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Abstract

Intents are the plain-text based message object used
for ICC by the Android framework. Hence the framework
essentially lacks an inbuilt security mechanism to
protect the visibility, accessibility, and integrity of
Intent’s data that facilitates adversaries to intercept or
manipulate the data.

In this work, we investigate the Intent protection
mechanism and propose a security-enhanced Intent
library µTent that allows Android apps to securely
exchange sensitive data during ICC. Differently from
the existing mechanism, µTent provides accessibility
and visibility of Intent data by validating the receiver’s
capability and provides integrity by using encryption
and the Arc security contract code. Especially, ICC
is initiated by exchanging µTent and follows a novel
ownership-based key distribution model, that restricts
the malware apps without permission from deciphering
data. Through the evaluation, we show that µTent can
improve the security for popular Android apps with
minimal performance overheads, demonstrated using
F-Droid apps.

1. Introduction

Intents are messaging object in the Android platform
used to coordinate an activity, start a service, or
as payload carrying sensitive data, operations, and
actions to be performed by the target component (for
example, the BroadcastReceiver or IntentService).
Utilizing Intents without well-defined security
mechanism inevitably exposes the system to threats like
backdoors, which attackers can use to intercept sensitive
information. For example, CVE-2018-9489 [1] reports
an unintentional information leak, where the Android’s
WiFi module leaks the MAC address of the device to
all the registered component’s without validating the
receiver’s permissions.

There are mechanisms to prevent a malware
component from receiving the Intent data. These
mechanisms prevent Inter-Component Communication
(ICC) attacks by statically analyzing the DEX files
and dynamically monitoring to detect security
vulnerabilities [2, 3]. SALMA [4] builds a
Multiple-Domain-Matrix (MDM), and incrementally
analyzes the App security in response to incremental
system changes. Barros et al. [5] present a static
program analysis where the developer can annotate the
Intent data with security levels, thereby restricting data
flow across incompatible source and sink.

With these filtering techniques, we can protect
Intent flow across apps, however, protecting Intents
dynamically from content pollution and information
confidentiality through encryption of data have not
been fully covered for practical use. For example,
an intermediate component may pollute the Intent data
by direct mutation or through reflection, thereby all
the information that is used and forwarded by that
subsequent component will be corrupted. The result
is an epidemic propagation of a corrupted Intent which
will be multiplied upon further propagation.

In terms of the confidentiality issue, EventGuard [6]
proposes a mechanism to guard the information in
a pub-sub environment through encryption. It uses
a meta-service layer that connects the subscriber and
publisher based on the filter. However, EventGuard
treats every subscriber as equal with the same
capability. This may not be applicable for Android,
since in Android every app (subscriber) should
be treated differently based on the capability of
application (i.e. security properties defined in their
AndroidManifest.xml and acquired at runtime by user
granting/revoking permissions). Thus, any changes in
App’s permissions make an impact on the capability
of corresponding App’s component’s. Overall, the
lack of a holistic security framework having both
integrity and confidentiality is a primary challenge in
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Table 1: Types of Android Intent Attack. [Note: Tr =

Benign; Mr = Malware; Aa=Active Attack; Pa=Passive
Attack; Cb = Channel Based; Ib = Intent Based]

Receiver’s Type Mode
Vulnerability

Type
UIR Mr Leak Pa (Cb, Ib)
PE Mr Leak (Aa, Pa) (Cb, Ib)
IM Tr or Mr Mutation Aa (_ , Ib)

Android system to protect the Intents during ICC. In
this paper, we propose µTent, a secure and pluggable
Intent library supporting encryption of Intent data,
an ownership-based key generation and distribution
mechanism, and dynamic verification of receiver’s
capability and access privileges.
µTent has three enhanced security features:

(1) dynamically verifying the sender and receiver
capabilities for subset property, i.e. the source (sender
or publisher) component’s capability must have a
subset relationship with the sink (receiver or subscriber)
component’s capability; (2) µTents carry security
contract code written in our own domain specific
language called Arc explained in §3.3, that will be
verified dynamically before granting/revoking access
to the receiver; (3) µTents are encrypted and the key
is withheld by the µTent’s owner, receiver component
must pass conditions (1) and (2) to receive the key.

