
1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

1

Towards Automated Risk Assessment and
Mitigation of Mobile Applications

Yiming Jing, Gail-Joon Ahn, Senior Member, IEEE,

Ziming Zhao, Student Member, IEEE and Hongxin Hu, Member, IEEE

Abstract—Mobile operating systems, such as Apple’s iOS and Google’s Android, have supported a ballooning market of feature-

rich mobile applications. However, helping users understand and mitigate security risks of mobile applications is still an ongoing

challenge. While recent work has developed various techniques to reveal suspicious behaviors of mobile applications, there exists

little work to answer the following question: are those behaviors necessarily inappropriate? In this paper, we seek an approach to

cope with such a challenge and present a continuous and automated risk assessment framework called RISKMON that uses machine-

learned ranking to assess risks incurred by users’ mobile applications, especially Android applications. RISKMON combines users’

coarse expectations and runtime behaviors of trusted applications to generate a risk assessment baseline that captures appropriate

behaviors of applications. With the baseline, RISKMON assigns a risk score on every access attempt on sensitive information and

ranks applications by their cumulative risk scores. Furthermore, we demonstrate how RISKMON supports risk mitigation with automated

permission revocation. We also discuss a proof-of-concept implementation of RISKMON as an extension of the Android mobile platform

and provide both system evaluation and usability study of our methodology.

Index Terms—Smartphones, Android, Risk Assessment, Risk Mitigation

✦

1 INTRODUCTION

MOBILE operating systems, such as Android and
iOS, have tremendously supported an applica-

tion market over the last few years [2], [3]. Such a
new paradigm drives developers to produce feature-
rich applications that seamlessly cater towards users’
growing needs of processing their personal information
such as contacts, locations and other credentials on their
mobile devices. Unfortunately, the large installed base
has also attracted attention of unscrupulous developers
who are interested in users’ sensitive information. For
example, spyware tracks users’ locations and reports to
remote controllers, and adware collects users’ identities
for enforcing an aggressive directed marketing.

To defend against such rogue applications, Android
assists users to review them at install time. Primarily,
Android relies on permissions to help users understand
the security and privacy risks of applications. In An-
droid, an application must request permissions to be
allowed to access sensitive resources. In other words,
it is mandatory for Android applications to present its
expected behaviors to users. Even though permissions
outline the resources that an application attempts to

This is an extended and enhanced version of the paper [1] that appeared in
ACM CODASPY 2014.

• Y. Jing, G.-J. Ahn and Z. Zhao are with the Security Engineering for
Future Computing (SEFCOM) Laboratory, and the Ira A. Fulton School
of Engineering, Arizona State University, Tempe, AZ 85287, USA. G.-J.
Ahn is also with GFS Technology, Inc. All correspondence should be
addressed to Dr. Gail-Joon Ahn. Email: {ymjing, gahn, zmzhao}@asu.edu.

• H. Hu is with the Division of Computer Science, School of
Computing, Clemson University, Clemson, SC 29634, USA. Email:
hongxih@clemson.edu.

access, they do not provide fine-grained information
about how such resources will be used. Suppose a user
installs an application and allows it to access her location
information. It is hard for her to determine whether
the application accesses her locations on her demand
or periodically without asking for her explicit consent.
Therefore, it is imperative to continuously monitor the
installed applications so that a user could be informed
when rogue applications abuse her sensitive informa-
tion. Previous work has proposed real-time monitoring
to reveal potential misbehaviors of third-party applica-
tions [4]–[7]. While these techniques partially provide
valuable insights into a user’s installed applications, it
is still critical to answer the following challenge: are the
behaviors in mobile applications necessarily inappropriate?

To answer this question, it is an end-user’s responsibil-
ity to conduct risk assessment and make decisions based
on her disposition and perception. Risk assessment is
not a trivial task because it requires the user to digest
diverse contextual and technical information. In addi-
tion, the user needs to apprehend expected behaviors of
applications under different contexts prior to addressing
her risk assessment baseline. However, it is impractical
for the normal users to distill such a baseline. Instead,
it is essential to develop an automated approach to
continuously monitor applications and effectively alert
users upon security and privacy violations.

In this paper, we propose an automated and contin-
uous risk assessment framework for mobile platforms,
called RISKMON. RISKMON requires a user’s coarse
expectations for different types of applications while
user intervention is not required for the subsequent
risk assessment. To this end, RISKMON leverages a one-

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

2

time initialization process where a user provides her
selection of trusted applications and her ranking of
permission groups in terms of their relevancy to the
corresponding applications. Then, RISKMON builds a
risk assessment baseline based on the runtime behav-
iors of the user’s selected trusted applications and her
ranking of permission groups. After the baseline is estab-
lished, RISKMON continuously monitors every installed
application’s behaviors, including their interactions with
other applications and system services. The risk of each
interaction is measured by how much it deviates from
the risk assessment baseline. For a better risk perception,
RISKMON ranks the installed applications based on the
risk assessment results in a real-time manner. Intuitively,
the user can deem an application as safe if it is less risky
than any of her trusted applications.

To facilitate risk mitigation, we further propose a
decision process to automatically revoke risky permis-
sions. Whereas simply uninstalling risky applications
might disrupt user experiences, our decision process
automatically confines unnecessary privacy-infringing
code and meanwhile retains core functionalities of ap-
plications. Tools like RISKMON would practically help
raise awareness of security and privacy problems and
lower the sophistication required for concerned users to
better understand and mitigate the risks of third-party
mobile applications.

This paper makes the following contributions:

• We propose a methodology for establishing a risk
assessment baseline from a user’s trusted applica-
tions and her coarse expectations;

• We propose a machine-learned ranking based
framework that continuously monitors the behav-
iors of installed applications, automatically mea-
sures their risks, and intuitively presents the risks;

• We propose an automated decision process that
selectively revokes risky permissions with minimal
impact on an application’s usability;

• We implement a proof-of-concept prototype of
RISKMON and demonstrate how it can be seam-
lessly deployed in Android; and

• We evaluate RISKMON with comprehensive exper-
iments, case studies, and crowd-sourced user sur-
veys. Our experimental results demonstrate the fea-
sibility and practicality of RISKMON.

The remainder of this paper proceeds as follows.
Section 2 provides the motivation and background of
this paper. Section 3 provides an overview of RISKMON

and illustrates the stages of automated risk assessment.
Section 4 describes how RISKMON supports automated
permission revocation. Section 5 presents the prototype
implementation and evaluation. Section 6 discusses limi-
tations of our approach. Section 7 discusses related work
and Section 8 concludes this paper.

2 MOTIVATION AND BACKGROUND

Recent work has proposed mechanisms to extract risk
signals from meta information on application markets
such as permissions [8]–[11], ratings [12], [13], and ap-
plication descriptions [14]. Their limitation is that such
information is not directly related to how and when
sensitive resources are used. Whereas an application
requests location-related permissions, it may stay in the
background and keep probing a user’s locations and
surroundings. Furthermore, users deserve the rights to
know what is happening on their own devices. There-
fore, continuously monitoring applications’ behaviors is
indispensable towards effective risk assessment.

Previous research concerning applications’ runtime
behaviors specifies a set of risk assessment heuristics
tailored to their specific problems. For example, Taint-
Droid [4] considers a case in which sensitive data is
transmitted over the network. DroidRanger [15] and
RiskRanker [16] assume that dynamically loaded code is
a potential sign of malware. While these techniques pro-
vide valuable insights about runtime behaviors of mobile
applications, they do not justify the appropriateness of
the revealed behaviors. We argue that meta information
can provide the necessary operational contexts that jus-
tify runtime behaviors for risk assessment. For example,
a location-based application has good reasons to upload
a user’s locations for discovering nearby restaurants. In
contrast, it does not make sense for a video player to use
the locations and such behaviors should be considered
as more risky.

