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A B S T R A C T

The adoption of blockchain for Transactive Energy has gained significant momentum as it allows mutually
non-trusting agents to trade energy services in a trustless energy market. Research to date has assumed
that the built-in Byzantine Fault Tolerance in recording transactions in a ledger is sufficient to ensure
integrity. Such work must be extended to address security gaps including random bilateral transactions that
do not guarantee reliable and efficient market operation, and market participants having incentives to cheat
when reporting actual production/consumption figures. Work herein introduces the Electron Volt Exchange
framework with the following characteristics: (1) a distributed protocol for pricing and scheduling prosumers’
production/consumption while keeping constraints and bids private, and (2) a distributed algorithm to prevent
theft that verifies prosumers’ compliance to scheduled transactions using information from grid sensors (such
as smart meters) and mitigates the impact of false data injection attacks. Flexibility and robustness of the
approach are demonstrated through simulation and implementation using Hyperledger Fabric.
1. Introduction

The proliferation of Distributed Energy Resources (DERs), Electric
Vehicles (EVs), grid-level energy storage, and networked grid-edge
devices requires a trustworthy open energy trading platform for par-
ticipants – i.e., a Transactive Energy (TE) framework. TE combines
financial signals and dynamic control techniques to shift the timing
and quantity of energy usage to achieve greater efficiency, increased
use of renewable energy, reduced energy costs, and improved flexibility
to manage shifts in net load locally. Such benefits have motivated the
increasing body of research whose goal is to manage real-time demand
and electricity supply in an open market where prosumers and utilities
interact to establish a market-clearing price. Examples are the auction
mechanisms proposed in [1], algorithms for co-simulation of trans-
mission and distribution networks combined markets [2], multi-agent
models capturing trading behaviors [3], and thermostatically controlled
loads to participate in TE markets [4], to name a few examples.

Recently, many researchers have purported blockchain as the ideal
enabling platform to implement TE. Blockchain can enhance cyber-
security and traceability of Peer-to-Peer (P2P) transactions between
mutually non-trusting parties in the TE marketplace [5]. There are
several benefits to such an implementation: (1) once stored on the
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ledger, all transactions are transparent to all participants through an
identical copy of the ledger, (2) new transactions are hash-chained when
appended to the ledger, an operation that makes them immutable, mit-
igating cyber-attacks aimed at reducing the integrity and availability
of the data, and (3) all functional aspects of TE enabled by blockchain,
from bidding to pricing to billing, can be orchestrated running Smart
Contracts [6].

1.1. Contribution

Blockchain ensures transparency and immutability of bidding and
trading records in the ledger. However, records in the ledger have
security gaps during the submission of bids and the verification of
contractual obligations. In fact:

1. Threats exist internal to TE approaches because selfish players have
an intrinsic incentive to cheat on reported consumption needs or
production capacity during market clearing [7].

2. Ex-post, if the market stakeholders control smart meters, they can
inject false data to hide discrepancies that would otherwise reveal
cheating.
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Nomenclature

 Calligraphic letters are sets
|| Denotes the cardinality of set 
𝑇 Number of intervals in the decision horizon
 Set of aggregators
𝑁 Number of aggregators
 Set of buses/nodes 𝑏 in the power grid
(𝑛) Subset of buses managed by aggregator 𝑛 ∈


𝑒 Electric grid graph
𝑐 Communication network graph
𝑒 Set of edges/lines connecting the set of

buses  in 𝑒
𝑐 Set of communication links between aggre-

gators 
 Set of time intervals in the decision horizon
𝐺𝐿 Global ledger
𝐿𝐿𝑛 Local ledger for aggregator 𝑛 ∈ 
𝒙 Boldfaced lower-case letters denote vectors

and 𝑥𝑖 denotes the 𝑖th element of a vector
𝒙.

