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Abstract
Android applications are extremely popular, as they are widely used for banking, social media, e-commerce, etc. Such appli-
cations typically leverage a series of Permissions, which serve as a convenient abstraction for mediating access to security-
sensitive functionality within the Android Ecosystem, e.g., sending data over the Internet. However, several malicious 
applications have recently deployed attacks such as data leaks and spurious credit card charges by abusing the Permissions 
granted initially to them by unaware users in good faith. To alleviate this pressing concern, we present DyPolDroid, a 
dynamic and semi-automated security framework that builds upon Android Enterprise, a device-management framework 
for organizations, to allow for users and administrators to design and enforce so-called Counter-Policies, a convenient user-
friendly abstraction to restrict the sets of Permissions granted to potential malicious applications, thus effectively protecting 
against serious attacks without requiring advanced security and technical expertise. Additionally, as a part of our experimental 
procedures, we introduce Laverna, a fully operational application that uses permissions to provide benign functionality at 
the same time it also abuses them for malicious purposes. To fully support the reproducibility of our results, and to encourage 
future work, the source code of both DyPolDroid and Laverna is publicly available as open-source.
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1  Introduction

In recent years there has been an increase in the num-
ber of malicious applications in the Android Ecosystem 
(ZDNet, 2020) targeting users with a large variety of 
attacks, e.g., harvesting private data (The New York 
Times, 2020), making unwanted credit card charges 
(Wired, 2020), retrieving the location of users (Android 
Authority, 2020), etc. Whereas the root causes for such 
attacks have been largely explored in the literature (Shao 
et al., 2016), an increasing number of applications look 
to use and abuse the permissions granted legitimately 

by users to carry out attacks. These so-called Permis-
sion-Abusing Applications (PA-Apps) initially pose as 
benign and request users to grant a seemingly normal 
set of permissions to deliver some harmless functional-
ity, e.g., sorting out contact information. However, they 
later abuse the granted permissions to facilitate attacks, 
e.g., leaking the user’s contacts to a remote server via the 
Internet (Sunday Express, 2020; PC Magazine, 2020).

Also recently, Android Enterprise (AE) (Google, 
2021a) has emerged as a convenient framework for moni-
toring and configuring Android devices in a remote fash-
ion, e.g., automatically installing and uninstalling apps 
and services. These features allow for AE administrators, 
AE-Admins for short, to manage and enforce security 
policies protecting users and organizations from costly 
attacks, e.g., by automatically removing previously-known 
malicious apps from devices at once. In such a context, 
AE-Admins may also want to prevent the deployment of 
attacks carried out by PA-Apps that are unknown before-
hand, and may be downloaded and installed on devices 
by users at any moment of time. However, solving such a 
problem involves the following challenges:
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1.	 Detection. How to detect previously-unknown PA-Apps 
running on devices?

2.	 Prevention. How to efficiently prevent PA-Apps from 
carrying out attacks?.

3.	 Administration. How to help AE-Admins to deploy pro-
tections against PA-Apps to several different devices in 
an straightforward and efficient way?

4.	 Flexibility. How to keep protections against PA-Apps 
up-to-date with respect to changes in the configuration 
of devices, i.e., the installation of new apps?.

5.	 Adoption. How to protect users from PA-Apps without 
requiring security expertise and/or modifications to 
either devices, the OS, or PA-Apps?.

To address these challenges, this paper presents DyPol-
Droid (Dy namic Pol icies in Android), a dynamic, semi-
automated security framework for effectively detecting and 
neutralizing PA-Apps by means of the following:

1.	 Detection. DyPolDroid starts by identifying a series 
of Behavioral Patterns: pairs of Permissions that, if used 
in combination inside the code of a potential PA-App, 
may facilitate a successful attack, e.g., combining the 
Internet and Read-Contacts permissions to per-
form a data leak (Arora et al., 2020).

2.	 Prevention. Then, DyPolDroid allows for users and 
AE-Admins to easily write Counter-Policies restricting 
the occurrence of Behavioral Patterns within Android 
apps. Later, such Counter-Policies are evaluated and 
translated into Device Policies: lists of permissions that 
are allowed or denied for each potential PA-App, and are 
sent for enforcement on devices via the AE.

3.	 Administration. Also, DyPolDroid allows for AE-
Admins to easily con and deploy default security Coun-
ter and Device Policies restricting the permissions pat-
terns that may be abused by potential PA-Apps, thus 
effectively preventing them from carrying out attacks 
on AE-managed devices.

4.	 Flexibility. In addition, up-to-date information on 
the specific configuration of each device can be also 
retrieved by means of the AE, and later leveraged to 
create custom Counter-Policies that can not only account 
for previously-unknown, newly-installed PA-Apps, but 
may also enforce other relevant organizational policies, 
e.g., restricting gaming apps during office hours.

5.	 Adoption. Finally, DyPolDroid requires no manual, 
user-made configurations of devices, nor it requires 
modifications to the device OS, the supporting hard-
ware, nor modifications to the code of potential PA-
Apps, as required by other approaches in the literature 
(Vidas et al., 2011; Zachariah et al., 2017), which greatly 
increases its suitability and convenience for being suc-
cessfully deployed in practice.

Overall, this paper makes the following contributions:

1.	 We present a description of PA-Apps, including their 
relationship with other types of malicious apps for 
Android that have been studied in the literature.

2.	 We introduce DyPolDroid, which provides an effec-
tive solution for counter-acting PA-Apps at the same 
time it offers an convenient degree of automation that 
requires no advanced security expertise from either 
users or AE-Admins.

3.	 As a part of our experimental procedure, we also introduce 
Laverna, a fully operational PA-App, which uses per-
missions to provide benign functionality, e.g., send auto-
mated text messages to phone contacts, at the same time 
it also abuses them for malicious purposes, e.g., leaking 
the name and phone of all contacts to a remote server over 
the Internet.

4.	 Finally, to support the reproducibility of our experi-
mental results, and to encourage future work based on 
our reported findings, the source code of both DyPol-
Droid and Laverna are publicly available as open-
source (Hill & Rubio-Medrano, 2021).