Finally, we need to consider how users participate
in risk assessment. First, different users would have
disparate security requirements. Thus, we should grant
users the capabilities to specify their preferences in terms
of accessing their own sensitive information. Moreover,
normal users do not possess the necessary technical
knowledge for assessing applications’ runtime behav-
iors and interpret numerical risk scores. Therefore, it is
imperative to automate risk assessment in a way that
requires less sophistication and intervention.

2.1 Background: Android Platform

Permission groups: Permission group is a logical collec-
tion of related permissions defined by Android. For ex-
ample, SOCIAL_INFO includes permissions that access
a user’s contacts and call logs. Most permission groups
are self-descriptive, such as LOCATION and CAMERA.
Android also provides a short description for each per-
mission group to elaborate its corresponding resources.

Binder IPC framework: While APIs enable applica-
tions to interact with each other and system services
in their respective process sandboxes, they are imple-
mented based on an underlying inter-process communi-
cation framework called Binder. It serializes data objects
as parcels for sender process, and de-serialize parcels for
recipient process. Binder also manages IPC transactions
in which parcels are processed and delivered.

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

3

Binder

Transactions

RiskMon

Meta

Information

Baseline

Learner

Security

Requirements

Android Applications

GooglePlay Device User

Application Intelligence

Aggregator

Risk

Meter

Fig. 1. RISKMON Architecture for Android

3 AUTOMATED RISK ASSESSMENT

IT risk assessment guidelines, such as NIST SP 800-
30 [17] and CERT OCTAVE [18], provide a foundation for
the development of effective risk management processes.
They illustrate comprehensive methodologies that en-
able organizations to understand, assess and address
their information risks. While these guidelines deal with
the infrastructure and organizational risks by security
experts, our framework attempts to adapt and automate
the sophisticated risk assessment tasks for general users.

To this end, RISKMON needs to acquire a user’s ex-
pected appropriate runtime behaviors, assess the risks
of installed applications, and intuitively present the risks
to the user. There remain several challenges in achieving
these goals. First, suppose users cannot directly specify
runtime behaviors. RISKMON addresses this issue by
leveraging a user’s trusted applications to provide her
expected behaviors. For example, Netflix and Pandora
share the same core functionalities such as the stream-
ing personalized media contents from remote servers.
Hence, if a user trusts Netflix and derives a risk as-
sessment baseline from its behaviors, the deviation or
“distance” of the behaviors between Pandora and the
baseline indicates Pandora’s additional risks. However,
a subsequent problem is how to measure the distance
between runtime behaviors. Our proposed solution is
to define a space with features extracted from Binder
transactions and meta information of applications. Fi-
nally, a numerical distance does not appeal to users with
respect to effective risk perception. We adopt a ranking
of applications by their risks and a compositional view
of risks for each application to intuitively present the
measured risks.

Figure 1 depicts the RISKMON architecture for An-
droid. Our framework consists of three components: an
application intelligence aggregator, a baseline learner,
and a risk meter. The remainder of this section describes
each component in detail.

3.1 Application Intelligence Aggregator

This component aggregates intelligence about a user’s
installed applications, including their runtime behaviors
and operational contexts. As we capture applications’
runtime behaviors by interposing the Binder IPC frame-
work and log the Binder transactions, we propose a set of
features tailored to the peculiarity of Binder IPC. Also,
we derive operational contexts from meta information
available on application markets. We also propose fea-
tures to represent and characterize them. These features
build a space of application intelligence and enable
subsequent baseline generation and risk measurement.

3.1.1 Features for Binder Transactions

Android applications’ runtime behaviors are essentially
Binder IPC transactions that interact with system ser-
vices and other applications. In this work, we only ana-
lyze permission-protected Binder transactions, assuming
that a user’s assets are only reachable through these
transactions. Therefore, we need to identify the map-
pings from permissions to Binder transactions.

Specifically, we adopt existing work [19], [20] to pro-
vide the mappings from permissions to APIs. Mean-
while, we parse the AIDL1 files in the AOSP repos-
itory to generate the mappings from APIs to Binder
transactions. Connecting these two mappings together,
we derive 1,003 types of permission-protected Binder
transactions. Each of them is identified by a unique
Binder interface name, direction of control flow (syn-
chronous call or asynchronous callback), and a nu-
merical command code. For example, a permission
ACCESS_FINE_LOCATION protects a type of Binder
IPC transaction “ILocationManager-callback-1”.
We note that one permission may protect multiple types
of Binder transactions.

We attempt to represent a Binder transaction with its
internal properties and contents. For a specific Binder
transaction between an application and a system service,
we are interested in its type to identify the corresponding
asset. Also, we need to know the direction of control flow
for determining who initiates the transaction. As users
trust the system services more than applications, RISK-
MON should differentiate Binder transactions initiated
by applications or system services. Thus, we propose
the following Boolean features to capture the internal
properties:

• Type of Binder transaction: 1,003 Boolean features
as a bit array, where one bit is set to 1 for the
corresponding transaction type and the others are
0; and

• Direction of control flow: another Boolean feature,
where 0 for transactions initiated from applications
(calls), 1 for transactions initiated from system ser-
vices (callbacks).

1. Android Interface Definition Language, http://developer.android.
com/guide/components/aidl.html

http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

4

In terms of contents, parcels in Binder transactions
are unstructured and highly optimized, and it is hard
to restore the original data objects without the imple-
mentation details of the sender and recipient. Therefore,
we use length as one representative feature of parcels.
A motivating example is accesses on contacts. From the
length of a parcel we can infer whether an application
is reading a single entry or dumping the entire contact
database. In summary, we propose the following two
features for parcels:

• Length of received parcel: length of the parcel
received by an application in bytes; and

• Length of sent parcel: length of the parcel sent by
an application in bytes.

These features are scaled and then standardized to zero
mean and unit variance. Note that we empirically choose
0-4KB as the range of parcel lengths. In our experiments,
we found that the parcels larger than 4KB exceeded
the limit of the Binder transaction buffer and were
discarded. However, Android applications sometimes
encapsulate file descriptors in parcels to transfer large
bulks of data. We will deal with this situation in our
future work.

3.1.2 Features for Meta Information

We inspect three application markets, including Apple
App Store, Google Play, and Amazon Appstore. They all
share several common meta properties that reflect users’
and developers’ opinions. We leverage such properties
to propose corresponding features for meta information.

Specifically, we use the following features to represent
users’ opinions:

• Number of installs: a range of total number of
installs since the first release2. We use logarithmic
value of the lower bound, i.e., log(1+lower bound of
#installs) and scale to [0,1];

• Number of reviews: a number of reviews written
by unique users. We use the logarithmic value, i.e.,
log(1+#reviews) and scale to [0,1]; and

• Rating score: a number indicating the user-rated
quality of the application ranged from 1.0 to 5.0,
scaled to [0,1].

These three features capture an application’s popular-
ity and reputation. The first two features are similar to
number of views or comments in online social networks.
Recent studies [21] demonstrated that online social net-
works and crowd-sourcing systems expose a long-tailed
distribution. Therefore, we assume they follow the same
distribution and use logarithmic values.

We emphasize that we do not attempt to extract risk
signals from these features. Instead, we adopt these
features to capture the underlying patterns of a user’s
trusted applications as specified by the user and apply
the patterns for the subsequent risk assessment.

2. The number of installs is specified with exponentially increasing
ranges: 1+, 5+, . . . , 1K+, 5K+, . . . , 1M+, 5M+.

Fig. 2. SOM Representation of 13 Categories

Next, we propose a feature to capture developers’
opinions:

• Category: a tuple of two numerical values normal-
ized to [-0.5, 0.5].

An application’s category describes its core functional-
ities (e.g., “Communication”). Note that each application
market may define its specific application categories. As
we focus on Android applications in this work, we use
the categories defined by Google Play throughout the
remainder of this paper.