In summary, µTent provides the following
advantages: firstly, capability-based access guarantees
that µTent is secure wherever it goes; secondly, the Arc
contracts (called simply as contract) can control not
only the legal information flow in ICC but also the legal
operations such as accessibility and visibility that are
allowed on the Intent data; finally, every µTent object
is dynamically encrypted by its owner, and makes
any access satisfy the above two conditions to fetch
the decryption key from µTent’s owner. To the best
of our knowledge, µTent is the first holistic security
framework that handles dynamic Intent mutation and
information confidentiality.

As a proof of our mechanism, we have implemented
µTent as a pluggable Java Library, which can be used
by developer’s at the application layer by replacing
Android’s Intent library.

2. Overview
Intent-based communication may not trust the
publishers and subscribers, and may not trust the
transit path as well. A study of 7,406 applications
by Ali Feizollah et.al. [7] found that 91% of the
applications are using Android Intents to communicate

(a)

(b) Code.
Figure 1: Unauthorized Intent Receipt Attack.

across components, among which 28.78% are implicit
Intents, where the receiver component is decided by the
Android framework, thereby creating a potential risk
of leaking information to malicious components, and
71.22% apps uses explicit Intents that may introduce
mutation attacks where the receiver component can
mutate the Intent data consciously or fortuitously.

We present three types of common Intent-based
attacks (see Table 1), that actively or passively confronts
the Intent data security, two Intent leak attacks and one
Intent mutation attack that impair the confidentiality
and privacy of Android’s ICC. Unauthorized Intent
Receipt (UIR) and Privilege Escalation (PE) are the
passive attack model where the malicious receiver (Mr)
remains stealthy sneaking Intent information directly
or indirectly from the source. For example, the
Android WiFi module (tested on AOSP v8.1.0_r70)
leaks the device sensitive information such as (the WiFi
network name, BSSID, local IP addresses, DNS server
information and the MAC address) to all registered
applications running on that user device irrespective
of the application’s capability (permissions declared in
AndroidManifest.xml and actual permissions granted by
the user) (CVE-2018-9489 [1]). In privilege escalation,
a malware component acquires sensitive information
indirectly through a privilege component by using
its loophole. In active mutation attack, the attacker
(Tr) intercepts the transit Intent data and modifies the
information that affects the behavior of the components
further.

2.1. Motivating Example
We demonstrate our examples with the following four
components: benign component A (acts as source)
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(a)

(b) Code.
Figure 2: Privilege Escalation Attack.

with capability Ca= (LOCATION, READ_CONTACTS), a
crafted component B with capability Cb= (LOCATION,
READ_CONTACTS), that can act either as benign (2.1.1)
or as malware (2.1.2), the malware component C with
capability Cc= (INTERNET), and the benign component
D with capability Cd= (LOCATION, READ_CONTACTS).

2.1.1. Intent Leak Attacks. UIR - As shown in
Figure 1 A broadcasts the Intent with sensitive
information (i.e., device locations) to B, (Figure 1b),
using action ("NotifyLocationChange"). Now by
registering to the action ("NotifyLocationChange") the
malware component C sniffs the transit Intent from A
(shown in Figure 1a), thereby gaining access to the
sensitive information.

PE - In this case C without location permission
indirectly accesses the location data through the benign
B (Figure 2b 1 , 2 ). B receives the location
information from A (Figure 2b 3 ) and broadcasts it to
the C (Figure 2b 4 , 5 ).

2.1.2. Mutation Attack. This is a type of inside
attack, where the receiver is a trusted component
performing an active attack on the intent by modifying
the data consciously or fortuitously and passing to other
components further. We demonstrate a similar example
in Figure 3a, (1) A receives the following details -
sender and receiver account numbers, amount, and bank
code, (2) B validates the sender and receiver account
numbers, bank code, and the amount before initiating
sending process, and (3) D processes the money transfer

(a)

(b) Code.
Figure 3: Intent Mutation Attack.

from sender to receiver account. Here, B is performing
mutation-attack by modifying the account number and
the amount using the hard-coded values or inputs
taken from other side-channels [8], Figure3b. Now D
processes money transfer on the mutated data. This type
of attack introduces unpredictable security issues that
are difficult to capture using application capability or
static analysis. Failure of data integrity and data security
creates attacks such as man-in-the-middle attacks [9,10]
where the attacker can modify the transit data that may
lead to a catastrophe in the banking applications.