This paper is organized as follows: Section 2 presents 
some background on the technologies later explored in the 
paper, and provides a concise definition of the problem that 
is then later addressed in Section 3. We provide a description 
of a preliminary procedure we have conducted to evaluate 
the effectiveness of DyPolDroid in Section 4. We review 
the related work in Section 5 and then discuss some future 
work and conclude the paper in Section 6. A preliminary 
version of this paper appeared in the Proceedings of the 
International Conference on Secure Knowledge in the Arti-
ficial Intelligence Era (SKM) 2021 (Rubio-Medrano et al., 
2020a), and as a poster abstract in the Proceedings of the 6th 
IEEE European Symposium on Security and Privacy 2021 
(Euro S&P 2021) conference (Rubio-Medrano et al., 2020b).

2 � Background and Problem Statement

2.1 � Android Permissions

In the Android Ecosystem, apps must request and obtain so-
called Permissions, which serve as convenient abstractions 
for mediating access to the resources of the host device, e.g., 
sending data over the Internet, turning the camera on and 
off, sending SMS texts and calls, etc. Android Permissions 
have been extensively studied in the literature, and have 
seen a number of changes over the years (Felt et al., 2011; 
Felt et al., 2012a; Ramachandran et al., 2017). Historically, 
there are two major recognizable eras: the all-or-nothing era, 
and the run-time era. Prior to Android 6.0, all permissions 
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requested by an app needed to be granted by users at instal-
lation time; users were presented with a list of permissions 
to accept or deny once the app have been downloaded but 
before installation could begin. If users would choose to 
deny the requested permissions, the installation of the app 
would fail. With the release of Android 6.0, the permis-
sion model was modified such that apps needed to request 
access to a permission the first time that they wanted to use 
it, which allowed for a more fine-grained approach in which 
users would accept or reject each permission individually 
(Google, 2021b). Finally, once a permission is granted to an 
app, it can be used repeatedly by the instructions of the app’s 
code to access the functionality guarded by it, e.g., using the 
Internet permission.

Android system permissions are divided into normal, 
signature and dangerous permissions (Android Develop-
ers Reference, 2022). Android apps declare the requested 
permissions in the apps Manifest.xml. Android by default 
allows normal permissions requested in the Manifest.xml, 
such as giving apps access to the internet. The inherent 
idea behind granting normal permissions implies that apps 
granted with normal permissions shouldn’t pose a privacy 
threat. Similarly, the signature permissions are granted by 
default, if the requesting application is signed with the same 
certificate as the application that declared the permission. 
Android provides 46 normal permissions and 49 signature 
permissions that can be used by an application.

On the other hand, the dangerous permissions require 
explicit permission approval from the device user. The dan-
gerous permissions include accessing sensitive informa-
tion like the device location, contacts, and more. Android 
provides 41 dangerous permissions that can be used by an 
application, which may open the door for attacks.

2.2 � Android Enterprise

Android Enterprise (AE) is a device management framework 
that allows for organizations to remotely monitor and con 
Android-run devices, e.g., automatically installing and unin-
stalling apps without extensive user intervention (Google, 
2021a). In addition, for security purposes, AE leverages the 
permission model described before to dynamically update, 
e.g., grant or deny, the permissions requested by individual 
apps, thus allowing for AE administrators to remotely allow 
or restrict the functionality of the apps installed on a man-
aged device at will. Devices can be remotely managed in 
two different modes: in the Fully-Managed mode, devices 
may have their configurations set remotely by an AE admin-
istrator, leaving little room for users to change the settings 
of the device. Alternatively, in the Bring-Your-Own-Device 
(BYOD) mode, devices may allow for two different profiles 
to be cond and co-exist inside a device: a work profile fully 
controlled by an AE as described before, and a user profile 

that can be left for users to con at will, e.g., downloading 
and installing apps at will.

In addition, leveraging the features provided by AE, 
administrators can also obtain real-time device configura-
tion data, which may allow them to dynamically send and 
install, a.k.a., push, customized, app-specific permissions 
on the device depending on the current configuration and 
any other related context information. This introduced a 
convenient approach for remote security management that 
removes the need of instrumenting the device itself, the 
device OS, the code of apps (APK files), or any other sup-
porting API, as required by previous approaches in the lit-
erature (Enck, 2020). However, this approach for remotely 
updating permissions may be in fact limited by the network 
bandwidth available to the device at a given moment of time, 
which may affect the deployment of immediately needed 
changes, e.g., denying permissions to a potentially malicious 
app that has been just detected by AE as installed in the 
managed device. Also, AE is currently available to devices 
running versions of Android greater than 5.0.*, and the 
BYOD mode discussed before is only available to versions 
of Android running an API level 23 to 29. For the purposes 
of this paper, we will assume the devices implementing our 
approach are managed by an existing AE, follow the Android 
version features just mentioned, and implement either the 
fully-managed mode or the BYOD mode with a work profile 
as discussed before.

2.3 � The Behavior of Android Applications

For the purposes of this paper, we define Application 
Behavior, or simply Behavior for short, as any functionality 
depicted by an app when executed. Examples include, but 
are not limited to: gaming, social networking, picture-taking, 
etc., Conversely, an Attack is a well-recognized and highly-
undesirable behavior, which may have a negative effect on 
the user and/or the device. Illustrative examples may include 
the violation of user privacy via leaking of user contacts, or 
a financial affectation via unwanted texts or calls.

Having said this, an app is said to be Benign if it strictly 
provides the behavior expected by the user, as stated either 
by means of a formal or informal documentations and/or 
descriptions, without causing any affectation to the user or 
the device. In contrast, a Malicious app attempts to sub-
vert the normal, intended use of the expected behavior in an 
attempt to cause an unwanted affectation either to the user or 
the device itself (Vidas et al., 2011; Zachariah et al., 2017). 
In addition, an Over-Privileged app requests more permis-
sions than the ones needed to provide its expected benign 
behavior, and can either neglect such extra permissions, thus 
staying as a benign app, or can actively use them in a mali-
cious way (Wei et al., 2012; Wang et al., 2015; Calciati & 
Gorla, 2017; Wu & Liu, 2019).
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Finally, a Permission-Abusing app (PA-App) is a seem-
ingly benign app that is also secretly malicious: its formal or 
informal usage documentation states that it uses permissions 
in an expected, harm-free way, e.g., for sending messages to 
contacts via the Internet, but it may also use them in a mali-
cious, unwanted, and potentially user-harming way as well, 
e.g., for leaking contacts data to a remote server (Wired, 
2020), installing tracking software (Android Authority, 
2020) or collecting user data (The New York Times, 2020).