We adopt the Self-Organizing Map (SOM) in a pre-
vious work by Barrera et al. [22] to derive a two-
dimensional representation of categories. SOM can pro-
duce a discretized representation of permissions re-
quested by different categories of Android applications.
Categories in which applications request similar per-
missions are clustered together. Therefore, the x and y
coordinates in the map can represent a category, and
categories with similar core functionalities would be
closer to each other. Figure 2 depicts the coordinates of
13 categories as an example. Apparently, some categories
bear underlying similarities, such as “Entertainment”,
“Media and Video” and “Music and Audio”.

An unscrupulous developer can claim an irrelevant
category to disguise an application’s intended core func-
tionalities. However, a user can easily notice the incon-
sistencies and remove such an application. In addition,
falsifying an application’s meta information violates the
terms of application market’s developer policies and
may lead to immediate takedown.

Finally, based on the scheme defined by these fea-
tures, the application intelligence aggregator generates
a dataset consisted of feature vectors extracted from
Binder transactions and meta information of each in-
stalled application.

3.2 Baseline Learner

The baseline learner is the core module of RISKMON.
It takes two types of inputs, which are a user’s expec-
tations and feature vectors extracted by the application
intelligence aggregator. Then the baseline learner gener-
ates a risk assessment baseline that is represented as a
predictive model.

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

5

3.2.1 Acquiring Security Requirements

It is challenging for most users to express their security
requirements accurately. We aim to find an approach
that could be mostly acceptable by users. Krosnick and
Alwin’s dual path model [23] demonstrated that a satis-
ficing user would rely on salient cues to make a decision.
Based on this model we develop a simple heuristic:

For a specific application, accesses on resources that
are more irrelevant of a user’s expected core func-
tionalities incur more risks.

Core functionalities of an application are obvious to
most users, and we use such “salient cues” to support
automated risk assessment. Furthermore, the heuristic
captures a user’s expectations by risk aversion, which
implies the reluctance of a user to use a functionality
with an unknown marginal utility [24]. For example,
a user may consider that, microphone is necessary to
a VoIP application such as Skype. But location seems
not because she does not understand the underlying
correlation between disclosing her location and making
a phone call. Thus, microphone is more relevant and less
risky than location in her perception.

Based on this, the risk learner asks a user to specify a
relevancy level for each permission group requested by
her trusted applications. We choose permission groups
to represent resources because it is much easier for
general users to learn 20+ permission groups than 140+
permissions. And recent usability studies demonstrated
the ineffectiveness of permissions due to limited compre-
hension [25], [26]. Although users tend to overestimate
the scope and risk of permission groups, they are more
intuitive and reduce warning fatigue [25].

The process for users to communicate their security
requirements with RISKMON is similar to a short ques-
tionnaire. Each permission group requested by a user’s
trusted applications corresponds to a five-point Likert
item. The user specifies the level of relevancy on a sym-
metric bipolar scale, namely relevant, probably relevant,
neutral, probably irrelevant or irrelevant. Figure 3 shows an
example of relevancy of permission groups for Facebook
and Skype. Permission groups are represented by self-
descriptive icons, which are identical to those shown
in Android Settings. CAMERA preceding LOCATION for
Facebook is possibly due to the user’s preference to
photo sharing compared to check-ins.

Note that the relevancy levels specified by users are
subjective. With that said, users’ biased perception of
applications and resources may affect their specified
relevancy levels. From our user study, a user told us
that PHONE_CALLS is relevant to Google Maps because
he tapped a phone number shown in Google Map and
then the dialer appeared. Although the dialer rather than
Google Map has the capability to make phone calls, the
baseline learner considers it as the security requirements
for inter-application communication.

Relevant Irrelevant

High riskLow risk Neutral

ContactsCamera Phone Calls

Location Microphone Network

Facebook

Skype

1 2 3 4 5

Fig. 3. An Example of Specifying Relevancy for Permis-

sion Groups

We next formalize the problem of acquiring security
requirements as follows:

• A = {a1, a2, · · · , an} is a set of a user’s installed
applications;

• AT is a set of a user’s trusted and installed applica-
tions and AT ⊆ A;

• PG = {pg1, pg2, · · · , pgm} is a set of permission
groups available in a mobile operating system;

• RL = {1, 2, 3, 4, 5} is a set of relevancy levels, where
a larger value indicates higher relevancy and less
risk and vice versa; and

• Req is a user’s security requirement, which is essen-
tially a mapping Req : AT × PG→ RL.

3.2.2 Compiling Training Set

Next we describe how the baseline learner compiles a
training set. Simply put, it annotates vectorized Binder
transactions with user-specified relevancy levels.

To bridge the gap between permission groups and fea-
ture vectors, we extract mappings of permission groups
and permissions from the source code of Android. Mean-
while, existing work has provided mappings between
permissions and APIs [19], [20]. Therefore, we can as-
sign the relevancy level on feature vectors because each
vector represents an API call or callback.

We formalize the problem of compiling a training set:

• X is a set of vectorized Binder transactions gener-
ated by a user’s installed applications, where the
features are extracted from properties of Binder
transactions (Section 3.1.1) and meta information of
the corresponding applications (Section 3.1.2);

• XT is a set of vectorized Binder transactions gener-
ated by the user’s trusted and installed applications,
XT = {~x|~x ∈ X,~x is generated by a, a ∈ AT }; and

• T = {(~x1, rl1), (~x2, rl2), · · · , (~xn, rln)} is a training
set of annotated vectors, ~xk ∈ XT , rlk ∈ RL.

We define two helper functions:

• GetA : XT → AT is a function that maps a vector to
its corresponding application; and

• GetPG : XT → PG is a function that maps a vector
to its corresponding permission group.

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

6

Algorithm 1 illustrates the process to compile the
training set T , where feature vectors from XT are anno-
tated with relevancy levels specified by a user’s security
requirements.

Algorithm 1: Compiling Training Set

Data: XT , Req
Result: T
T ← ∅;
for ~x ∈ XT do

a← GetA(~x); pg ← GetPG(~x);
rl← Req(a, pg);
add (~x, rl) to T;

end
return T

3.2.3 Generating Risk Assessment Baseline

Duh [27] shows that Ranking Support Vector Machine
(RSVM) [28] performs better than regression with respect
to eliciting human judgement in evaluating machine
translation systems. Next, we explain how we apply
RSVM to derive a risk assessment baseline for assessing
mobile applications.

We assume that a set of ranking functions f ∈ F exists
and satisfies the following:

~xi ≺ ~xj ⇐⇒ f(~xi) < f(~xj), (1)

where ≺ denotes a preferential relationship of risks.
In the simplest form of RSVM, we assume that f is a

linear function:
f~w(~x) = 〈~w, ~x〉, (2)

where ~w is a weight vector, and 〈·, ·〉 denotes inner
product.

Combing (1) and (2), we have the following:

~xi ≺ ~xj ⇐⇒ 〈~w, ~xi − ~xj〉 < 0, (3)

Note that ~xi − ~xj is a new vector that expresses the
relation ~xi ≺ ~xj between ~xi and ~xj . Given the training
set T , we create a new training set T ′ by assigning either
a positive label z = +1 or a negative label z = −1 to each
pair (~xi, ~xj).

(~xi, ~xj) : zi,j =

{

+1 if ri > rj
−1 if ri < rj

∀(~xi, ri), (~xj , rj) ∈ T

(4)

To select a ranking function f that fits the training set
T ′, we construct the SVM model to solve the following
quadratic optimization problem:

minimize
~w

1

2
~w · ~w + C

∑

ξi,j

subject to ∀(~xi, ~xj) ∈ T ′ : zi,j〈~w, ~xi − ~xj〉 ≥ 1− ξi,j

∀i∀j : ξi,j > 0
(5)

Denoting ~w∗ as the weight vector generated by solving
(5), we define the risk scoring function f~w∗ , for assigning

risk scores to the feature vectors (i.e., vectorized Binder
transactions):

f~w∗(~x) = 〈~w∗, ~x〉 (6)

For any ~x ∈ X , the risk scoring function measures
its projection onto ~w∗, or the distance to a hyperplane
whose normal vector is ~w∗. Thus, the hyperplane is
indeed the risk assessment baseline.