2.1.3. Challenges. The Intent flow defines the
source component from where the Intent originates and
the sink component of Intent. Android initiates ICC by
creating the Intent inside the receiver context. Since
we focus on providing Intent-based ICC filtering, it
becomes challenging to restrict ICC from Intents before
creating Intent inside the receiver’s context. Once Intent
is created within receiver’s context the receiver obtains
complete control over the Intent object by gaining
access the Intent object through direct API or through
reflection, i.e., data once copied into the memory of an
untrusted application can be exported thereby failed to
achieve data secrecy [11].

The channel-based attacks are handled by filtering
the receiver’s through capability subset mechanism
(§3.4), i.e. source’s components capability (Cs) should
be subset of the subscriber’s capability (Cr) (i.e. Cs ⊆
Cr)). This approach ensures the confidentiality and
accessibility, however the guarantee for integrity is not
addressed here.

On the other hand, the Intent-based mutation
attack happens even if the receiver is benign. This
problem requires limiting the receiver from performing
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Figure 4: µTent Life Cycle.
malicious operations on the Intent data like mutating the
information.

To this end, we identified three major challenges
in protection against Intent-based attacks to ensure
confidentiality, accessibility and integrity: (1)
encrypting the Intent object so that the malicious
receiver cannot eavesdrop the Intent bypassing the
validation process, (2) dynamically validating the
capability within the receiver’s context, (3) limiting
mutation on Intent data.
2.1.4. Approach and Assumptions. UIR in Figure
1 and PE in Figure 2, the component A (publisher) has
a capability subset relationship with B (the subscriber)
(i.e. Ca ⊆ Cb), therefore, B being the superset of A has
all capabilities that A has and hence we recognize B as
benign. Being benign B can access the Intent data from
A, although the operations on Intent data (i.e. mutation)
are not guaranteed. On the other hand, the component
C does not have superset relationship with component
A or B (i.e. (Ca ∨ Cb) * Cc). Therefore component
C cannot even access the Intent, thus we recognize C as
malware.

The Intent-based mutation attack requires the
developer to send a runtime Arc contract along with the
Intent specifying its mutable or immutable nature during
the transit. The Arc contract imposes the permitted
operations and visibility restrictions of the receiver
within the receiver’s context. The contract is added
during Intent creation and cannot be modified later.

Currently, our model has limits to handle the
following types of leaks: 1) log leaks - leaking the data
extracted from the Intent object to the log channels; 2)
creating a new Intent object by copying the data from
the original Intent and distributing it further along the
transit path. µTent protects the Intent at object level
using encryption and dynamic contracts rather than at
the object’s data level.

3. µTent
In this section, we present the design and architecture
of µTent. µTent is a secure and pluggable Intent
library supporting encryption of Intent data with
an ownership-based key generation and distribution
mechanism and dynamic verification of receiver’s
capability and access privileges. µTent encrypts the
extras and data attributes, however, does not encrypt
action, category, type, component that are used by
Android framework for ICC, and the owner’s Unique
Resource Identifier (URI) and Arc contract.

3.1. µTent Primitives

Each µTent has two parts, (1) the µTent owner (for
encryption key generation and distribution, and receiver
capability validation) and (2) the Arc contract defines
additional access restrictions/capabilities imposed on
the receiver. The owner [12] provides a logical
encapsulation boundary to the µTent object. Before
initializing the µTent at the receiver’s context, the
receiver’s context should be authorized by the µTent’s
owner by validating the receiver’s capability and the Arc
contract (if given).

Formally, the relationship between µTent and
its corresponding owner (O) can be represented as
µTent � O. The symbol � is known as within (or
dominated by) relationship, says that the owner (O)
encapsulates the µTent with a capability-based logical
boundary, protecting µTent from any unauthorized
access from outside the ownership boundary. Thereby,
all access to the µTent must pass through its
corresponding owner (O). This ownership property
ensures that possession of a µTent object by a receiver
does not imply permission to access the information of
that µTent. Additionally, the Arc contracts control’s the
legal operations allowed on the Intent data.

3.2. µTent Life Cycle

ICC initiates µTent’s lifecycle by exchanging µTent
across component’s. Figure 4 shows various states in
the µTent’s lifecycle from the creation to the destruction
of the µTent.