2.4 � Problem Statement

For the purposes of this paper, we assert that apps that request 
access to permissions and knowingly misuse them are mali-
cious, i.e., they are PA-Apps, as such permissions may allow 
for them to successfully carry out attacks. Therefore, we aim 
to detect all potential apps installed on devices that may be 
PA-Apps, and we also aim to prevent them from successfully 
exploiting any granted permissions at run-time. Figure 1 illus-
trates a series of PA-Apps in which a set of vulnerable, i.e., 
dangerous permissions are abused to leak the users’ private 
information like location and contacts through web sockets, 
log leaks, and Inter Component Communication (ICC). In 
Section 4.1 we present the results of an empirical study we 
conducted to show that PA-Apps are available and can be 
downloaded by users in a major application distribution venue.

Finally, for the sake of clarity, detecting all potential over-
privileged apps that may or may not be malicious is out of 

the scope of this paper, as shown in Fig. 2. Also, the detec-
tion of other malicious Android apps that carry out attacks 
by means of other techniques other than the abuse of permis-
sions, e.g., dynamic library updates (Zhauniarovich et al., 
2015), is also out of scope.

3 � Our Approach: Dynamic Permission 
Updates for Potential PA‑Apps via the AE

To address the problem just described, we now introduce 
DyPolDroid (Dy namic Pol icies in Android): a dynamic 
security framework shown in Fig. 3, in which both users and 
AE-Admins can actively restrict the behavior of PA-Apps, 
thus preventing the occurrence of attacks in Android devices.

We start in Section 3.1 by introducing the concept of 
Behavioral Patterns: pairs of permissions which, if used 
together within an app’s code, may facilitate permission-
abusing attacks. Then, we move on to describe in Section 3.2 
how users and AE-Admins can write so-called Counter-Pol-
icies for restricting Behavioral Patterns in Android apps. As 
it is further described in Section 3.3, such patterns are in turn 
discovered by analyzing the data flow of potential PA-Apps 
installed on a device, and represent a key component for 
ultimately producing so-called Device Policies, which, as 
it will be shown in Section 3.4, are subsequently enforced 
by leveraging the dynamic permission updates provided by 
the AE.

Fig. 1   PA-Apps Abusing Android Permissions to Leak User’s Contact Information
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1 3

3.1 � Behavioral Patterns

Following Section 2.1, we define a Behavioral Pattern as a 
sequence of permissions required by apps to execute either a 
benign behavior or an attack (Zhang et al., 2013; Arora et al., 
2020). As an example, the gaming behavior may include the 
pattern: (CAMERA, INTERNET), whereas a contact-leaking 
attack may require a pattern such as (READ_CONTACTS, 
INTERNET).

Android apps, including PA-Apps, may in turn depict 
different behavioral patterns, and there may be an overlap 
between the permissions exhibited in benign and Behavioral 
Patterns, e.g., the INTERNET permission being simultane-
ously used for sending messages (benign) and leaking pri-
vate data (attack) as just discussed.

3.2 � Writing Counter‑Policies

Initially, Counter-Policies are written using a series of tem-
plates depicting a subset of XACML, the de facto language 
for authorization and access control (OASIS Standard, 
2013). Users and AE-Admins are then able to protect their 
device by specifying a variety of rules including features 
like: which applications can be installed, the default per-
mission policy of any newly installed application, and what 
potential attacks the user would like to defend against. More 
interestingly, rules may also include what Behavioral Pat-
terns may be allowed for Android apps that are installed on 
the device in the future. As an example, Listing 1 shows an 
excerpt of a Counter-Policy for Laverna, a self-developed 

PA-App that will be featured in Section 4. Two Behavioral 
Patterns, namely, Steal_Contacts and Steal_Messages, which 
correspond to the namesake attacks, are specified in lines 
7-10 and 11-14. Figure 4 presents a graphical depiction of 
the process just discussed: Behavioral Patterns can be lever-
aged to construct custom Counter-Policies, which are then 
subsequently processed by DyPolDroid to create Device 
Policies. In addition, Counter-Policies leverage the conflict 
resolution features provided by XACML for the case when 
multiple policies are applied to the same device, allowing for 
conflicts to be resolved before policies are sent to the user’s 
device, as shown in Fig. 4 (2).

Counter-Policies are further subdivided into two dif-
ferent hierarchical levels. First, Level 1 Counter-Policies 
are intended to restrict the behavioral patterns depicted 
by potential PA-Apps. Listing 2 shows an example of 
two Level 1 Counter-Policies using a simplified, reader-
friendly notation, which are then used to define two 
Behavioral Patterns: Steal_Contacts and Gaming, which 
are in turn depicted by different pairings of the READ_
PERMISSION, INTERNET, and CAMERA permissions. In 
addition, an additional Level 2 of Counter-Policies is also 
introduced by leveraging Attribute-based Access Control 
(ABAC) (Chung et al., 2019), which, besides being the 
underlying theoretical model behind XACML, has also 
been found to be convenient for specifying rich and flex-
ible policies in the context of other emerging technolo-
gies such as Augmented Reality (Rubio-Medrano et al., 
2019). This way, using these two levels of abstraction, our 
behavioral patterns may be defined separately as a part of 

Fig. 2   Classifying Apps in Android based on Behavior. In this paper, 
we are interested in detecting and neutralizing PA-Apps, which are 
always regarded as malicious

Fig. 3   How DyPolDroid Works: a User signs up for an Android 
Enterprise (1) and moves on to write Counter-Policies (2), which 
are later evaluated against the Behavioral Patterns obtained from any 
installed PA-Apps (3), producing a Device Policy that is then sent to 
the Device (4). As a result, PA-Apps have their permissions blocked 
(5)
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Level 1, and then, AE-Admins and end-users may leverage 
Level 2 then prepare their own restrictions using ABAC 
as a part of Level 2.