3.3 Risk Meter

Risk meter measures the risks incurred by each installed
application, including a user’s trusted application as
well. Note that (6) gives a signed distance. In (7) we use
the absolute value to represent the deviation and risk,
because the sign simply indicates whether ~x is on one
side of the RSVM’s margin or the opposite. The risks
incurred by an application ai are the cumulative risks of
its Binder transactions:

∑

|f~w∗(~x)|,where ~x is generated by ai. (7)

Another goal of the risk meter is to provide supporting
evidences to end-users. To this end, it presents the
measured risks at 3 levels of granularities.

Application: In the simplest form, the risk meter
presents a ranking of installed applications by their risks
as a bar chart. The X axis indicates the applications
and the Y axis indicates the risks. A user can trust an
application if it is less risky than her trusted ones. In
contrast, an application that is significantly risky can also
draw a user’s attention.

Permission group: The ranking of applications may
seem unconvincing sometimes for users. In such a case,
the risk meter can provide risk composition by per-
mission groups that is represented as a pie chart. The
pie chart intuitively reveals the proportion of the risks
incurred by the core functionalities of an application. As
users have basic knowledge of permission groups when
they specify security requirements, they should be able
to interpret the risk composition correctly.

Permission: Considering a user’s limited comprehen-
sion of permissions, we do not present general users
with the evidences that are more fine-grained than
permission groups. Evidences presented at this level
are intended for experienced users who would like to
tune up their security requirements. Particularly, our
automated risk mitigation mechanism (Section 4) also
utilizes these evidences for permission revocation.

Moreover, RISKMON allows a user to establish and re-
vise her security requirements iteratively. RISKMON may
generate biased or unconvincing evidences as a user may
not have clear and accurate security requirements at the
very beginning of using RISKMON. Thus, a user can pro-
vide her feedback by adjusting her security requirements
and/or adding more trusted applications. RISKMON also
periodically updates the security assessment baseline for
observed new runtime behaviors. All of these enable
RISKMON to approximate an optimum risk assessment
baseline to help users make better decisions.

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

7

4 AUTOMATED RISK MITIGATION

Based on the proposed risk assessment framework, we
move one step further to address risk mitigation. Specif-
ically, we propose an automated decision process that
assists users to conveniently identify and revoke risky
permissions from installed applications.

A typical permission framework, just like common
access control systems, involves decision processes that
grant and revoke permissions. While permission grant-
ing has been widely adopted in modern mobile plat-
forms, permission revocation has not received a com-
mensurate popularity. For example, iOS users could not
deny accesses to their personal information until iOS 6.
Google introduced App Ops as an experimental privacy
control framework in Android 4.3, but later disabled its
management interface in Android 4.4.2 [29].

Permission revocation is necessary because it enables
complete and flexible control over granted capabilities.
To this end, recent work has proposed enhanced mid-
dleware mandatory access control (MMAC) frameworks
to support rule-driven permission revocation on An-
droid [30]–[34]. An obvious limitation of such frame-
works lies in the definition and maintenance of the
rules [35], which place non-negligible burden on general
users. To say the least, it remains an open question
whether users can accurately cherry-pick the risky per-
missions that should indeed be revoked.

Intuitively, RISKMON could provide the necessary
evidences to support a permission revocation decision
process. However, Android by default only allows users
to mitigate unnecessary risks is removing risky appli-
cations. Such an arbitrary approach may disrupt user
experiences. For example, grey applications (e.g., ad-
supported games) are likely to request excessive permis-
sions for harvesting user information. Revoking all the
granted permissions (i.e., removing application) seems
unnecessary because some permissions are not major
sources of risks and they may support functionalities
that a user needs. Our goal is to selectively revoke
risky permissions and mitigate future risks to a user’s
expected level. Therefore, those grey applications might
still retain necessary functionalities and users could stay
protected from privacy-infringing code.

We identify three key challenges in bridging the gap
between risk assessment and risk mitigation: (1) se-
lecting reference applications; (2) estimating risk bud-
gets; and (3) enforcing decisions with minimal user
intervention. Reference applications implicitly provide a
user’s expected runtime behaviors and upper bounds of
acceptable risks. Risk budgets quantitatively determine
decision thresholds that line up with the user’s risk
mitigation strategies. Moreover, we need to minimize
user intervention in decision enforcement, because gen-
eral users would be incapable and reluctant to create
and manage security policies. We next describe how we
address these challenges.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Game

Shopping

Finance

News

Books

Productivity

Social

Media

Communication

Entertainment

Music

Tools

Travel

R = 0.652

r = R / 2

Fig. 4. An Example of Selecting Reference Applications

from Close Categories

4.1 Selecting Reference Applications

As we previously assumed, a user’s trusted applications
define her expected appropriate behaviors for similar
applications. To select a set of reference applications for
a target application, we prefer trusted applications that
are under the same or close categories because their core
functionalities tend to be similar. Therefore, we assign
coordinates to all the installed applications according to
their categories in the category SOM. Then, we select the
reference applications by computing a set of k-nearest
trusted applications based on their Euclidean distances.

The best choice of k depends on the category SOM and
the number of the trusted applications. Here we adopt
a conservative approach to avoid over-generalization
that could lead to over-estimation of risk budgets. First,
we start from k ≤ ⌊log2|AT |⌋. Meanwhile, we need
to filter this set by removing applications that are not
close enough to the target application. To quantitatively
define “close”, we compute the smallest enclosing circle
of the category SOM and its radius R, and choose
R/2 as the threshold of close categories. In summary,
a target application a’s reference application set ARa is
the intersection of the following sets:

1) ⌊log2|AT |⌋-nearest trusted applications; and
2) the trust applications whose Euclidean distance

from a is no larger than r, where r = R/2.

Figure 4 demonstrates an example of selecting reference
applications for a social application. The result is no
more than ⌊log2|AT |⌋ applications under the “Social”,
“Communication”, and/or “Entertainment” categories.

Automated risk mitigation is also limited by the same
problem of insufficient trusted applications as automated
risk assessment. ARa could be empty because AT does
not cover sufficient categories. In such a case, reselecting
reference applications is scheduled after a user adds
trusted applications and improves coverage.

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

8

4.2 Estimating Risk Budgets

Risk budgets define decision thresholds used in our
automated decision process. Our goal is to derive a risk
budget for each permission of a target application from
its reference applications.

We next formalize the problem of estimating risk
budgets for a target application a as follows:

• P = {p1, p2, · · · , pn} is a set of permissions available
in a mobile operating system;

• UsedP : A → 2P is a function that maps an
application to a set of permissions whose usage
patterns have been observed by RISKMON;

• PAR : P ×A→ R is a function that maps a granted
permission of an application to its measured risk
score; and

• BIa =
⋃

ta∈ARa
UsedP (ta) is a set of permissions

that are the budget items for an application a.

We then introduce the following budget estimation
functions to support different risk mitigation strategies,
where p ∈ UsedP (a), a ∈ A, a /∈ AT , ARa ⊂ AT :

Stricta(p) =

{

min
ta∈ARa

PAR(p, ta) if p ∈ BIa

0 if p /∈ BIa

Averagea(p) =

{

avg
ta∈ARa

PAR(p, ta) if p ∈ BIa

0 if p /∈ BIa

Relaxeda(p) =

max
ta∈ARa

PAR(p, ta) if p ∈ BIa

avg
ta∈AT

PAR(p, ta) if p /∈ BIa

(8)

The strict function prefers the most privacy-
preserving practices of the reference applications. The
average function attempts to reduce the risks below
the average practices. For the permissions not among
the budget items, the strict and average functions
both opt for a zero tolerance strategy. In contrast, the
relaxed function allows such permissions but their
incurred risks should not exceed the average of all the
trusted applications.