3.2.1. Creating µTent Owner. The pseudo code is
given in Algorithm 1. It takes the µTent current context,
the Arc contract, and the current timestamp from the
environment. First the creation process verifies the
correctness of the Arc version (mismatch in version
throws an exception). Then the owner’s unique ID is
generated UUID, and the timestamp (ts). The owner
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Algorithm 1: Creating µTent Owner
Input: µctx: µTent Context Instantiated
Input: ARC: Arc Contract
Input: ts: timestamp

1 ArcVersion← checkArcVersion(ARC)
2 if ¬ArcVersion then
3 throw version_error() //version mismatch
4 UUID← genRandomUUID()
5 OID← genOwnerID(ts, UUID)
6 µo← createOwner(OID)
7 µo← initOwner(ARC)
8 Pk← genSecretKey() ∈ µo
9 (µk ∈ µctx)← Pk

Output: µo: µTent Owner Created
Output: µk: µTent Secret Key from µo
Output: µobj: µTent owned-by µo

then initiate the call to generate a secret key (Pk). The
generated key (Pk) is stored into the owner µo.

3.2.2. Accessing µTent Object. The pseudo code is
given in Algorithm 2. When µTent receives request for
get/set methods of Intent data, the µTent validates the
current context capability and privileges. On successful
verification, the µTent will request the owner for the
secret key (Pk). This shared secret key is used by the
µTent to decrypt the Intent data.

Algorithm 2: Accessing µTent Object
Input: µobj: µTent Object
Input: ARC: µTent’s Arc Contract
Input: ts: timestamp

1 µo← µobj.owner()
2 VERIFY← µo.verify(µctx, ARC, ts)
3 if ¬VERIFY then
4 throw Permission_Exception() //no permission
5 µobj.invoke()
6 VAL← Pk()← µo.KEY()

Output: VAL: Decrypted/Encrypted Value

3.2.3. Migrating µTent Object. The pseudo code is
given in Algorithm 3. Migration process gets initiated
during ICC: startActivity, sendBroadcast, startService,
startActivityForResult, etc. Migration consists of three
steps: (1) the µTent sends a signal to its corresponding
owner to wait till it validates the receiver’s context
before recreation. (2) The µTent’s data will be encrypted
with the secret key, (3) The secret key is purged from
the µobj, (4) followed that, the owner ID is added to
µobj, (5) finally, µobj is parceled and migrated from the
current context to the receiver’s context.

3.2.4. Recreating µTent Object. The pseudo code
is given in Algorithm 4. Inside the receiver’s context,
first the µTent communicates to its source owner, by
sending the Arc contract, receiver’s capability and time
stamp. Upon successful verification, the owner will send
the secret key to the µTent. On verification failure, the
µTent will not get its decryption key.

Algorithm 3: Migrating µTent Objects’
Input: µobj: µTent Object
Input: ARC: µTent’s Arc Contract
Input: µctx.parcel() : Initialize Migration
Input: ts: timestamp

1 µo← µobj.owner()
2 VERIFY← µo.verify(ARC, ts)
3 if ¬VERIFY then
4 throw Migration_Exception() //no permission
5 INIT-BROADCAST← µobj.onBroadcast(µo)
6 ENCRYPT← µobj.encrypt()← Pk← µo.KEY()←
µo.encrypt()

7 PURGE← µobj.purgeKey()← µo.purgeKey()
8 BIND-OWNER← µobj.bindOwner(µo)
9 PARCEL← µobj.parcel()

Output: PARCEL: Parceled µTent object

Algorithm 4: Recreating µTent Object
Input: PARCEL: Parceled µTent object
Input: µobj: µTent Object
Input: µrctx: µTent Receiver Context
Input: ARC: µTent’s Arc Contract
Input: ts: timestamp

1 µo← µobj.owner()
2 VERIFY← µo.verify(µrctx, ARC, ts)
3 if ¬VERIFY then
4 throw Unbox_Exception() //no permission to unbox
5 µobj.KEY← Pk← µo.KEY()

Output: µobj.KEY: Key from Owner
Output: VAL: Decrypted/Encrypted Value

3.2.5. Destroying µTent Object. µTent destruction
state pseudo code is given in Algorithm 5. Here, the
µTent sends an notify signal to its owner. Followed by,
purging the secret key, and µTent’s destroy signal to its
corresponding owner. The destroy signal removes the
µTent’s dependency from its owner, and now the owner
can self-destruct itself.