As an example, Listing 3 shows three sample Level 2 
Counter-Policies, which, besides referring to the Behavioral 
Patterns defined in Listing 2, also introduce three different 
attributes: A_1, which denotes a convenient time abstrac-
tion for events happening all the time; A_2, which denotes 
a set of categories for different Android apps, e.g., Gam-
ing; and A_3, which denotes a time range abstraction for 
the standard working hours in the United States. Following 
this notation, the L_2_P_1 Level 2 Counter-Policy restricts 
the occurrence of the Behavioral Pattern labeled as BP_1 
(Steal_Contacts) at all times. Conversely, the L_2_P_2 and 
L_2_P_2 Counter-Policies allow for the BP_2 (Gaming) 
Behavioral Pattern to occur during hours outside regular 
working hours only.

As an example, Listing 3 shows three sample Level 2 
Counter-Policies, which, besides referring to the Behavioral 
Patterns defined in Listing 2, also introduce three different 
attributes: A_1, which denotes a convenient time abstraction 
for events happening all the time; A_2, which denotes a set of 
categories for different Android apps, e.g., Gaming; and A_3, 
which denotes a time range abstraction for the standard work-
ing hours in the United States. Following this notation, the 
L_2_P_1 Level 2 Counter-Policy restricts the occurrence of 
the Behavioral Pattern labeled as BP_1 (Steal_Contacts) at 
all times. Conversely, the L_2_P_2 and L_2_P_2 Counter-
Policies allow for the BP_2 (Gaming) Behavioral Pattern to 
occur during hours outside regular working hours only.

In our implementation, which is further discussed in Sec-
tion 3.5, both Level 1 and Level 2 Counter-Policies can be eval-
uated online, e.g., while a potential PA-App is being analyzed 
by means of the procedure defined in Section 3.3, or can also 

Listing 1   A Counter-Policy for the Laverna PA-App

Listing 2   Sample Level 1 Counter-Policies
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be preemptively evaluated following an offline mode, in which 
relevant policies are retrieved and evaluated in advance, and 
the evaluation results are stored for faster future processing. In 
addition, runtime values for the attributes like the ones featured 
on Listing 3 are collected from a variety of online sources and 
forwarded to the Dynamic Policy Engine featured as a part of 
our architectural description presented in Section 3.5.3.

3.3 � Discovering Behavioral Patterns

Our Behavioral Patterns are inspired by a set of predeter-
mined attack vectors that were found to be common place 
across a number of known malicious apps (Arora et al., 
2020). Those vectors can be represented as a sequence of 
instructions mapping data from a source instruction to a sink 
instruction within the app’s code. Normally, both source and 
sink instructions will include a function call to an Android 
Class Function (ACF) performing a sensitive functionality 
operation, which will be in turn guarded by a given Android 
Permission. For example, the Behavioral Pattern: (READ_
CONTACTS, INTERNET), may be depicted within a PA-
App code as a sequence of instructions depicting the flow of 
sensitive data, e.g., the user’s contact information, in which 
the first instruction extracts the contacts (source) and the last 
one sends them to a remote server via the Internet (sink).

To detect the occurrence of Behavioral Patterns within 
potential PA-Apps, DyPolDroid leverages Taint Tracking 
(Zhu et al., 2011), a well-known data flow analysis technique. 
Initially, data flow sequences are obtained from the APK file 

of the PA-App. Then, for each sequence, its source and sink 
instructions are cross-referenced against a list containing a series 
of mappings between ACFs and the Permissions such ACFs 
require for successful execution, as mentioned before. If the 
permissions mapped to both the sink and source instructions 
are found to depict a Behavioral Pattern P, then the permissions 
included in P are returned as a result for further processing, as 
detailed next.

Following the definition described earlier in this section, 
both source and sink instruction may in turn require specific 
permission to fulfill their intended purpose. As an example, 
a source instruction reading contacts may require the afore-
mentioned READ_CONTACTS whereas a sink instruction 
sending data out through the internet may in turn require the 
INTERNET permission).

3.4 � Generating and Enforcing Device Policies

Figure 5 and Algorithm 1 provides an overview of how 
Device Policies are created. First, the set of authorized per-
missions is calculated by evaluating the Counter-Policies 
that may be relevant under the current context, e.g., the AE, 
the organization, the user, the device, etc. (Algorithm 1, Line 
5). Second, the set of observed permissions, as depicted by 
the code of a potential PA-App, is obtained by means of the 
procedure described in the previous Section. Third, the set 
of resulting permissions is obtained by intersecting the sets 
of authorized and observed permissions (Algorithm 1, Line 
8). These resulting permissions are then updated within the 

Fig. 4   From Behavioral Patterns to Device Policies: Templates 
describing Behavioral Patterns are leveraged by users and AE-
Admins to write Counter-Policies (1), which are then fed as an input 
to DyPolDroid’s Policy Engine (2), so they can be turned into 

Device Policies (3). Later, Device Policies are handled by a Policy 
Enforcement Agent (4), which also retrieves up-to-date device con-
figuration data from the Device (5)

Listing 3   Sample Level 2 Counter-Policies
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Device Policy to allow or block their future usage (Algo-
rithm 1, Line 11). Listing 10 shows a sample Device Policy 
that blocks the READ_CONTACTS (lines 6-7) and READ_
SMS (lines 8-9) permissions for the Laverna PA-App that 
will be discussed in Section 4.

Listing 4 shows an example of two different Device 
Policies and three Behavioral Patterns, which are in turn 
composed of a set of permissions that have been observed 
within a potential PA-App. Taking Listings 2 and 3 as a 
reference, the DP_1 Device Policy (lines 3-5) denies the 
READ_CONTACTS, CAMERA, and INTERNET permissions, 
at the same time it also authorizes the MESSAGING per-
mission to the Android app identified by App_1 when the 
three attributes labeled as A_1, A_2, and A_3 are evaluated 
to True. Conversely, the DP_2 Device Policy (lines 6-7) 
denies the READ_CONTACTS permission while authorizing 
the CAMERA, INTERNET, and MESSAGING permissions 
to the same app when the A_1 and the A_2 and the A_3 
attributes evaluate to True and False respectively.