4.3 Generating and Enforcing Decisions

To generate a decision for a permission p of an appli-
cation a, we compute its cumulative risks as Riska(p)
and apply a user-specified budget estimation function,
for example:

Decision(a, p) =

{

Keep if Riska(p) ≤ Stricta(p)
Revoke if Riska(p) > Stricta(p)

(9)
Note that an important criterion of our decision process
is revoking by observed behaviors 3.

Managing security policies for complex information
systems has been a challenging task. It is even harder
for dynamic systems such as the Android middleware,

3. Intuitively, dormant permissions do not incur any risks so we
choose not to revoke them because we have no observed evidence to
prove that such permissions will be abused.

whose security policies have to confine various applica-
tions that rapidly update themselves. Enforcing security
decisions for such systems would be unrealistic for
general users because it consumes much user attention
and leads to habituation [36]. This partially implies why
Android community has been careful with integrating
user-oriented and generic permission revocation [29].

We introduce automated policy generation to address
this challenge. Specifically, automated permission revo-
cation and policy generation are activated after (1) a
user installs or updates a new application; (2) a user
updates her risk assessment baseline; or (3) a pre-defined
time period. Note that we do not attempt to implement
our own policy enforcement mechanisms. Instead, our
framework could be easily adapted to support new
middleware MAC frameworks with an intuitive policy
translation module.

5 IMPLEMENTATION AND EVALUATION

In this section we first discuss a proof-of-concept imple-
mentation of RISKMON. Then, we present the results of
our online user study followed by the case studies of
automated risk assessment and mitigation. We conclude
our evaluation with the usability and performance.

5.1 Implementation and Experimental Setup

We implemented a proof-of-concept prototype of RISK-
MON on the Android mobile platform. In terms of con-
tinuous monitoring, we implemented a reference moni-
tor for Binder IPC by inserting hooks inside the Binder
userspace library. The hooks tap into Binder transactions
and log the parcels along with senders’ and recipients’
UIDs4. In addition, we implemented automated risk
assessment based on SVMLight5 and its built-in Gaus-
sian radial basis function kernel. To tune the SVM for
better performance, we used a grid-search to test an
exponential sequence of C = 10−5, 10−4, . . . , 105, where
C is the penalty parameter. The other parameters kept
their default values as provided by SVMLight.

We conducted a user study of 33 participants to
evaluate the practicality and usability of RISKMON. We
hand-picked 10 applications (Table 1) that were most
downloaded from Google Play in their respective cat-
egories. We assumed that all the participants trust them.
Then we used participants’ security requirements for
the 10 applications and their application intelligence
to generate the baselines. We also randomly selected 4
target applications from the Top Charts of Google Play
to calculate their risks based on the generated baselines,
including: a) CNN App for Android Phones (abbrevi-
ated as CNN); b) MXPlayer; c) Pandora Internet Radio
(abbreviated as Pandora); and d) Walmart. For both
trusted (10) and target (4) applications, we collected their
one-day runtime behaviors on a Samsung Galaxy Nexus

4. Ad libraries are assessed separately in case of ADSplit [37].
5. http://svmlight.joachims.org/

http://svmlight.joachims.org/

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

9

TABLE 1

Applications Assumed to be Trusted by the Participants

in the User Study

Application Category
AmazonMobile Shopping
BejeweledBlitz Game
ChaseMobile Finance
Dictionary.com Books & Reference
Dropbox Productivity
Google+ Social
GooglePlayMovies&TV Media & Video
Hangouts(replacesTalk) Communication
MoviesbyFlixster Entertainment
Yelp Travel & Local

TABLE 2

Demographics of the Participants

Category # of users

Gender
Male 29 (87.9%)

Female 4 (12.1%)

Age
18-24 15 (45.5%)
25-34 16 (48.5%)
35-54 2 (6.1%)

Education

Graduated high school or equivalent 3 (9.1%)
Some college, no degree 6 (18.2%)

Associate degree 1 (3.0%)
Bachelor’s degree 11 (33.3%)

Post-graduate degree 12 (36.4%)

phone. In addition, we developed a web-based system 6

that acquires a participant’s security requirements, feeds
them to RISKMON and presents the results calculated
by RISKMON to the participant. A participant was first
presented with a tutorial page that explains how to
specify relevancy levels as her security requirements.
Then she was required to set relevance levels for each
permission group requested by each trusted application
after reading the application’s descriptions on Google
Play. Afterwards, RISKMON generated a risk assessment
baseline for the participant based on her inputs and
runtime behaviors of the 10 trusted applications. Then
RISKMON applied the baseline on each of the 14 ap-
plications, and displayed a bar chart that illustrates a
ranking of 14 applications by their measured cumulative
risks. Finally, an exit survey was presented to collect the
participant’s perceived usability of RISKMON. Our study
protocol was reviewed by our institution’s IRB. And we
recruited participants through university mailing lists
and Amazon MTurk. Table 2 lists the demographics of
the 33 participants.

5.2 Empirical Results

5.2.1 Security Requirements

From our user study on the applications shown in
Table 1, we highlight the results of Chase Mobile and

6. Screenshots are available at http://goo.gl/xIuYp1

(a) Chase Mobile

(b) Dropbox

Fig. 5. Average Relevancy Levels Specified by the Partic-

ipants for Chase Mobile and Dropbox

Dropbox because they both request some ambiguous
permission groups that are hard to justify for users.
Figure 5 demonstrates the average relevancy levels set
by the participants for each permission group requested
by Chase Mobile and Dropbox. The error bars indicate
the standard deviation.

Chase Mobile is a banking application with function-
alities like depositing a check by taking a picture and
locating nearest branches. Apparently NETWORK is more
relevant than others as participants agree that Chase Mo-
bile needs to access the Internet. Even though Chase Mo-
bile uses LOCATION to find nearby bank branches and
CAMERA to deposit checks, both LOCATION and CAMERA

have lower relevancy levels than NETWORK. We believe it
is because some participants do not have the experiences
of using such functionalities, but the averages are still
higher than neutral. Furthermore, SOCIAL_INFO falls
below “neutral”, showing participants’ concerns of why
Chase Mobile uses such information.

Dropbox is an online file storage and synchronization
service. From its results, we identified an interesting
permission group, APP_INFO, whose description in An-
droid’s official document is: group of permissions that
are related to the other applications installed on the system.
This authoritative description does not provide any cue
of negative impacts, which leads to user confusion as
we can see that APP_INFO has the largest standard
deviation. STORAGE, SYNC_SETTINGS and ACCOUNTS

are all above “probably relevant” possibly due to their
self-descriptive names that are semantically close to
Dropbox’s core functionalities.

http://goo.gl/xIuYp1

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

10

Moreover, we noticed that the participants tend to set
higher relevancy levels for self-descriptive permission
groups, while they tend to be conservative for other
permission groups. We note that this does not affect
RISKMON in acquiring a user’s security requirements,
because RISKMON captures the precedence of one per-
mission group over another. Thus, the least relevant
permission group always gets the highest risk scores.

5.2.2 Application Risk Ranking

Figure 6 illustrates the ranking of 14 applications by their
average cumulative risk scores as measured by 33 risk
assessment baselines generated for the participants. We
can see that MXPlayer (2.55) and Walmart (12.72) fall
within the trusted applications, while CNN (54.15) and
Pandora (69.22) are ranked with the highest risk scores.

Note that both Pandora and CNN are renowned ap-
plications developed by experienced developers. Seem-
ingly, they should use sensitive information appropri-
ately. Hence, we verified them by manually dissecting
their captured Binder transactions. We found that they
kept polling ConnectivityManager for a fine-grained
state of the current network connection, which generated
hundreds of Binder transactions albeit each transaction
was not very risky. This is an unexpected practice with
respect to privacy and performance, because the of-
ficial Android documents7 suggest developers register
CONNECTIVITY_CHANGE broadcasts to get connectivity
updates instead of polling. On the contrary, Hangouts
incurred almost imperceptible amount of risks, although
it has similar requirements for connectivity. Therefore,
RISKMON showed that even popular applications might
use sensitive information in a way that incurs potential
risks for users.