𝑿 Boldfaced upper-case letters denote matri-
ces and 𝑋𝑖𝑗 denotes the 𝑖𝑗th entry of a
matrix 𝑿

𝑿⊺ Transpose is denoted by ⊺, so 𝑿⊺ is the
transpose of 𝑿

𝑿† Is the pseudo-inverse of 𝑿, where 𝑿† =
(𝑿⊺𝑿)−1𝑿⊺

To address these issues we propose the Electron Volt Exchange
(EVE) blockchain architecture (Fig. 1). Novelty compared to other TE
blockchain research lies in the following components:

1. TE blockchain designs commonly consider only bilateral transac-
tions. Instead, the EVE approach utilizes a decentralized solution
for the entire market economic dispatch problem whose formula-
tion falls in the class of network utility maximization problems,
first proposed for real time pricing in [8] (Section 3). The closest
to our approach is found in [9], where the authors have incor-
porated controllable loads and generation to develop an iterative
pricing algorithm using a smart contract that updates global vari-
ables of the distributed optimal power flow problem. The scheme
still relies on a central update of variables to achieve convergence.
Compared to [9], this work incorporates renewable generation,
thermostatically controlled loads (TCLs), storage devices, deferrable
appliances (DAs), and electric vehicles (EVs) and relies on a hierar-
chical, distributed architecture including aggregators [10] to ‘‘divide
and conquer’’ the communication problem, avoiding congestion and
yielding a scalable implementation for optimal price calculation.

2. The EVE architecture includes the first blockchain-based, distributed
Robust State Verification (RSV) mechanism for TE transactions,
where physical sensor measurements are cross-validated in a de-
centralized fashion to ensure prosumers abide by their market com-
mitment (Section 4). Our algorithm, inspired by the work [11] on
distributed state estimation in adversarial settings, is shown to be
robust against False Data Injection Attacks (FDIAs) aimed at TE
market theft.

3. The pricing and verification algorithms are tested via numerical
simulations in Section 5. Implementation of the EVE blockchain
framework onto a distributed ledger [12] is described in Section 6
using the open-source Hyperledger Fabric (HLF) framework. It in-
2

cludes a customized BFT-SMART [13] consensus protocol to provide
security and improve performance with Byzantine Fault Tolerance
(BFT) in an untrustworthy environment. This improves upon stan-
dard security features of HLF, such as Membership Service Provider
(MSP), Fabric CA (Certificate Authority), Attribute-Based Access
Control (ABAC) [14], and others that address common security
concerns. Bench-marking for the proposed smart contracts using
Hyperledger Caliper [15] is also described herein.

1.2. Related work

There is a substantial body of research and industrial efforts in
TE; we focus our literature review on the relatively recent trend that
includes blockchain as the backbone for managing P2P communica-
tions for market-related operations. These operations involve handling
and securing prosumer bids and dispatch values, deciding a market-
clearing algorithm, ensuring the balance between demand and supply
to meet network constraints, ensuring cyber-security, and more. Read-
ers are referred to [16] for a broad discussion on the applications of
blockchain for smart grid Cyber–physical infrastructure, to [17] for po-
tential benefits of blockchain for grid resiliency against cyber-attacks,
and to [18] for details on how smart inverter, advanced metering
infrastructure, and energy coordinator can support the digitization and
decentralization of TE.

