results.  If no change has 
been made the correlation results will be identical to 
the input for the behavior monitoring results.  If a 
change has been made, the results will change 
accordingly.  An example change would be an 
inaccuracy that the analyst notices.  The significance of 
this module is, if there are minor issues with the 
analysis they can be corrected here instead of rendering 
the entire analysis useless. 
 
4. Framework Evaluation Results  
 

Our honeynet captured live PCAP traffic to and 
from the command and control servers. In our initial 
experiment, connections between nodes were identical 

for each of the collection components.  Because of this, 
we will only discuss the results in terms of PCAP 
traffic.  After capturing and processing the data in the 
Traffic and Log Collection Module and the Log 
Processing Module respectively, our data was 
analyzed by the Flow Correlation Module and full 
PCAP data was sent to the Botmaster and C & C 
Detection Module.   

In the Flow Correlation Module, the component, 
Botnet Community Graph Generator runs the 
community detection algorithm to discover graphs of 
communities within the data.  Table 1 shows details of 
the results. 

 
Table 1:  Community Graph Metric Values 

Metric Value 
Analysis Period (hrs) 168 
Community Graphs 1008 
Communities 3120 

  
As shown in table 1, the analysis period was 

approximately 168 hours, which is also 7 days of 
analysis.  Since the Flow Correlation Module generates 
community graphs in 10 minute increments, 1008 
community graphs were generated.  Within those 
graphs we observed 3120 communities. 

The Botnet Community Graph Module then 
analyzes the details of the communities in each graph 
using the Analyze Community Graph Component. 
Table 2 shows the details of one of the community 
graphs. Communities and each node within every 
community are delineated using a period.  Table 2 
shows the details of community graph 128.  There are 
4 communities within the 10 minute community graph.  
Communities 128.1, 128.2, and 128.4 each have 3 
nodes within it.  Community 128.3 has 24 nodes within 
it.   
 

Table 2: Community Graph 168 

Community  Nodes Overlap 
128.1 3 {128.1.1:128.2.1;128.4.1}, 

{128.1.2:128.2.2;128.3.2;128
.4.2}   

128.2 3 {128.2.1:128.1.1;128.4.1}, 
{128.2.2:128.1.2;128.3.2;128
.4.2}   

128.3 24 {128.3.2:128.1.2;128.2.2;128
.4.2} 

128.4 3 {128.4.1:128.1.1;128.4.1}, 
{128.4.2:128.1.2;128.3.2;128
.2.2}   

      

5249



The overlap of communities 128.1, 128.2, and 128.4 
show that they are closely related.  For instance, node 
128.1.1 is the same node as 128.2.1 and node 128.4.1.  
The second component within the Botnet Community 
Graph Module is the Compare Botnet Community 
Graph Component.  In this component the current 
incoming community graph is compared with all the 
previous community graphs.  The overall node overlap 
is very significant within the botnet (84%).  This was 
an expected finding since most attacks and other 
communications between bots and the command and 
control server are coordinated.  Previous research 
found that most connections on the Internet have a very 
low overlap rate amongst nodes [22].  Since we have 
discovered that botnets have a high overlap rate, our 
finding could prove to be significant if we can use the 
presence of this high overlap as a detection tool.  We 
will explore this in future research.  
 

  
Figure 6: G-test of top 15 actors based on aggregate 

message sizes 
  
Our Botmaster and C&C Detection Module 

attempts to discover the role of each node within the 
communities.  In the Botnet Behavior Monitoring 
Results Component, we find relationships in the flow 
data that was collected.  Each node is grouped based on 
overlap.  We then use the packet payloads within the 
Packet Parsing Results Component to discover the 
relationships between overlapping nodes.   
     To evaluate the significance of community overlap 
we conduct a g-test on the 15 most active actors in the 
botnet that sent messages to a command and control 
server.  A g-test is a measure of fitness to a distribution 
of data.  We use it to discover correlations between 
actors and the overlap nodes. In our test active actors 
refer to aggregated IP length sizes.  Figure 6 displays 
the g-test.  Each IP length is an overlap node since the 
IP length is used as the secondary node that connects 