Finally, once a newly-generated Device Policy is received 
by the AE, it is forwarded to the device following the proce-
dures described in Section 2.2. Once received, the policy will 
immediately come into effect. If there are any conflicts between 
the user’s device and the new-applied policy, e.g., an installed 
application is not allowed by the policy, the device manager will 
freeze the profile until the device is compliant with the policy, 
e.g., forcing the user to manually uninstall the offending PA-
App. DyPolDroid uses a SHA 256 hash in conjunction with 
the application package to ensure that if different versions of the 
same potential PA-App are installed, only matching apps have 
the appropriate actions taken against them. This is important 
when there are multiple versions of the same app installed on 
devices for different users, e.g. v1.1.33 and v1.1.34.

Fig. 5   Creating Device Policies in DyPolDroid. The set of author-
ized permissions from each Behavioral Pattern is obtained by evalu-
ating Counter-Policies (1)(2), whereas the set of observed permis-
sions is obtained via Taint Tracking analysis on potential PA-Apps 
(3). Later, the set of resulting permissions is calculated by comparing 
the denied and the requested permissions, and it is later encoded as a 
Device Policy (4), which is set out to the Device for enforcement via 
the AE (5)

Fig. 6   The DyPolDroid Architecture. The Enterprise Authentication 
Module is in charge  of retrieving information from client devices 
leveraging the AE configuration (1). The Static Taint Analysis mod-
ule (2) parses the APK files of potential PA-Apps and maps pairs of 

sink  and source instructions into Android Permissions (2). Finally, 
the Dynamic Policy Engine  is in charge of fetching and updating 
counter and device policies into client devices (3)
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3.5 � Implementation and Architectural Details

In order to efficiently implement the features discussed 
in this section, DyPolDroid has been developed as a 
server-side solution consisting of three major modules, 
which are graphically featured in Fig. 6: an Enterprise 
Authentication Module (1), a Static Taint Analysis Mod-
ule (2), and a Dynamic Policy Engine Module (3). In 
the rest of this subsection, we provide extended details, 
including same code snippets, on each of these modules.

3.5.1 � The Enterprise Authentication Module

For the purposes of authentication, DyPolDroid uses the 
OAuth2 (IETF OAuth Working Group, 2022) industry-stand-
ard protocol, which allows for obtaining access to information 
authorized by the end-user via a set of AE-issued credentials. 
Listing 5 shows a sample OAuth2 configuration, where every 
enterprise account has a unique client_ID (line 2), pro-
ject_id (line 3), client_secret (line 7) and redi-
rect_uris (line 8). Redirect URIs are the

callback used by the authorization server after a user success-
fully authorizes an application (Line 8). The Enforcement rules 
initialize the default enterprise configuration for the Android 

enterprise. The enterprise configuration contains information of 
the devices and apps databases. Each application has different 
settings like default permission, policy enforcement (i.e. installa-
tion time, for every access etc). Finally, DyPolDroid checks if 
there exists a rule for the application matching the given package 
name, and adds the permission to the list of application permis-
sions if it does not already exist in the apps database. By default, 
any application matching the package name, which happens to 
be violating the given policy, is removed.

3.5.2 � The Static Taint Analysis Module

The static taint analysis module fetches the list of devices 
connected to the given AE account and the associated APK’s 
and the policy configuration. The extracted details are then 
updated to the database. The downloaded APK’s are statically 
analyzed using the well-known Soot Framework (Vallée-Rai 
et al., 1999; Paderborn University, 2022), which is leveraged 
to provide source and sink components relations and their 
permissions as an XML output file. This XML file is then 
analyzed to check for any overlap between the sources and

sinks and the mapping of Android permissions to API 
calls. Listing 6 is the core function that extracts all the 
permissions that are required directly/indirectly by the 

Algorithm 1   Generating Device 
Policies from Counter Policies

Listing 4   Sample Device Policies
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potential PA-App. Lines (4-7) extract the package name, 
return type, function name and the function arguments 
for every sink statement. Later, line 10 appends all the 
permissions to a list data structure. Details on such map-
ping are provided in the next section.

3.5.3 � The Dynamic Policy Engine Module

As described in Section  3.3, a pre-calculated mapping 
between APK instructions and Android permissions is used 
to obtain the list of permissions associated with a given sink 
instruction. In the current implementation of DyPolDroid, 
such mapping was obtained by combining the mappings pro-
vided by previous projects in the literature, namely, Axplorer 

(Backes et al., 2016) and PScout (Au et al., 2012). In such 
regard, Listing 7 checks for a list of vulnerabilities based on 
the aforementioned mapping list. Lines (7-15) iterate

through the permission list to verify for vulnerable 
calls, and upon detection the corresponding Android API 
permission is mapped to a list. Finally, the identified vul-
nerability is published back to the AE account using the 
function PushPolicy(policyname, modified_
policy), as shown in Listing 8). Line 2 publishes the 
policy that handles the vulnerability back to the enterprise 
server using the Android Management API. Thus all of the 
devices that use the policy will be automatically updated 
with the newly modified one. Lines (5-9) format the modi-
fied policy and update it in the local file system.

Listing 5   Sample OAuth2 Configuration File displaying Credentials

Fig. 7   PA apps dangerous permission usage stats
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Listing 6   Extracting Android Permissions from a given APK File

Listing 7   Mapping Android Permissions to Call Vulnerabilities
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3.5.4 � Device Policy Definition Language

Finally, Listing 9 provides a JSON snippet of the language that 
is used to create Device Policies. The packageName attribute 
(line 1) specifies the target PA-App. Attribute onMalicious 
(line 3) defines the action to be taken if a PA-App is identified; 
whereas attribute permissionGrants (lines 7-11) defines 
the actions to be taken for every permission declared in the 
AndroidManifest.xml file of an offending PA-App.