Existing literature has focused on co-simulation of the physical grid
in tandem with blockchain TE implementation [19], quantifying energy
losses caused by energy transactions in an energy blockchain [20],
enforcing proportional fairness among DERs participating in voltage
control through smart contracts to ensure voltage stability [21], de-
veloping a blockchain based energy trading platform for electric vehi-
cles [22], integrating energy and carbon markets through a blockchain
based trading framework [23], and more. The two-layer blockchain
implementation in [24] consists of a first layer with smart meters
forming a private blockchain and a second layer with aggregators
forming a consortium blockchain to coordinate energy transactions
within regions. These works assume security is implicit in transactions
between aggregators and flexible demand assets. The authors in [25]
use a continuous double auction mechanism, but the transaction mech-
anism exposed the prosumer’s unique ID, posing a privacy concern.
Similar concerns described in [26] indicate a public blockchain exposes
the transactions and balances of each prosumer, and further, that
the rate of transaction processing limits scalability. Authors in [27]
present a double auction mechanism for localized energy exchanges
between EVs, where local aggregators publicly audit and share trans-
action records without relying on a trusted third party. The use of
local aggregators also appears in [28] to create an energy market
that combines blockchain and IoT for two flexible community market
players: an EV community and a DER community. In [9], the authors
propose a blockchain implementation to clear the market using the
Alternative Direction Method of Multipliers (ADMM) in a master–slave
distributed architecture, where a central aggregator/master node up-
dates global variables. The multi-layer smart contract implementation
based on Ethereum in [29] addresses the mismatch in the settlement
between System Operators and Balance Responsible Parties, yet it does
not decentralize the Independent System Operator (ISO) nor include
verification. Work done in [30] uses Hyperledger Composer to demon-
strate a blockchain based TE market implementation while excluding
a market clearing price calculation and assuming energy transactions
are automatically verified. A prototype implementation of a TE market
using Hyperledger Fabric for metering and billing purposes is proposed
in [31], yet pricing and verification were not addressed. A related
study that uses Hyperledger Composer in [32] determines the market
clearing price by averaging bid prices offered by all buyers while
sorting sellers by first-in, first-out basis. An approach similar to [32]
using an Ethereum based blockchain architecture is found in [33]. How-
ever, such algorithms can be easily exploited by malicious prosumers

or attackers to manipulate the clearing price and destabilize the TE
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Fig. 1. Conceptual architecture of EVE illustrating cyber and physical layers.
market. Malicious prosumers can similarly influence the co-simulation
framework presented in [34] where the ratio of total generation and
consumption reported by the prosumers is used to determine the price.
The private blockchain solution proposed in [35] requires a match
between the energy producer and consumer regarding the amount
of power to be generated and consumed, respectively, which is not
practical for many prosumers and can violate physical constraints on
the distribution network. The blockchain based energy trading model
in [36] also lacks sufficient protection from physical constraint vi-
olations because the approach allows for an open trading platform
across diverse types of power sellers without any optimized market
pricing. In most studies, Smart Contracts orchestrate information ex-
changes among participants and during recording transactions, while
still requiring a central entity to be in charge of calculating the market-
clearing price in contrast to our fully decentralized solution. Also, prior
methods focusing on security aspects and countermeasures against
cyber-attacks to the market-clearing mechanism have ignored physical
verification that must be tied to market records to work effectively as
a continuous deterrent to theft. Relevant to this study are also prior
works integrating smart metering with blockchain, specifically energy
trading applications [37]. Even if they leverage the immutability of
blockchain, these approaches leave data integrity and privacy concerns
unresolved [38].

To address these gaps, our work incorporates insights from the
considerable body of research that has been developed in cyber-security
of electric power measurement systems to encompass stealth FDIAs
in state estimation [39], non-stealth state estimation attacks such as
data jamming [40], bias injection attack [41], and denial of service
attacks [11]. To the best of our knowledge, the only work that discusses
possible attack scenarios in blockchain-based energy trading is [42];
the scenarios mentioned by the authors include a malicious stakeholder
attempting to modify market operations to produce an inaccurate clear-
ing price, a malicious market operator attempting to modify operations
of the market algorithm, and a malicious outsider trying to remotely
tamper with communications among TE market participants. The RSV
presented in this work addresses these security concerns to enhance
the blockchain-based TE framework’s cyber-security. The market mod-
eling approach in [42] uses blockchain only to collect bid information
from the prosumers and then utilizes a centralized architecture for
determining the market clearing price. On the contrary, this work uses
blockchain to manage prosumers, while the proposed decentralized
price optimization algorithm uses the decentralized architecture of
blockchain to run the iterative price determination algorithm. More-
over, using the inherent security features of Hyperledger Fabric and
ABAC allows EVE to avoid the complex attribute based encryption for
transaction security introduced in [43] while still achieving the same
level of privacy.
3

2. EVE as a cyber–physical system architecture

Fig. 1 represents the interactions tied to the TE application layer for
a generic blockchain based Cyber–physical infrastructure implementa-
tion. The specifics of our architecture are summarized in the following
sections.