Algorithm 5: Destroying µTent Object
Input: µobj: µTent Object
Input: µo: µTent Owner
Input: µobj.destroy(µo) : Initialize Destruction
Input: ts: timestamp

1 SIGNAL-OWNER← µo.notify(ts)
2 PURGE← µobj.purgeKey()← µo.purgeKey()
3 KILL-OWNER← µobj.destroy(µo)

Output: KILL: µTent object is removed
Output: KILLopt: µo removed iff no dependent µobj

3.3. Arc Language Specifications

The Arc is a design by contract language, with
basic constructs for Android security. The Arc
follows annotation such as syntax similar to JML [13].
The current Arc implementation supports eight basic
constructs: (1) @sameProcess; (2) @sameTask; (3)

@read; (4) @write; (5) ∧; (6) ∨; (7) ¬; (8)
impl−−→.

The Arc grammar is given in Figure 5. Constraints
describe the receiver’s context, and the access keyword
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is used to specify the accessibility. The meta variable P
range over the contracts. The meta variable OP describe
the logical operators.

@sameProcess: It limits µTent’s visibility and
accessibility within the same process (source) that
created the µTent, thereby component’s from different
processes cannot access the µTent information. By
default, µTent is accessible across processes.

@sameTask: It ensures that the receiver’s task ID
and task affinity (in case of BroadcastReceiver and
IntentService) is same as the source’s task ID and task
affinity. By default, µTent is accessible across task.

@read: It protects the µTent data from any future
(unintended) modifications. Negation of read specifies
that the µTent cannot be read by the receiver. For

example the Arc contract "¬@sameTask
impl−−→¬@read"

specifies no read constraint to the receiver’s’ belongs
to different task. That is receiver’s from different task
cannot read the data. Under this condition the receiver
can only forward/drop the µTent and cannot consume
any information from it as they are protected with
encryption.

@write: It enables µTent data to get modified, by
default µTent is writable. Negation of @write (i.e.
¬@write) means that the µTent is read-only.

∧ | ∨ | ¬ : The logical represents general math logic
for AND | OR | NOT operation respectively.

impl−→: The implication operation can be expressed

as (X impl−−→ Y), where Y becomes the resultant for the
operations defined in (X). Y will be evaluated iff the
operation defined in (X) results true.

3.4. µTent’s Subset Properties

µTent follows subset property to classify the
component’s as either (1) Benign, or (2) Malware.
By default µTent source is labeled as benign. The
receiver is labeled as benign iff the sender’s capability
(Cs) forms a subset of the receiver’s capability (Cr),
i.e. Cs ⊆ Cr, else the receiver is labeled as malware,
i.e. Cs * Cr. By default, empty permission (i.e.
when an application doesn’t define any permissions
in AndroidManifest.xml) is considered as a special
permission. Therefore, if the receiver’s has an empty
capability (Cr = {∅}) and the sender has read contacts
capability (Cs = {READ_CONTACTS}) then
receiver’s capability is not a subset of the sender’s
capability (Cr 6⊆ Cs).

P ::= (contract (
impl−→ access)opt)

∗

contract ::= constraint (OP constraint)∗

constraint ::= @sameProcess
| @sameTask

access ::= @read
| @write

OP ::= ∧ | ∨ | ¬

Figure 5: Arc Grammar

4. Evaluation
We have implemented µTent as a pluggable Java Library
for Android (8.1+). µTent library contains 11 files and
approximately 2,000 lines of code. We present our
evaluation report for µTent tested using the following
hardware: Android 8.1.0 (Oreo, SDK Version = 27),
OnePlus 3T device with Snapdragon 821 CPU and 6GB
RAM.

4.1. Data Set

Our benchmark application consists of the following
component’s: (1) Compo(n,∗) can be either activity or
broadcast receiver’s or Services, where n represents
process/task/task-affinity to which the component
belongs and ∗ represents component capability (Benign
(P) or Malware (LP)).

We evaluated µTent’s accuracy by creating a
repository of 288 applications (shown in Table 3)
with total 276 vulnerable paths taken from existing
benchmarks [14,15] and added our own ICC applications
with the following programming practices such as:
data mutation, read-only, no-read, and encryption. In
addition to the above benchmark, we have also tested
µTent with the SEALANT benchmark, which consists of
135 apps with total 59 vulnerable paths.

In our test, we fixed the Arc contract (i.e.
DEFAULT ∧@read) for all the examples presented in
Table 2. The rule DEFAULT represents the permission
subset property (§3.4), encryption property (§3.2) of
the µTent and "@read" constraint enforce the read-only
property on the µTent within the receiver’s context.