4 � Evaluation

In order to explore the existence of PA-Apps in the wild, e.g., 
publicly available for users to download and install, in Sec-
tion 4.1 we present the results of an empirical study in which 
we randomly collected and analyzed a series of Android appli-
cations from Google Playstore. Next, in Section 4.2 we ana-
lyzed each of the discovered PA-Apps in our study by using 
our DyPolDroid tool, in an effort to restrict the dangerous 
Android permissions that may allow for attacks to take place. 

Listing 9   Policy Definition Language

Listing 8   Updating and Publishing Device Policies
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Table 1   PA-Apps as found on 
Google Playstore

SNo. Hash of APK No. of Installs Updated on

1 3e00cf26d79e4f25327c176d298d00fe 100000000 Mar 8 2022
2 f96f7b7f784fefccd1ddc6dece92daf9 5000000 Feb 22 2021
3 ee91ddf83673a983c106856432062a94 5000000 Apr 28 2022
4 606595f7c2bca435b6a098021ab2b823 100000 Sep 16 2020
5 0089b3242909dbf1b9c7c36164fff708 100000 Feb 17 2019
6 0d26533ac02974832a881b02bdd7e7cd 100000 Jun 3 2022
7 e2b5aad9127d5b34be165b7820b07599 10000 Mar 31 2020
8 1c1356984bfb2d23edd9f4826b3dbfe2 10000 Apr 30 2020
9 3b738a6c94f526ec8314e20b5adb94df 10000 May 16 2022
10 9630bffab41182c851d465aaa2a1e684 10000 Oct 29 2020
11 14b598607142a065c79a26de5e0019b7 10000 Feb 20 2019
12 6347b633eb1c8967db9afe55233b5db9 5000 Jun 8 2022
13 4007e7c0638ab37110746c16d8bb95e4 5000 Mar 17 2020
14 11042e26167328fca5ac77083c45b874 1000 Jan 28 2020
15 8cb0304450d0a15ecd034827b964c775 1000 Mar 5 2019
16 3e38e5cd41ccc81a66a0761a613896aa 1000 Jun 7 2019
17 eaea166cc6a08d6d5fc44dba59416c19 1000 Apr 23 2020
18 60e867366a6e6be58fa5e55bd747153f 1000 May 4 2021
19 a63339585410c122c2cd742a1d29e0f4 1000 02-Aug-18
20 b1a1f9edc4861f98c3704e0fcab7f751 500 Mar 31 2020
21 4c1252c14daf168b73a966acc32796c3 500 Oct 31 2020
22 15b2b7d4be30c0617e346903e8ca8d68 100 Oct 14 2021
23 c45cede410d96ba6112883265b65d3e4 100 Mar 31 2020
24 4ad37e3a6ee5b8b8a7056ef03a647ab6 100 Nov 4 2020
25 34498dfb91e484ec156d62c9802b8663 100 Nov 12 2020
26 f9034531cbab9217c1ecf0a4ba3dc86d 100 Sep 5 2020
27 4f66545f84675cc7d14a73c99125185c 50 May 16 2022
28 9015402bca5f423b2222305418804dd2 10 Feb 26 2020
29 7b557ff760f8ff88ecb32c805af03b6c 10 Jan 30 2021
30 478f3b4271d93cf68a111f74a95ca145 10 Mar 8 2021
31 2be391b0be83cc5abd59372065059390 10 Feb 14 2021
32 10b1b6a92945a2d2eeeced1b5267de39 1 Jun 14 2018
33 e1f6c0919617c823286274e6025484b4 1 Aug 2 2018

Fig. 8   Per App Dangerous 
permission percentage
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Finally, in Section 4.3, we report our experimental results on 
Laverna: a self-developed PA-App that requests several per-
missions for benign functioning, e.g., getting full access to the 
user’s contacts, at the same time it also exploits such permissions 
to leak data to a remote server.

4.1 � An Empirical Study on PA‑Apps

For our study, we first created a dataset consisting of 
7978 randomly-selected applications from Google Play-
store. Our analysis then started by defining a PA defini-
tion file, which specifies various source and sink patterns 
that are the characteristics of a potential PA-App, a.k.a., 
Behavioral Patterns (Section 3.1). The PA definition file 
was then fed into the FlowDroid data flow analysis tool 
(Steven Arzt, 2022) to statically analyze each app in our 
dataset. As a result, we found that 33 out of 7978 apps 
depict the presence of at least one PA pattern. Table 1 
shows the 33 potential PA-Apps. For privacy reasons, 

we elude the name of the potential PA-Apps and use the 
hash of their corresponding APK file as an identifier 
instead. Whereas the percentage of identified PA-Apps 
with respect to the total number of apps under analysis 
(i.e. 0.41%) is low, we found that a significant number 
of users may be using such potential PA-Apps (e.g., the 
No.of.Installs column), thus showing the number of pos-
sible users whose private data can be breached. Similarly, 
from the third column (Updated on) we can observe the 
existence of PA-Apps even recent updates.

Figure 7 shows the number of dangerous permissions 
used per application. Also, Fig. 8 shows the percentage 
of dangerous permissions used by each application to 
respect to the total of identified dangerous permissions. 
As an example, from Fig. 8 it can be seen that the poten-
tial PA-App identified by number 26 is using 83.3% of 
the dangerous permissions.

Figure  9 shows the frequency of permissions 
used by the potential PA-Apps. Here, we found that 

Fig. 9   Pareto chart displaying 
the frequency of permissions 
used by PA apps

Fig. 10   Real-time Evaluation of PA-Apps using DyPolDroid
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WRITE_EXTERNAL_STORAGE is one of the most fre-
quently used permissions. In addition, ACCESS_COARSE_
LOCATION, READ_EXTERNAL_STORAGE, READ_
PHONE_STORAGE, ACCESS_FINE_LOCATION, and 
CAMERA are the five permissions that are used frequently 
(i.e. more than 50%).

Based on these results, we conclude that potential 
PA-Apps can be found in the wild and can be potentially 
downloaded and installed by users, which typically grant 
all permissions to applications without understanding 
its consequences (Felt et al., 2012b), thus increasing the 
chances PA-Apps eventually become harmful. Therefore, 
AE-Admins need to be prepared for potential PA-Apps 
when preparing AE deployments.