2.1. Physical infrastructure

The physical infrastructure includes:

• The electrical grid modeled as a connected graph 𝑒 = (, 𝑒).
Lines and transformers are characterized by admittance parameters
𝑦𝑖𝑗 , ∀ 𝑖𝑗 ∈ 𝑒.1

• Market Participants (prosumers and aggregators).
• Electrical loads, distributed generation, and storage assets that con-

nect to buses on the electrical network. For clarity in our formula-
tions, we model a single prosumer per bus 𝑏, making them equiva-
lent.2

• Electrical sensors and control equipment.

2.2. Application layer

In EVE, scalability is achieved by dividing the application layer
entities into agents with distinct tasks.

• The bottom layer includes prosumers who can buy and/or sell energy
and control flexible loads, storage, and generation assets connected to
the physical network. This layer can be broken into several physical
regions.

• The top layer includes a set of local aggregators ( ) managing the
prosumers connected to a subset of buses (𝑛) ⊂  for all 𝑛 ∈  .

The following remark is in order:

Remark 2.1. Individual prosumers have traditionally been unable to
participate in energy markets, but aggregators may have access through
the lumped capacity bids [44].3 Aggregators can act as intermedi-
aries between small consumers/producers and volatile markets, and
thereby provide hedging solutions to reduce risk to individual market

1 Voltage control and protective equipment are ignored because these do
not have a direct impact on market operation and hence are not required for
the description of the EVE architecture.

2 In cases where multiple consumers connect to the same physical bus, we
model those as separate buses connected through zero impedance edges, but
omit this in diagrams for simplicity.

3 A practical example can be found in [45].
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Fig. 2. (a) The hierarchical distributed ledger architecture. (b) Cyber infrastructure overlaid with the physical structure for a sample distribution network with 4 aggregators.
participants [46]. Aggregators can procure demands from consumers
and sell to purchasers through trading frameworks proposed in prior
works [47]. Moreover, resources needed for price optimization and
verification processes can be more easily be obtained and justified
for aggregators rather than each prosumer. Aggregators do not com-
plicate management because blockchain is suited for a decentralized
architecture. A solution without aggregators would otherwise increase
communication latency and computation time for market-clearing as
new prosumers are added, reducing scalability.

Policies in EVE can be divided into three main classes:

• Pricing: Policies deciding the optimum prosumers schedule and the
price.

• Verification: Policies processing sensor information to verify that
load/generation is correctly reported, contractual obligations have
been met and billed accordingly.

• Billing: Policies for billing and ensuring compliance.

2.3. Cyber infrastructure

The cyber infrastructure includes security policies for settling trans-
actions, communication/computation resources, and data archival
based on blockchain. Building the cyber network requires all market
participants to work together as a consortium using a set of policies
agreed to during network initialization to determine the participants’
permissions. For the shared database or ledger within the cyber archi-
tecture, EVE uses CouchDB [48] as it supports rich queries when data
values are modeled as JSON. The cyber framework is generic to include
or exclude Transport Layer Security (TLS); however, we recommend
including TLS for additional security.