The application set from (1-6) in Table 2 consists of
a total 72 apps demonstrating the scenario of sniffing
between component’s across different process and task.
In the application set (3,6), the receiver being benign
performs mutation attack on µTent data. Though such
attacks are generally assumed safe, in certain scenarios
like (§2.1) it is required to limit mutation in order to
ensure integrity of the data. Such attacks are classified
as tricky ICC which µTent handles by using "@read"
Arc contract limiting mutation of Intent data.
The application set (7-12) in Table 2 consists of 162
apps with 162 vulnerable paths. In total we have 210
vulnerable paths demonstrating the scenario of UIR and
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Table 2: Detailed Comparison

- Name[Tot.Apps] Covered Attacks Model (Component(1,∗) −−→
Ln

Component(2,∗)) Arc Contract µT‡ SE§ FP FN

1 sameP1[6] UIR,PE Compo(1,P) −−→
Lk1

Compo(2,P) arcc   

2 sameP2[24] UIR,PE Compo(1,P) −−→
Lk1

Compo(2,LP) arcc   

3 sameP3[6] IM Compo(1,P) −−→
Lk1

Compo(2,P) # [Im] arcc  # �

4 sameT1[6] UIR,PE Compo(1,P) −−→
Lk1

Compo(2,P) arcc   

5 sameT2[24] UIR,PE Compo(1,P) −−→
Lk1

Compo(2,LP) arcc   

6 sameT3[6] IM Compo(1,P) −−→
Lk1

Compo(2,P) # [Im] arcc  # �

7 redel1[27] UIR,PE Compo(1,P) −→
L1
Compo(1,P) −−→

Lk2
Compo(2,LP) arcc   

8 redel2[27] UIR,PE Compo(1,P) −→
L1
Compo(1,P) −→

L2
Compo(2,P) arcc   

9 redel3[27] UIR,PE Compo(1,P) −→
L1
Compo(2,P) −→

L2
Compo(3,P) arcc   

10 redel4[27] UIR,PE Compo(1,P) −→
L1
Compo(2,P) −−→

Lk2
Compo(3,LP) arcc   

11 redel5[27] UIR,PE Compo(1,P) −−→
Lk1

Compo(2,LP) −−→
Lk2

Compo(3,P) arcc   

12 redel6[27] UIR,PE Compo(1,P) −−→
Lk1

Compo(2,LP) −−→
Lk2

Compo(3,LP) arcc   

13 InMut1[27] IM Compo(1,P) −−→
Lk2

Compo(2,LP)⇒ [Im]−→
L1
Compo(3,P) arcc   

14 InMut2[27] IM Compo(1,P) −−→
Lk2

Compo(2,P) # [Im]−→
L1
Compo(3,P) arcc  # �

Note:
‡=MuTent; §=SEALANT;  = provides property; # = does not provide property; Ln = safe paths;
Lkn = vulnerable paths; # = tricky intent operations ⇒ = direct/indirect intent operations Im = Intent Mutation Attack;
	 = False Negative (µTent); � = False Negative (SEALANT) arcc = [DEFAULT ∧ @read]

Table 3: µTent Evaluation.

Attacks Tot.Apps Tot. Vulnerable
Paths Blocked (µT) Blocked (SE)

(no.,%) (no.,%)

UIR 111 105 105(100%) 105(100%)
PE 111 105 105(100%) 105(100%)
IM 66 66 66(100%) 27(40.91%)
Total 288 276 276(100%) 237(85.87%)

PE. µTent blocks all the 210 vulnerable path by using
its "DEFAULT" property of validating the sender and
the receiver’s capability as discussed in §3.4.

Finally, we have added a collections of 54 apps
to demonstrate mutation-attacks (13,14). The attack
scenario (13) has been filtered easily by µTent by
validating the capability subset property, thereby the
malware receiver Compo2,LP cannot access the data.
However, in attack scenario (14) the benign component
is mutating the data. In order to handle such class of
attacks, we used the "@read" Arc contract that specifies
read-only operation to the receiver (Compo2,P), thereby
limiting the receiver from modifying the data.

4.2. Effectiveness

Table 2 presents the detailed comparison between µTent
and SEALANT [2]. The attack scenarios (3, 6, 14)
demonstrates tricky operations performed by trusted
component’s, where the transit ICC path consists of only

Table 4: µTent Overall Impact (%).