5.3 Case Studies

Note that there is no ground truth of users’ expected
appropriate behaviors. Therefore, we opt for several
case studies to evaluate the effectiveness of our ap-
proaches. We handpicked two applications, SogouInput
and PPS.TV, because they both request one or more
sensitive and excessive permissions. We also reused the
target applications that were previously selected for the
user study. To assess these 6 applications, we specified
the relevancy levels for the 10 trusted applications and
generated a risk assessment baseline. We verified their
identified risk composition with manual analysis. Fi-
nally, we applied automated permission revocation to
identify and mitigate their unnecessary risks. Table 3
and Table 4 demonstrate the results of automated risk
assessment and mitigation, respectively.

5.3.1 Automated Risk Assessment

SogouInput is an input method based on the pinyin
method of romanization, and PPS.TV is a video stream-
ing application similar to its counterparts such as Hulu

7. http://developer.android.com/training/monitoring-device-
state/connectivity-monitoring.html

and Netflix. Both of them are feature-rich, free and
have accumulated over 5,000,000 installs on Google Play.
We note that PPS.TV and SogouInput request 22 and
29 permissions, respectively. The numbers of requested
permissions make them suspicious over-privileged or
privacy-infringing applications.

The measured cumulative risk scores are 179.0 for
SogouInput and 366.9 for PPS.TV. First, the unusually
large portion of PHONE_CALLS indicates substantial use
of capabilities related to making phone calls and reading
unique identifiers. We verified the corresponding Binder
transactions and revealed that it attempted to read a
user’s subscriber ID and device ID. Second and more no-
tably, SOCIAL_INFO contributed 4.02% of the total risks
incurred by SogouInput. We verified the corresponding
Binder transactions and found that SogouInput accessed
content://com.android.contacts and received a
parcel of 384 bytes. Usually an Android application
queries the contact application and receives only the
entries a user picks, which is several bytes long. On
the contrary, SogouInput attempted to dump the whole
contact repository. Similar to SogouInput, PPS.TV uti-
lized permissions related to PHONE_CALL. In addition
to reading a user’s device ID and subscriber ID, it also
registered a callback to receive events of call states.
We note that this allows PPS.TV to read the number
of incoming calls. To verify which trusted applications
were mostly used in assessing the appropriateness of the
behaviors of SogouInput and PPS.TV, we performed an
exhaustive leave-p-out cross validation on the 10 trusted
applications. The results showed that Google+, Movies-
byFlixter, and Dropbox contributed most in assessing
SogouInput. And Google+, Dictionary.com contributed
most for PPS.TV.

As for the four target applications, three of them
used the APIs related to NETWORK and LOCATION. The
considerable risks of NETWORK incurred by Pandora and
CNN were due to polling ConnectivityManager as we
have discussed in Section 5.2.2. Meanwhile, CNN and
Walmart both continuously tracked a user’s location
through APIs related to LOCATION. MXPlayer could be
deemed as safe due to its low cumulative risks as well as
reasonable risk composition. Moreover, the major source
of risks could imply whether an application abuses a
user’s information. For example, LOCATION contributed
a majority of Walmart’s total risks, which simply does
not make sense for a shopping application.

5.3.2 Automated Risk Mitigation

Based on the measured risks of the 6 applications, we
further applied our automated risk mitigation approach.
In particular, we used Figure 2 to guide our selection
of reference applications out of 10 trusted applications.
Therefore, r = R/2 = 0.326 as shown in Figure 4 and k
was no more than 3. Afterwards, we chose the average
budget estimation function to reduce the incurred risks
of the applications that are below the average level of
their respective reference applications. Table 4 shows the

http://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html
http://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

11

Fig. 6. Average Cumulative Risk Scores Measured by the Participants’ Risk Assessment Baselines

revoked permissions and risk reduction of the assessed
applications. In this table, we have denoted the specific
reason for each revoked permission. “(O)” indicates
that the revoked permission was used by one or more
reference applications but exceeded the threshold set
by the budget estimation function. “(N)” means that
the permission was not used by any of the reference
applications. Such permissions were also revoked in
our case studies due to the average function’s zero
tolerance strategy.

The revoked permissions are lined up with the results
as shown in Table 3. In particular, READ_CONTACTS and
VIBRATE were revoked from SogouInput because they
were used but not among the risk budget items. In
contrast, none of permissions related to LOCATION was
revoked, implying that SogouInput used LOCATION in a
reasonable and conservative manner. 4 out of 5 revoked
permissions of PPS.TV were mitigated due to over-
budget, demonstrating its notable tendency of abusing
a user’s information. Overall, these applications were
confined to behave like their respective reference trusted
applications.

We enforced the generated decisions through Ap-
pOps, and the revoked permissions did not break the
core functionalities. However, we can not guarantee
that permission revocation does not significantly impair
an application’s usability, for two reasons. First, our
framework does not directly enforce decisions. Graceful
enforcement of decisions by access control frameworks
is still an open question that is beyond the scope of
this paper. Second, risky permissions are not always
excessive. Obviously, core functionalities would break if
their abused permissions are revoked.

The results of the case studies leave room for fur-
ther analysis. How come an input method and a
video streaming application need capabilities related
to PHONE_CALLS, LOCATION and SOCIAL_INFO? Why
does Walmart need to continuously access users’ lo-
cation? Possibly users could get personalized services
through disclosing private information. However, it
comes with a price. RISKMON is a necessary step to-
wards highlighting and mitigating the excessive risks.

TABLE 3

Risk Composition of Applications in Case Studies

Application Permission Group Risk Score

SogouInput

LOCATION 5.6 (3.13%)
NETWORK 104.4 (58.29%)
PHONE_CALLS 61.8 (34.56%)
SOCIAL_INFO 7.2 (4.02%)
Total: 179.0 (100%)

PPS.TV

LOCATION 26.0 (7.09%)
NETWORK 108.3 (29.52%)
PHONE_CALLS 232.6 (63.40%)
Total: 366.9 (100%)

Pandora

AFFECTS_BATTERY 0.27 (0.21%)
NETWORK 131.6 (99.49%)
PHONE_CALLS 0.4 (0.30%)
Total: 132.3 (100%)

CNN
LOCATION 26.7 (20.75%)
NETWORK 101.8 (79.25%)
Total: 128.5 (100%)

Walmart
LOCATION 40.8 (72.05%)
NETWORK 15.8 (27.95%)
Total: 56.6 (100%)

MXPlayer
NETWORK 5.3 (100.00%)
Total: 5.3 (100%)

TABLE 4

Revoked Permissions of Applications in Case Studies

Application
Revoked Permissions Risk
(O): Over budget Reduction
(N): Not in budget

SogouInput

ACCESS_NETWORK_STATE (O)

169.5 (94.7%)
READ_PHONE_STATE (O)
READ_CONTACTS (N)
VIBRATE (N)

PPS.TV

ACCESS_LOCATION (O)

367.0 (99.8%)
ACCESS_NETWORK_STATE (O)
ACCESS_WIFI_STATE (O)
CHANGE_WIFI_STATE (N)
READ_PHONE_STATE (O)

Pandora ACCESS_NETWORK_STATE (O) 130.3 (98.5%)

CNN
ACCESS_LOCATION (N)

128.5 (100.0%)ACCESS_NETWORK_STATE (O)
WAKE_LOCK (N)

Walmart
ACCESS_LOCATION (O)

56.6 (100.0%)
ACCESS_NETWORK_STATE (O)

MXPlayer 0.0 (0.0%)

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

12

TABLE 5

Usability Evaluation Results

Metric Average Lower bound on 95%
confidence interval

Likeability 0.811 0.797
Simplicity 0.674 0.645
Risk perception 0.758 0.751

TABLE 6

Microbenchmark Results

Benchmark Average (s) Standard
Deviation (s)

Feature extraction 8.27 0.07
Baseline generation (10 apps) 289.56 235.88
Risk measurement (per app) 0.55 0.17

5.4 System Usability

The criteria for usability were split into three areas:
likeability, simplicity and risk perception. Likeability is a
measure of a user’s basic opinion towards automated
risk assessment. This identifies whether users would
like to accept the proposed mechanism. Simplicity is a
measure of how intuitive the concepts and procedures
are, which is useful in evaluating the burden placed on
users. Risk perception is a measure of a user’s perceived
awareness of risks through risk assessment, which eval-
uates how users interpret the presented risk.