Application of the policies mentioned in Section 2.2 is handled
through distributed ledgers. In EVE, a ledger consists of (a) a database
that holds current values of a set of ledger states, and (b) a trans-
action log that records all changes that have resulted in the current
system state. Our implementation of EVE consists of two types of
distributed ledgers, a Local Ledger (𝐿𝐿) and a Global Ledger (𝐺𝐿).
The smart contracts in this work handle interactions between the
ledgers (𝐺𝐿 and 𝐿𝐿) and external applications to complete every
transaction within EVE. Fig. 2a shows the hierarchical architecture
of those ledgers whereas Fig. 2b overlays the distribution of physical
nodes into aggregator zones. An aggregator uses the 𝐿𝐿 to collect
bids submitted by prosumers, verify local state information, and update
individual prosumer budgets after verification. Aggregators access the
𝐺𝐿 for distributed pricing and verification algorithms and for sharing
global information with other aggregators. All information exchanges
and history between participants are handled through smart contracts
for reading, writing, and storing in distributed ledgers.
4

Fig. 3 depicts the implementation of policies under a single solving
window 𝑖 divided into three stages. Stage 1 refers to the Open Bidding
Window in which prosumers submit bids for 𝑖+1. Aggregators execute
the verification algorithm based on measurements collected for 𝑖−1.
Hence stage 1 includes execution of the verification policy and then the
billing policy. Stage 2 refers to the Closed Bidding Window in which
the aggregators execute the distributed pricing algorithm for 𝑖+1. Stage
3 refers to the Update Dispatch Window in which aggregators update
the prosumers’ schedules.

In Sections 3 and 4 the paper details the pricing algorithm and
verification policies respectively, along with mechanisms that ensure
the integrity of the decision-making process. The numerical perfor-
mance via simulations in Section 5 and the implementation of the cyber
architecture on HLF described in Section 6 conclude the paper.

3. EVE distributed pricing algorithm

Pricing and scheduling decisions are illustrated for a single solving
window, as shown in Fig. 3. The period is split into 𝑇 smaller discrete
intervals of unit duration, all in the set 𝑖 = {𝑖𝑇 ,… , (𝑖 + 1)𝑇 − 1}.
Within each period, 𝑖, bus 𝑏 is connected to assets that either supply or
demand power. Net real power generation of bus 𝑏 at time 𝑡 is denoted
by 𝑝𝑏(𝑡). Positive and negative values of 𝑝𝑏(𝑡) indicate that bus 𝑏 is
supplying power to the grid or consuming from the grid, respectively.
Neglecting losses, the total power schedule managed by aggregator
𝑛 ∈  , 𝑝(𝑛)(𝑡), is the sum of power from each individual bus 𝑝𝑏(𝑡)
associated with it:

𝑝(𝑛)(𝑡) =
∑

𝑏∈(𝑛)𝑝𝑏(𝑡). (1)

Each component 𝑝𝑏(𝑡) must have a certain cost (disutility) and must
satisfy a set of constraints that depend on the generation and storage
capacity available at the supply side, as explained in Section 3.1,
that determines the optimal schedule. In Section 3.2, we describe a
decentralized dual decomposition algorithm to solve a power balancing
problem between different aggregators with a dual variable reflecting
the price of energy. Related works [8,49] use a similar dual decompo-
sition algorithm to solve a distributed problem between an aggregator
and its customers, with the former reflecting its internal energy pro-
curement cost function through iterative retail pricing and the latter
trying to minimize deviation from a pre-determined aggregate power
profile. Our work differs in that we are only modeling a decentralized
energy market mechanism (hence no central provider) while leveraging

the distributed ledger to ensure the liquidity of purchasers.
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3.1. Flexible resource model

The power injection trajectory 𝒑𝑏 = [𝑝𝑏(𝑖𝑇 ),… , 𝑝𝑏((𝑖 + 1)𝑇 − 1)]⊺ ∈
R𝑇×1 is constrained depending on the type of energy service bus 𝑏
rovides. For example, in response to price signals, a participant may
ccept shifting to a less comfortable thermostat reference temperature,
efer use of the dishwasher, dim lights, or other actions. This section
escribes in general terms4 the inter-temporal constraints for demand
nd supply in a single period 𝑖 (𝑖 is omitted for brevity) and discusses

associated cost functions 𝐶𝑏(𝒑𝑏).
For each aggregator 𝑛 and bus 𝑏, the load profile can be split into

a flexible component, that changes based on price, and an inflexible
one that prosumers are willing to buy at any price. In the literature,
𝒑𝑏 is typically modeled by a linear, affine function of a corresponding
control signal 𝒖𝑏, i.e., for all 𝑏 ∈ (𝑛), 𝑛 ∈  :