Apps

Intent

Creation

Time(ms)

µTent

Creation

Time(ms)

µTent

Overall

Dif.(ms)

µTent

Overall

Impact(%)

Ads Droid 0.45 14.2 13.75 0.0046

Activity Diary 0.77 14.0 13.23 0.0044

Face Slim 0.75 9.75 9.0 0.0030

benign component’s, which creates difficulty to restrict
access based on receiver’s capability and hence filtering
only based on the component’s capability may result in
a False Negative outcome.

The other similar tools/methodology available in
literature are XmanDroid [16,17] (a policy based model)
and Sparta [5] (a static tool to identify the taint-flow).
XmanDroid uses application level policies to block
vulnerable paths. It demands the user to specify the
policy defining the vulnerable ICC path. Absence of
policy makes XmanDroid to allow every ICC, that is
without such policy all the component’s are assumed
benign by default.
µTent differs from XmanDroid by performing

permission subset validation of the receiver by default
(without requiring an explicit policy specification),
and protecting the payload with an ownership-based
encryption model. µTent considers the following
application-level covert channels [18] such as:
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Figure 6: Overall Creation Time Overhead

broadcasts, system services, or content providers
that uses Android’s Intent sharing as communication
medium and not any other covert channels. Also in this
paper we are not considering the other operating-system
level or hardware-level covert channels [19, 20] such
as: file system, database, log, cache memory etc. µTent
uses dynamic verification of the receiver based on
receiver’s capability and the Arc contract, rather than
static taint analysis of source-code such as Sparta,
or static apk analysis for vulnerable paths such as
SEALANT.

4.3. Performance

Table 3 shows the overall impact of the µTent. We
evaluate by analyzing the number of vulnerable paths
present and the number of paths µTent’s can identify
as vulnerable, and can block by throwing exception.
The test result is from the outcome of evaluating the
µTent benchmark consisting of 288 total apps (§4.1).
The benchmark consists of a total 276 vulnerable paths,
out-of which µTent can identify and block 276 paths (i.e.
100% success), and SEALANT has 85.87% accuracy by
blocking 237 paths.

Additionally, we tested µTent with the SEALANT
benchmark, which consists of 135 apps with total 59
vulnerable paths. In this test, µTent was able to identify
and block 112 apps (with an accuracy of 82.96%) and
48 vulnerable paths (with an accuracy of 81.36%) that
consists of redelegation attacks and Intent data access.

4.4. Creation Time Overhead

Since µTent object requires an additional dynamic
owner creation along with a complex algorithm for
encryption and key distribution, it becomes necessary
for us to calculate the time taken to create a µTent so that
we can calculate the overall impact µTent can impose
on an application. Hence in this section we discuss
the average creation time and its impact ratio based on
our current µTent library implementation. We tested
µTent by modifying three open source projects taken
from F-Droid, and modified the Intent with µTent library
(shown in Table 4). On an average µTent took ∼11.5
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Figure 7: µTent Implementation Overhead

milliseconds (Figure 7) more than Android’s Intent that
is approximately equivalent to 0.005(%) overhead in
a 300,000 milliseconds of an application runtime as
shown in Figure 6.
We tested µTent using two approaches: (1) using
Culebra - a record and play test environment [21] where
user interactions can be recorded as python script and
can be played automatically, and (2) manual testing - by
giving the applications to three student volunteers from
our lab and asked them to interact with the application
randomly (without any pre-defined screen interaction
order). Even though µTent’s creation time is higher
than Android’s Intent, the overall impact percentage
added by µTent to an applications execution is trivial
(i.e. ∼0.005%). Thus with this nominal impact on
creation time, during our testing the users have not felt
any latency in the screen response and screen navigation.

5. Related Work

Detecting data-leaks and malicious component’s during
Inter Component Communication (ICC) have already
been explored for source code and DEX file. These
approaches combines static analysis and runtime
policies at the OS level (i.e., requires modifying the
framework or kernel code). However, µTent is designed
and implemented as a pluggable Java Intent library to
filter the data-leaks and malicious component’s during
ICC. Encrypting ICC payload is generally treated as a
OS layer functionality, which µTent introduce as Intent
property.