After using RISKMON, an exit survey was presented
to collect users’ perceived usability of RISKMON. In the
survey, we asked users a set of questions on likeability,
simplicity, and risk perception. Questions were measured
with a five-point Likert scale. A higher score indicates
a positive opinion or agreement and vice versa. Then
scores were adjusted to [0,1] for numerical analysis.

We analyzed a 95% confidence interval for users’
answers. Specifically, we are interested in determining
the average user’s minimum positive opinions. Hence,
we looked at the lower bound of the confidence interval.
Table 5 shows that an average user asserts 79.7% posi-
tively on likeability, 64.5% on simplicity and 75.1% on
risk perception. The results show usability of RISKMON

with the above-average feedback.

5.5 System Overhead

To understand the performance overhead of RISKMON,
we performed several microbenchmarks. The experi-
ments were performed on a Samsung Galaxy Nexus
phone with a 1.2GHz dual-core ARM CPU. The phone
ran Android v4.2.2 and RISKMON built on the same
version. Table 6 shows the average results.

Feature extraction: The application intelligence aggre-
gator extracted feature vectors from 33,368,458 Binder
IPC transactions generated by 14 applications in one day.
We measured the CPU-time used by parsing the trans-
actions and generating the feature vectors. The average
time is 8.27 seconds, which is acceptable on a resource-
constrained mobile device.

Baseline generation: We ran baseline generation based
on the input acquired in the online user study. The
processing time varies for different participants, while
the average time is approximately 289.56 seconds due to
the computation complexity of the radial basis function
kernel of SVMLight.

Risk measurement: Applying the risk assessment
baseline is much faster than baseline generation. We
measured the time taken to apply a risk assessment base-
line on 14 applications. The average time per application
is 0.55 seconds, which is imperceptible and demonstrates
the feasibility of repeated risk assessment.

Finally, we anecdotally observed that it took 5-10
minutes for the participants to set relevancy levels for
10 applications. This usability overhead is acceptable
compared to the lifetime of a risk assessment baseline.

6 DISCUSSION

To capture actual risks incurred by applications used
by a user, RISKMON fundamentally requires running
them on the user’s device. We note that 48.5% of the
respondents in our user study claimed that they often
test drive applications on their devices. However, RISK-
MON itself does not detect or prevent sensitive data from
leaving users’ devices. We would recommend users use
on-device isolation mechanisms (e.g., Samsung KNOX).

RISKMON requires users to specify security require-
ments through permission groups. However, some per-
mission groups are ambiguous (e.g., APP_INFO). Al-
though we identify permission groups as an appropriate
trade-off between granularity and usability, we admit
that permission groups are still a partial artifact in
representing sensitive resources. As our future work,
we plan to weight the measured risks of each Binder
transaction with protection levels of permissions. These
levels, which pre-classify permissions and Binder trans-
actions, can be considered as a subsidiary source of
user’s security requirements. We also found that several
less sensitive permissions indeed need adjustment to
avoid over-estimation. Moreover, generating a risk as-
sessment baseline is a compute-intensive task that does
not fit resource-constrained mobile devices. Thus, we
plan to offload such a task to trusted third-parties or
users’ public or private clouds in the future.

Regarding our current implementation of RISKMON,
it purposely monitors Binder IPC transactions that are
(1) between applications and system services; and (2) be-
tween applications and system applications (e.g., Con-
tacts). With that said, RISKMON may discard accesses
on assets owned by third-party applications. Meanwhile,
custom permissions defined by third-party applications
are also beyond the scope of RISKMON. Furthermore,
RISKMON identifies Binder transactions with UIDs and
thus may not assess the risks incurred by a certain
component (e.g., content provider) of an application. For
our future work, we will extend the Android Activity-
ManagerService and PackageManagerService to address
these limitations.

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

13

7 RELATED WORK

Our previous work [1] mainly dealt with risk assess-
ment of mobile applications. The proposed approach
helped reveal high-risk applications. However, it did
not consider practical methods to mitigate the identified
risks. Since the core functionalities of applications might
not be major root causes of risks (e.g., ad-supported
games), risk mitigation through removing applications
may disrupt user experiences. Instead, it is necessary to
seek a novel approach for mitigating risks systematically.
In this paper, we extend our previous work to address
such a gap by connecting two important steps in RISK-
MON: risk assessment and risk mitigation. As we have
discussed in Section 4, we introduce new mechanisms to
automatically select and revoke risky permissions from
installed mobile applications, along with newly designed
case studies for both steps.

In addition, there exist several related work to the
proposed approach in this paper:

Analysis of meta information. Meta information
available on application markets provides general de-
scriptions of applications. Recent work has proposed
techniques to distill risk signals from them. Sarma et
al. [9] propose to analyze permissions alongside with
application categories in two large application datasets.
Peng et al. [10] use probabilistic generative models to
generate risk scoring schemes that assign comparative
risk scores on applications based on their requested
permissions. In addition to analysis on permissions, Chia
et al. [12] and Chen et al. [13] perform large-scale stud-
ies on application popularity, user ratings and external
community ratings. However, meta information does not
accurately describe the actual behaviors of applications.
RISKMON uses meta information to provide operational
contexts to complement the analysis on the runtime
behaviors for risk assessment.

Static and dynamic analysis. Analysis on execu-
tion semantics of applications, such as static analysis
of code and dynamic analysis of runtime behaviors,
can reveal how applications use sensitive information.
CHABADA [38] compares an application’s static API
usage against its description on application markets to
detect API “outliers”. TouchDevelop [39] statically iden-
tifies leaked or tampered information flows to suggest
privacy settings for end users. However, malware with
dynamic external code loading [40] could easily evade
static analysis, rendering all existing static assessment
mechanisms ineffective. Regarding dynamic analysis,
TaintDroid [4] uses dynamic information flow tracking
to detect at most 32 types of flows that are leaked to the
network. DroidRanger [15] and RiskRanker [16] combine
both static and dynamic analysis to detect anomalies.
Compared to RISKMON, these work do not provide a
baseline that captures diverse operational contexts as
well as a user’s expectation. Moreover, RISKMON mon-
itors every permission-protected API and thus provides
better coverage.

Mandatory access control frameworks. RISKMON

includes a lightweight reference monitor for Binder IPC.
While it monitors IPC transactions for risk assessment,
several frameworks mediate IPC channels as part of
their approaches to support enhanced mandatory access
control (MAC). SEAndroid [33] brings SELinux kernel-
level MAC to Android. It adds new hooks in the Binder
device driver to address Binder IPC. FlaskDroid [34]
provides flexible MAC on multiple layers, which is
tailored the peculiarity of the Android system. Along
these lines, RISKMON captures Binder transactions with
a fine-grained scheme to facilitate risk assessment on
applications’ runtime behaviors.

8 CONCLUSION

In this paper, we have presented RISKMON that con-
tinuously and automatically measures risks incurred by
a user’s installed applications. RISKMON has leveraged
machine-learned ranking to generate a risk assessment
baseline from a user’s coarse expectations and run-
time behaviors of her trusted applications. Furthermore,
we have proposed an automated decision process that
utilizes RISKMON to support granular permission re-
vocation. Also, we have described a proof-of-concept
implementation of RISKMON, along with the extensive
evaluation results of our approach.