4.2 � Real‑time Evaluation on Potential PA‑Apps

Following the description presented in Section 2.2, for our 
experimental procedure we resorted to the COSU (pro-
nounced kiosk) mode provided by the AE, which allows for 
AE-Admins to manually select, i.e., authorize, the Android 
applications that can be eventually installed on devices thus 
effectively restricting the installation of any other unauthor-
ized applications. Also, we resorted to a scenario where the 
user’s personal device is also used for work. Following Sec-
tion 2.2, such a scenario, called Bring-Your-Own-Device 
(BYOD), allows for a containerized work/life separation 
where organization-owned devices can be used for personal 
matters as well. Moreover, our experimental procedure was 
focused mainly on the Automated Policy Generator and Policy 

Enforcement modules implemented by DyPolDroid. With 
that in mind, we manually fed the name of each potential PA-
App to the DyPolDroid’s Static Analysis Module, which 
in turn fetched the application directly from Google Play. 1.

Overall, as it is graphically depicted in Fig. 10, our exper-
iments for each potential PA-App identified in Section 4.1 
consisted of the following steps:

1.	 We first installed each potential PA-App on the user 
BYOD profile of an experimental device.

2.	 The application details (i.e., the package name) of the 
PA-App were entered manually to the Policy Generator 
module. The Playstore Downloader sub-module then 
fetched the PA-App from Google Play.

3.	 From the corresponding APK we extracted the Permis-
sions and the Source-to-Sink flow as follows: first, the 
permissions filter extracted the list of dangerous per-
missions that were used by the given application. Next, 
the APK was parsed for some of the known vulnerable 
patterns, following the approach described in Sec-
tion 3.3. Finally, The application’s matched pattern(s) 
and its defined permissions were mapped to form a 
tuple, {(dangerous_permissions, vulnerable_method)}. 
For example, an application with dangerous permission 
ACCESS_FINE_LOCATION, and exposing the loca-
tion data through some public channel, was represented 
as {(ACCESS_FINE_LOCATION, getLatitude)}.

1  We assumed that apps are installed only from Google Play and not 
from any other stores

Fig. 11   An Experiment with DyPolDroid’s Policy Generator. (The PA-App details are hidden for privacy purposes.)
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4.	 The Policy Generator module created the device pol-
icy code that blocks the dangerous permissions for the 
potential PA-App following the procedure detailed in 
Algorithm 1.

5.	 The generated Device Policy file was then uploaded to 
the testing device using the AE. Following the example 
shown before, the device in turn applied the updated 
policy by revoking the dangerous permission ACCESS_
FINE_LOCATION for the corresponding PA-App.

Using this procedure, we revoked all the permissions 
included in Behavioral Patterns that may have allowed the 
potential PA-Apps to carry out permission-abusing attacks. 
As an example, Fig. 11 showcases an experiment on one 
of the real-world PA-Apps from Google Play as given in 
Table 1. Figure 11(a), (b) shows the PA-App exhibiting 
location details, and Fig. 11c shows the same PA-App after 
applying the generated Device Policy shown in Fig. 11d.

4.3 � Laverna: A Self‑Developed PA‑App

In a further attempt to evaluate the effectiveness of our 
approach, we developed Laverna: a proof-of-concept PA-
App that requests several permissions for benign function-
ing: getting full access to the user’s contacts, real time loca-
tion, and SMS so it can serve as a messaging application. 
However, it also silently exploits the granted permissions 
to collect and leak data to a remote server when the user is 
messaging another user. The leaked data includes the con-
tact’s full name and phone number and the messages sent, 
including who the sender and receiver are.

In our experiments, Laverna was downloaded on an 
experimental device, and a simulated user was allowed to 
select what permissions can be granted before installing 
such PA-App, following the scheme featured on Fig. 12. 
Also, the simulated user was allowed to specify the Coun-
ter-Policy shown in Listing 1, which gives the response to 

Listing 10   Policy Definition Language

Fig. 12   The Laverna PA-App (Installed within an AE boundary). First, 
Laverna will obtain  the READ CONTACTS and READ SMS permis-
sions to obtain the corresponding data, thus legitimately crossing the per-

mission boundary as defined by the AE (1). However, it will later  leak 
such information to a remote malware cloud served by abusing the 
INTERNET permission, thus effectively breaching the AE boundary (2)
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the different types of attacks a user wants to defend against. 
In this case the two attacks

are: Steal_Contacts, and Steal_Messages. Since the two 
attacks can be found when analyzing the code of Lav-
erna, the permissions involved on each of the attacks are 
automatically denied. Such an action is reflected in the 
JSON-based Device Policy shown in Listing 10, which 
is based on the language snippet presented in Listing 9. 
In such listing, Laverna requests for permissions like 
READ_CONTACTS, READ_SMS, INTERNET, and the 
defined enterprise policy blocks the PA-App request for 
the {READ_CONTACTS, and READ_SMS} permissions. 
Our tests show that DyPolDroid was able to block this 
application from collecting the user’s data and sending it 
off the device. Since a subset of the permissions requested 
by Laverna were found to be malicious, the default policy 
was overridden to block them on the device.

5 � Related Work

As described in Section 1, different approaches in the litera-
ture have addressed the problem of malicious applications 
in Android. In such regard, DyPolDroid is not the first 
attempt at increasing the security of mobile devices, nor 
the first to propose fine-grained policies. In this section, we 
compare DyPolDroid with previous work, describe simi-
larities and sources of inspiration, and clarify key differences 
that add up to the novelty of our approach.

Bartel et al. (Bartel et al., 2012) introduced an approach 
for securing Android apps by comparing the set of permis-
sions they request to users against the set of permissions that 
are actually used within the application’s code, subsequently 
blocking over-privileged applications. DyPolDroid shares 
a similar approach for identifying potential PA-Apps by 
inspecting the set of permissions that are leveraged within 
the app’s code. However, instead of targeting over-privileged 
apps, our approach strives to identify and block the abuse of 
permissions that are also leveraged for providing the normal 
behavior of the app, as detailed in Section 2.3.