the primary nodes (IPs) as shown in figure 5.  The 
results showed that the 15 most active actors only sent 
4 message types of sizes (188, 228, 300, 48).  The 
varying activity of the actors highlight their roles.  IP 
length size 228 was only sent by actor (192.168.101.4) 
and size 300 was only sent by actor (192.168.101.5).  
This suggests a lack of coordination, which leads us to 
believe these two actors are botmasters.  IP length size 
188 was used by the other 13 actors equally.  This 
suggests the activity was coordinated which leads us to 
believe these actors are bots.  Length size 48 was 
correlated with each of the actors, but actors 
(192.168.101.5 and 192.168.101.6) had uneven 
distributions while the other 13 actors had an equal 
amount of data sent.  This is further evidence that the 2 
uncoordinated actors are botmasters and the 13 
coordinated actors are bots. 

To evaluate the ability to discover the overall 
purpose of the botnet using our framework we 
investigate the content of the overlap node messages.  
Message 48 was the basic “GET // HTTP” message 
sent when a node refreshes its command and control 
administration information. Message 228 and message 
300 are Distributed Denial of Service commands being 
sent to the command and control server.  When the 
bots check back with the server they will get the 
command to attack a target.  These four overlap nodes 
represent ~85% of the data the dataset.  By correlating 
these nodes we can reasonably assume this botnet is 
being used specifically for DDoS attacks. 

Highly overlapping nodes, that were not command 
and control nodes, were considered to be bots.  This is 
consistent with previous research which discovered 
that flash crowds of a high percentage represented a 
coordinated event caused by bots [9, 10].  Figure 7 
shows a screen shot of our web-based community 
detection analysis tool with the roles assigned to each 
node.   
 
6. Conclusion  
 

In this paper we introduced a cyber incident 
analysis framework which is based on the detection of 
communities within discovered attack data.  This 
framework does not need to perform a time consuming 
manual analysis step or a closed system dynamic 
analysis step to identify intelligence from the data.  
Instead, all that is needed is high level identification 
data and knowledge of communications between the 
identified actors.  Correlations between the overlap 
nodes provided intelligence about the actors within the 
malicious dataset as well as the overall intent of the 
botnet.  Coordinated activity suggested the presence of 
bots within the network, and a high volume of 

5250



uncoordinated activity, but membership within the 
community suggested the presence of botmasters.  
These correlations also revealed a high overlap 
percentage within the botnet, which is a significant 
contrast with normal Internet traffic.  Since all botnets 
are defined by their coordinated activity, we hope to 
use this trait as an identifiable metric for a general 
community detection algorithm for botnets.  Future 
revisions of our methods aim to detect botnets without 
initiating contact.   
     Cyber incident analysis in general includes the 
gamut of cyber attacks conducted on a computer 
network.  One thing that all cyber incidents have in 
common is unwanted activity on computer networks.  
Community detection provides a way to identify 
patterns in network traffic based on changes, so we 
believe we can modify our techniques to analyze other 
datasets besides botnets.  For example, when malware 
is installed on a system, processes are created, registry 
entries are added or changed, and files are also added 
or changed.  Currently we are investigating using these 
changes to files, processes, and registry entries as 
nodes and the similarities between them as links.  If 
successful, we believe our approach will greatly 
improve the current process of incident analysis.  

 
7. References 

 
[1] Abou-Assaleh, T., Cerone, N, Keselj, V, and Sweidan, R., 
"N-gram-based Detection of New Malicious Code.", In 
Proceedings of the 24th Annual International Computer 
Software and Applications Conference (COMPSAC 2004), 
Hong Kong, 2004 
 
[2] Codenomicon, "The Heartbleed Bug", 
http://www.heartbleed.com, April, 2014 
 
[3] Dittrich, D., "So you want to take over a botnet", In 
Proceedings of 5th USENIX conference on Large-Scale 
Exploits and Emergent Threats, USENIX, 2012 
 
[4] Egele, Manuel, Scholte, Theodoor, Kirda, Engin, and 
Kruegel, Christopher, "A Survey on Automated Dynamic 
Malware Analysis Techniques and Tools, ACM Computing 
Surveys, Vol. 44, No. 2, 2012 
 
[5] Fortunato, S., "Community detection in graphs", Physics 
Reports, 2010 
 
[6] Garant, Daniel and Lu, Wei, "Mining Botnet Behaviors 
on the Large-Scale Web Application Community", In 
Proceedings of 27th International Conference on Advanced 
Information Networking and Applications Workshops 
(WAINA), IEEE, 2013 
 