REFERENCES

[1] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu, “Riskmon: Continuous and
automated risk assessment of mobile applications,” in Proceedings
of the 4th ACM Conference on Data and Application Security and
Privacy. ACM, 2014.

[2] M. Panzarino, “Google announces 900 million android activa-
tions, 48 billion apps downloaded,” 2013.

[3] A. Robertson, “Apple passes 50 billion app store downloads,”
2013.

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones.” in OSDI, vol. 10,
2010, pp. 255–270.

[5] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall,
“These aren’t the droids you’re looking for: retrofitting android
to protect data from imperious applications,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 639–652.

[6] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing
the os and dalvik semantic views for dynamic android malware
analysis,” in Proceedings of the 21st USENIX Security Symposium,
2012.

[7] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic
security analysis of smartphone applications,” in Proceedings of the
third ACM conference on Data and application security and privacy.
ACM, 2013, pp. 209–220.

[8] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 235–245.

[9] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Android permissions: a perspective combining risks
and benefits,” in Proceedings of the 17th ACM symposium on Access
Control Models and Technologies. ACM, 2012, pp. 13–22.

[10] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-
Rotaru, and I. Molloy, “Using probabilistic generative models for
ranking risks of android apps,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 241–252.

1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2366457, IEEE Transactions on Dependable and Secure Computing

14

[11] Y. Wang, J. Zheng, C. Sun, and S. Mukkamala, “Quantitative se-
curity risk assessment of android permissions and applications,”
in Data and Applications Security and Privacy XXVII. Springer,
2013, pp. 226–241.

[12] P. H. Chia, Y. Yamamoto, and N. Asokan, “Is this app safe?: a
large scale study on application permissions and risk signals,” in
Proceedings of the 21st international conference on World Wide Web.
ACM, 2012, pp. 311–320.

[13] Y. Chen, H. Xu, Y. Zhou, and S. Zhu, “Is this app safe for
children?: a comparison study of maturity ratings on android and
ios applications,” in Proceedings of the 22nd international conference
on World Wide Web. International World Wide Web Conferences
Steering Committee, 2013, pp. 201–212.

[14] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper:
Towards automating risk assessment of mobile applications,” in
Proceedings of the 22nd USENIX conference on Security symposium.
USENIX Association, 2013.

[15] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: Detecting malicious apps in official and alternative
android markets,” in Proceedings of the 19th Annual Network and
Distributed System Security Symposium, 2012.

[16] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day android malware detection,” in
Proceedings of the 10th international conference on Mobile systems,
applications, and services. ACM, 2012, pp. 281–294.

[17] G. Stoneburner, A. Goguen, and A. Feringa, “Risk management
guide for information technology systems,” Nist special publication,
vol. 800, no. 30, pp. 800–30, 2002.

[18] C. Alberts, A. Dorofee, J. Stevens, and C. Woody, “Introduction
to the octave approach,” Pittsburgh, PA, CMU, 2003.

[19] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012
ACM conference on Computer and communications security. ACM,
2012, pp. 217–228.

[20] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 627–638.

[21] D. M. Wilkinson, “Strong regularities in online peer production,”
in Proceedings of the 9th ACM conference on Electronic commerce.
ACM, 2008, pp. 302–309.

[22] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A
methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th
ACM conference on Computer and communications security. ACM,
2010, pp. 73–84.

[23] J. A. Krosnick and D. F. Alwin, “An evaluation of a cognitive
theory of response-order effects in survey measurement,” Public
Opinion Quarterly, vol. 51, no. 2, pp. 201–219, 1987.

[24] M. Rabin, “Risk aversion and expected-utility theory: A calibra-
tion theorem,” Econometrica, vol. 68, no. 5, pp. 1281–1292, 2000.

[25] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and be-
havior,” in Proceedings of the Eighth Symposium on Usable Privacy
and Security. ACM, 2012, p. 3.

[26] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user
confidence in smartphone security and privacy,” in Proceedings of
the Eighth Symposium on Usable Privacy and Security. ACM, 2012.

[27] K. Duh, “Ranking vs. regression in machine translation evalua-
tion,” in Proceedings of the Third Workshop on Statistical Machine
Translation. Association for Computational Linguistics, 2008, pp.
191–194.

[28] T. Joachims, “Optimizing search engines using clickthrough data,”
in Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2002, pp. 133–142.

[29] P. Eckersley, “Google removes vital privacy feature from android,
claiming its release was accidental,” 2013.

[30] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android
permission model and enforcement with user-defined runtime
constraints,” in Proceedings of the 5th ACM Symposium on Infor-
mation, Computer and Communications Security. ACM, 2010, pp.
328–332.

[31] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming
information-stealing smartphone applications (on android),” in
Trust and Trustworthy Computing. Springer, 2011, pp. 93–107.

[32] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on an-

droid,” in Proc. of the 19th Network and Distributed System Security
Symposium (NDSS 2012), San Diego, CA, 2012.

[33] S. Smalley and R. Craig, “Security enhanced (se) android: Bring-
ing flexible mac to android,” in Proc. of the 20th Network and
Distributed System Security Symposium (NDSS 2013), San Diego, CA,
2013.

[34] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on android for diverse security and
privacy policies,” in 22nd USENIX Security Symposium (USENIX
Security 2013). USENIX, 2013.

[35] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in Proceedings of the 20th USENIX
conference on Security. USENIX Association, 2011, pp. 21–21.

[36] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, D. Wagner et al.,
“How to ask for permission,” in Proc. USENIX Workshop on Hot
Topics in Security, 2012.

[37] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating
smartphone advertising from applications.” in USENIX Security
Symposium, 2012, pp. 553–567.

[38] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions.” in ICSE, 2014, pp. 1025–1035.

[39] X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and M. Moskal,
“User-aware privacy control via extended static-information-flow
analysis,” in Proceedings of the 27th IEEE/ACM International Con-
ference on Automated Software Engineering. ACM, 2012, pp. 80–89.

[40] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! analyzing unsafe and malicious dynamic code
loading in android applications,” in Proceedings of the 21st NDSS,
2014.

Yiming Jing received the BS degree from
Shanghai Jiao Tong University, China, in 2010.
He is currently working toward the Ph.D. de-
gree in the School of Computing, Informatics,
and Decision Systems Engineering, Ira A. Fulton
School of Engineering, Arizona State University.
His current research interests include access
control models and mechanisms, security and
privacy in mobile computing, and secure soft-
ware engineering.

Gail-Joon Ahn is a Professor in the School of
Computing, Informatics, and Decision Systems
Engineering, Ira A. Fulton Schools of Engineer-
ing and the Director of Security Engineering
for Future Computing Laboratory, Arizona State
University. His research has been supported by
the U.S. National Science Foundation, National
Security Agency, U.S. Department of Defense,
U.S. Department of Energy, Bank of America,
Hewlett Packard, Microsoft, and Robert Wood
Johnson Foundation. Dr. Ahn is a recipient of the

U.S. Department of Energy CAREER Award and the Educator of the
Year Award from the Federal Information Systems Security Educators
Association. He received the Ph.D. degree in information technology
from George Mason University, Fairfax, VA, in 2000.

Ziming Zhao received the BE and MS de-
grees from the Beijing University of Posts and
Telecommunications, China, in 2006 and 2009,
respectively. He is currently working toward the
Ph.D. degree in the School of Computing, Infor-
matics, and Decision Systems Engineering, Ira
A. Fulton School of Engineering, Arizona State
University. His research interest include mali-
cious code analysis, web and browser security,
and wireless system security.

Hongxin Hu is an Assistant Professor in the
Division of Computer Science, School of Com-
puting, Clemson University. His current research
interests include access control models and
mechanisms, security and privacy in social net-
works, security in cloud and mobile computing,
network and system security, and secure soft-
ware engineering. He received the Ph.D. degree
in computer science from Arizona State Univer-
sity, Tempe, AZ, in 2012.