VetDroid (Zhang et al., 2013) was intended to discover 
and vet undesirable behaviors in Android applications, by 
analyzing how permissions are used to access (sensitive) 
system resources, and how these resources are further uti-
lized by the application, allowing for security analysts to 
easily examine the internal sensitive behaviors of an app. 
Our description of PA-Apps, presented in Section 2, is 
inspired by this idea. DyPolDroid goes as step further by 
introducing the concept of behavioral patterns in Section 3.3 
to identify malicious behavior in potential PA-Apps.

Kratos (Shao et al., 2016) is a vendor independent tool 
for detecting errors in Android security enforcement. It 
allows for potential permission misuse to be more easily 

located by creating a call graph of the Android system 
image, and marking each entry-point to the graph. The 
nodes in the graph are annotated with security relevant 
information. The taint analysis depicted by DyPolDroid, 
which is described in Section  3.3, follows a similar 
approach. However, we aim to detect well-defined Behav-
ioral Patterns on the sequences of method calls exhibited 
by potential PA-Apps. If a pattern is detected, it may be 
then subsequently restricted by means of a Device Policy.

Slavin et al. (Slavin et al., 2016) proposed a technique to 
automatically detect policy violations due to errors or omis-
sions within Android apps. They were able to classify these 
violations into two categories: strong and weak violations. The 
former is when an application fails to state the data collec-
tion purpose, while the latter is when the application vaguely 
describes its data collection process. DyPolDroid depicts 
a similar approach in which potentially malicious PA-Apps 
are identified by the Behavioral Patterns they depict within 
their code. However, the restriction of such PA-Apps may not 
only depend on their successful identification, but also on the 
Counter and Device policies as illustrated in Section 3.4.

DroidCap (Dawoud & Bugiel, 2019) introduced OS-level 
support for so-called capability-based permissions in Android, 
which provided further separation of privileges within an appli-
cation by modifying the Android Zygote and IPC. Whereas this 
technique may able to provide a fine-grained, more specific 
approach for defeating malicious apps, it still requires modifica-
tions to the Android OS itself, which can be a considerable bar-
rier for its adoption in practice. In contrast, since DyPolDroid 
relies on the remote configuration features of the AE, it requires 
no modification to the OS of the managed devices.

BorderPatrol (Zungur et al., 2019) leverages the BYOD para-
digm, similar to the work profile discussed in Section 2.2. It pro-
tects devices by creating a customized Mobile Device Manager 
that leverages fine-grained contextual information, thus providing 
a more fine-grained approach than the AE. However, since Bor-
derPatrol uses the Xposed Module Repository (Drupal, 2021), it 
requires root access to managed devices, which may significantly 
complicate maintenance and usability (Gasparis et al., 2017).

Reaper (Diamantaris et al., 2019) provides real-time anal-
ysis of Android apps, in an effort to augment and comple-
ment the Android Permission System, thus potentially coun-
teracting ongoing attacks. As with DyPolDroid, Reaper 
leverages dynamic analysis of Android APK files to detect 
permission abuse, and also uses stack trace info of the run-
ning process for further processing. However, since it uses 
the Xposed framework, which requires root access to devices.

More recently, the HamDroid (Seraj et al., 2022) aims 
to detect fake anti-malware based on the permissions 
with the dataset of harmful and benign apps, using cus-
tomized a multi-layer perception (MLP) neural network. 
They extract permission information from manifest files 
prior to the installation of the anti-malware. In addition, 
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MLdroid (Mahindru & Sangal, 2021) supports detecting 
unknown malware using feature selection approaches, 
API calls, and app ratings to detect the violation of per-
mission with meaningful accuracy.

Finally, GDdroid (Gao et al., 2021) leverages graph neu-
ral networks to map apps and APIs into a graph, convert-
ing the app classification into a node classification task. For 
modeling the relevance among APIs, they present an embed-
ding-based method to mine API behavior patterns. Unlike 
these machine learning approaches, DyPolDroid extracts 
malicious behavioral patterns from PA-Apps and leverages 
the dynamic permission updates provided by the AE.

6 � Conclusions and Future Work

PA-Apps are still an ongoing problem for Android Ecosystems. 
In such regard, DyPolDroid offers an effective and conveni-
ent solution that requires no root access to user’s devices nor any 
modifications to the code of PA-Apps: two constraints that have 
limited the deployment in the practice of previous approaches.

As a matter of ongoing and future work, we are currently 
analyzing several PA-Apps to identify Behavioral Patterns and 
potential templates for Counter-Policies that can effectively 
defeat them. We plan to use this insight to conduct a study in 
which users sign up for an experimental Android Enterprise. 
Then, we aim to collect data on how the devices are used, and 
verify whether DyPolDroid was able to accurately detect 
when permissions were improperly abused. Also, we will col-
lect data regarding the level of user satisfaction with respect 
to the restrictions observed in the functionality of potential 
PA-Apps as a result of using DyPolDroid.

In addition, we must notice that the Android Open Source 
Project does not maintain a complete mapping of the public per-
mission functions, which is required by our analysis described 
in Section 3.3. As described in Section 3.5.2, there have been 
noticeable attempts in the past to determine these, namely 
Axplorer (Backes et al., 2016), and PScout (Au et al., 2012). 
However, at the moment of publication of this paper, the afore-
mentioned approaches were no longer up-to-date with newer 
versions of Android. Therefore, we plan to further work on this 
issue, as should more up-to-date mappings become available in 
the future, the accuracy of DyPolDroid will likely increase.

Finally, one common issue with dynamic permission sys-
tems such as DyPolDroid is fine tuning, e.g., how aggres-
sive they are: a tool that is too aggressive will block more 
than required, degrading the user’s experience, whereas a 
tool that is too lenient will not block enough, thus the user 
is still vulnerable to attacks. While DyPolDroid attempts 
to walk the line between the two, it does err on the side of 
leniency to preserve application functionality for the user. 
Future work may then focus on providing a balance between 
security guarantees and usability, such that users can be 

effectively protected against Permission-Abusing attacks at 
the same time they can enjoy the many different apps that are 
constantly developed and released for Android Enterprises.
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