Figure 7: Screen shot of web-based analysis tool 

5251



[7] Garcia, S., Zunino, A., and Campo, M., "Survey on 
network-based botnet detection methods", Security and 
Communication Networks, May 2014 
 
[8] Geers, K., Kindlund, D., Moran, N., and Rachwald, R., 
"World War C: Understanding Nation-State Motives Behind 
Today's Advanced Cyber Attacks", 
http://www.fireeye.com/resources/pdfs/fireeye-wwc-
report.pdf, 2013 
 
[9] Guofei, G., Perdisci, R., Zhang, Junjie, and Lee, Wenke, 
"BotMiner: Clustering Analysis of Network Traffic for 
Protocol-and Structure-Independent Botnet Detection, 
USENIX, 2008 
 
[10] Guofei, Gu, Zhang, Junjie, and Lee, Wenke, "Botsniffer: 
Detecting botnet command and control channles in network 
traffic.", In Proceedings of the 15th Annual Network and 
Distributed System Security Symposium, NDSS, 2008 
 
[11] Honeynet Project, "Know Your Enemy:  GenII 
Honeynets", http://old.honeynet.org/papers/gen2/, 2005 
 
[12] Jia, Y., Garland, M., and Hart, J.C. "Social Network 
Clustering and Visualization using Hierarchical Edge 
Bundles", Computer Graphics Forum, December 2011 
 
[13] Lancichinetti, Andrea and Fortunato, Santo, 
"Community detection algorithms:  A comparative analysis", 
Phys. Rev. E 80, 056117, Novermber 2009 
 
[14] Krebs, B., "The Target Breach, By the Numbers", 
http://krebsonsecurity.com/2014/05/the-target-breach-by-the-
numbers/, May 14, 2014 
 
[15] Krebs, B., "P.F. Chang's Breach Likely Began in Sept. 
2013", http://krebsonsecurity.com/2014/06/p-f-changs-
breach-likely-began-in-sept-2013/, June 14, 2014 
 
[16] Leydesdorff, L. and Ahrweiler, P., "In Search of a 
Network Theory of Innovations:  Relations, Positions, and 
Perspectives", Journal of the American Society for 
Information Science and Technology (JASIST), 2013 
 

[17] Palla, Gergly, Derenyi, Imre, Farkas, Illes, and Vicsek, 
Tamas, "Uncovering the overlapping community structure of 
complex networks in nature and society", Nature, June 2005 
 
[18] Perry, Patrick and Wolfe, Patrick, "Null Models for 
Network Data", Available at 
http://arxiv.org/abs/1201.5871v1, 2012 
 
[19] Rosvall, Martin and Bergstrom, Carl, T., "An 
information-theoretic framework for resolving community 
structure in complex networks", Proceedings of the National 
Academy of Sciences of the United States of America, 2007 
 
[20] Rossow, C., Dietrich, C., J., Bos, H., Cavallaro, L., 
Steen, M., Freiling, Felix, C., and Pohlmann, N., "Sandnet:  
Network Traffic Analysis of Malicious Software", ACM, 
2011 
 
[21] Wang, Jianxin, Li, Min, Chen, Jianer, and Pan, Yi, "A 
Fast Hierarchical Clustering Algorithm for Functional 
Modules Discovery in Protein Interaction Networks, 
Computational Biology and Bioinformatics, IEEE/ACM 
Transactions, 2011  
 
[22] Xie, J., Kelley, S., and Szymanski, B., "Overlapping 
community detection in networks: the state of the art and 
comparative study.  In Social and Information Networks, 
ACM, 2012 
 
[23] Yen, Ting-Fang and Reiter, Michael, K., "Traffic 
Aggregation for Malware Detection", Detection of Intrusions 
and Malware, and Vulnerability Assessment Lecture Notes in 
Computer Science, Volume 5137, 2008 
 
[24] Zhao, David, Traore, Issa, Sayed, Bassam, Lu, Wei, 
Saad, Sherif, Ghorbani, Ali, and Garant, Dan, "Botnet 
detection based on traffic behavior analysis and flow 
intervals", 27th IFIP International Information Security 
Conference, Computers and Security, Volume 39, Part A, 
November 2013 
 
 
 
 
 
 

 

5252