Static Analysis: SEALANT [2] provides a technique
that combines static analysis of app code infering
vulnerable communication channels and runtime
monitoring of inter-app communication through
those channels to prevent attacks. SALMA [4],
presents self-protecting Android system using a
Multiple-Domain-Matrix (a knowledge base), that
will be updated incrementally and thereby enabling
incremental analyzes upon changes to the system.
FlowDroid [22] a static taint-analysis reduces false alarm
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by detecting the data-leaks based on the context, flow,
field and object-sensitivity. Amandroid [23] statically
detects inter-component control and data flows among
multiple component’s from either the same or different
apps. Since µTent’s objective is to prevent Intent-based
attacks by creating an Intent library we do not perform
static analysis like the above models; however µTent’s
dynamic mechanism for adding contract to the Intent
helps to enable data integrity and to control accessibility
and visibility of the data. ComDroid [24] analyzes the
DEX files to detect Intent-based attacks such as Intent
spoofing, UIR and Intent vulnerabilities by performing
flow-sensitive and intra-procedural static analysis.
CHEX [25] approaches the detection problems such
as leak of private data or component vulnerability as
data-flow problem that helps to identify the potential
risk from the existence of flow pattern. AnFlo [26]
proposes a mechanism to detect anomalous sensitive
data flows in Android apps by grouping trusted apps
based on the categories identified from the apps
functional descriptions. TERMINATOR [27] analyzes
the permission misuse by considering the order of
events that require the time of an event and the security
vulnerability in the Android’s custom permission
model. In µTent every ICC call must have a valid
capability to access the Intent data, thereby the flow
graph varies in par with the users permission decision
for that application.

Policies & Filters: Kirin [28] detects the malicious
behavior by certifying an app using kirin security
rules at install time. DREBIN [29] proposed a method
for detection of Android malware by uses dynamic
inferring of security patterns rather than manually
crafted patterns [28]. TaintDroid [30], a data-leak
detection tool, suggested a fine-grained tracking of
private information and how it is actually used. µTent’s
context-based privacy using dynamic contracts was
inspired from the above works; during ICC every
µTent is controlled by a unique Trusted Computing
Base (TCB) that is created per object. Permission
re-delegation introduces a risk when an application
with permissions performs a privileged task for an
application without permissions. The permission
re-delegation paper [3] proposed IPC inspection at
OS level, that reduces a deputy’s (application with
permissions) privileges after receiving communication
from a malware application (app without privileges).
Consequently, the Android’s permission system can
deny a privileged API call from the deputy if
any application in the chain of influence lacks the
appropriate permission(s). DroidCap [31] uses Binder

handles as capability tokens by associating Android’s
permissions to the handle. DroidCap facilitates
privilege separation between app’s component’s through
compartmentalization of component’s into a logical app
with a subset of privileges. Maxoid [32] confines
the delegates from leaking secrets by creating different
views of the initiator’s state. The delegates may
update initiator private state or public state which the
initiator can selectively commit or discard to prevent
unwanted modifications by delegates. This may not
be directly applied to Intent data protection, since
Intent communication creates a uni-directional data
distribution, where the shared Intent data cannot be
controlled by the initiator unless the data is represented
as a URI. Aquifer [33] defines UI workflow policies
where each participating application define its export
list, a required list, and a workflow filter. Aquifier tracks
the workflow policies to control the interactions across
different applications who are participating to complete
the task. Similarly, in µTent we compare the capability
of an application before allowing the receiver to access
the Intent data, since Intent’s are initiated within the
receiver’s context, we provide an additional encryption
mechanism to limit the receiver from accessing the data
through reflection.

Encryption & Key Distribution: Srivatsa, et
al. [6] provided routable attribute protection using
content-based routing where the publisher uses event
key K(e) to encrypt, and subscriber with filter (f) uses
key K(f) to decrypt, where K(f) is capability of a
subscriber and hence treated equally. On the other hand,
the µTent handles subscriber’s based on the capability
and the Arc contract, rather based on subscription.

6. Conclusion

We have presented µTent, the secure and pluggable
Android Intent Library written in Java, to securely
exchange intent data across component’s during ICC.
µTent is the first holistic model to provide the dynamic
control of intents inside the subscriber’s context. It
differs from the earlier model in terms of providing
dynamic encryption, ownership based key distribution,
and verification of the receiver’s context using user
defined security contracts and receiver’s capability.
Thereby with µTent, we enable application component’s
to sensibly retain the control of their intent data after it
has been shared with the receiver during ICC.
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