𝒑𝑏 = 𝑨𝑏𝒖𝑏 + 𝓵𝑏, 𝑝𝑏(𝑡) ∈ 𝑝
𝑏 , 𝒖𝑏 ∈ 𝑏 (2)

where 𝓵𝑏 is the inflexible part of the load, 𝒑 and 𝒖 are column vectors,
the set 𝑏 is related to the flexibility that can be offered to adjust the
shape of the profile, and 𝑝

𝑏 expresses operational constraints on how
he asset can inject power.5 Control signal constraints are mapped to
𝑏 using 𝑨†

𝑏 as follows:

𝑏 ∈ 𝑏, 𝑏 = {𝒑|𝑨†
𝑏(𝒑 − 𝓵𝒃) ∈ 𝑏, 𝑝(𝑡) ∈ 𝑝

𝑏 , 𝒑⊺λ ≤ 𝑟𝑏} (3)

where the constraints 𝑏 are linear, meaning that 𝒑𝑏 lies within a
olygon. In (3), λ denotes the price of energy over the horizon, 𝑟𝑏

denotes the budget, and 𝒑⊺𝑏λ ≤ 𝑟𝑏 denotes the affordability constraint.
The cost to prosumer 𝑏, 𝐶𝑏(𝒑𝑏), is the price the customer is willing

to pay, or the price the supplier is willing to be paid to generate for
a certain amount of power. 𝐶𝑏(𝒑𝑏) is a convex function of 𝒑𝑏. The
cost function simultaneously reflects the utility and cost for prosumers
that can switch between producing and consuming, respectively, with
𝑝𝑏(𝑡) ≥ 0 representing the supply utility function and 𝑝𝑏(𝑡) < 0
representing the demand cost function.

This generic model can be applied to various resources including
renewable generation, TCLs, storage devices, DAs, and EVs. Appendix A
shows examples of such models and cost functions for supplemental
study.

4 Specific examples are given in Appendix A.
5 Later integrality constraints will be relaxed in either 𝑏 or 𝑝

𝑏 , and
e replaced with convex constraints to guarantee a convex market clearing
roblem required for the convergence of the pricing algorithm.
5

.2. Distributed pricing and scheduling algorithm

Each aggregator can buy or sell power for the distributed resources
onnected to (𝑛). Let (𝑛) = {𝑛(1),… , 𝑛(|(𝑛)

|)}, where 𝑛(𝑖) denotes the
th bus of aggregator 𝑛. The power profile of aggregator 𝑛 is:
(𝑛) =

(

𝑝(𝑛)(𝑖𝑇 ),… , 𝑝(𝑛)((𝑖+1)𝑇 −1)
)⊺ =

∑

𝑏∈(𝑛)

𝒑𝑏 (4)

here 𝒑𝑏 is the profile of one of the flexible resources at a bus 𝑏 ∈ (𝑛).
e shall also define the following matrix:
(𝑛) =

(

𝒑𝑛(1),… ,𝒑𝑛(|(𝑛)
|)
)⊺ (5)

whose rows are prosumers’ profiles contributing to 𝒑(𝑛). The aggregated
load profile is the sum of individual components, i.e., 𝒑(𝑛) = 𝑷 (𝑛)⊺𝟏,
where 𝟏 = {1}|(𝑛)

|×1. The demand cost for aggregator 𝑛 for a certain
set of schedules 𝑷 (𝑛) is described by:

C(𝑛)(𝑷 (𝑛)) ≜
∑

𝑏∈(𝑛)

𝐶𝑏(𝒑𝑏) (6)

The feasible set of matrix profiles 𝑷 (𝑛) that can be chosen by the
aggregator must lie in the Cartesian product of the feasible sets for the
tuple of profiles 𝒑𝑏 ∈ 𝑏, 𝑏 ∈ (𝑛), meaning:

𝑷 (𝑛) ∈ 𝑛(1) ×⋯ × 𝑛(|(𝑛)
|) ≜  (𝑛) (7)

Algorithm 1 Prosumer pricing interaction; A step-by-step implemen-
tation of (9) to (11) from the perspective of a prosumer 𝑏 ∈ (𝑛). 𝐿𝐿𝑛
refers to the local ledger to aggregator 𝑛 ∈  , with ⇐ and ⇒ indicating
writing to and reading from the ledger, respectively.
1: Wait until bidding interval starts:
2: 𝐿𝐿𝑛 ⇐ 𝑏 (constraints) and 𝐶𝑏 (cost function).
3: Wait until dispatch horizon starts.
4: if Dispatch instruction ready on ledger then
5: 𝐿𝐿𝑛 ⇒ Read dispatch instruction 𝒑𝑏.
6: Execute dispatch instruction 𝒑𝑏.
7: else
8: Execute most recent 𝒑𝑏 instruction.
9: end if

If transmission constraints are relaxed and the algorithm only bal-
ances instantaneous power, the optimum market clearing requires solv-
ing:

min
(1) (𝑁)

∑

C(𝑛)(𝑷 (𝑛)) s.t.
∑

𝑷 (𝑛)⊺𝟏 = 𝟎, 𝑷 (𝑛) ∈  (𝑛) (8)

𝑷 ,…,𝑷 𝑛∈ 𝑛∈
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Fig. 4. A single solving window for distributed pricing ordered from (i) individual buses submit their costs and constraints, (ii) aggregators collect bus costs and constraints, (iii)
aggregators iterate pricing algorithm, (iv) aggregators push dispatch solution to ledger, and (v) individual buses read dispatch solution.
The Lagrange multiplier of the balance constraint ∑

𝑛∈ 𝑷 (𝑛)⊺𝟏 = 0 in
(8) λ expresses the shadow price of energy over the horizon in (3),
λ = (𝜆(𝑖𝑇 ),… , 𝜆((𝑖 + 1)𝑇 − 1))⊺. Also, this is an instance of the network
utility maximization problems which can be decomposed as detailed
next.6

For each gradient descent, given the most recent price λ𝑘 (the dual
variable), each aggregator independently attempts to minimize its cost
schedule through the following problem:

min
𝑷 (𝑛)

C(𝑛)𝑷 (𝑛) + [λ𝑘]⊺𝑷 (𝑛)⊺𝟏 s.t. 𝑷 (𝑛) ∈  (𝑛), ∀𝑛 ∈  (9)

Let 𝑷 (𝑛)
⋆ (λ𝑘) ∈  (𝑛) be the solution of (9) in response to the 𝑘th iteration

value of the vector λ𝑘 and 𝒑(𝑛)⋆ (λ𝑘) = [λ𝑘]⊺𝑷
(𝑛)
⋆

⊺
𝟏. Assuming a feasible

solution exists, the algorithm updates the price as follows in 𝐺𝐿:

λ𝑘+1 = λ𝑘 + 𝛼
∑

𝑛∈
𝒑(𝑛)⋆

⊺
(10)

Note that all the aggregators have to post their total injection based on
the current price estimate, which will stop updating as soon as:

λ⋆ = λ𝑘⋆ ∶
∑

𝑛∈
𝒑(𝑛)⋆ = 𝟎 (11)

These equations comprise the distributed and decentralized algorithms
explained for prosumers and aggregators in Algorithms 1 and 2, respec-
tively, and are visualized in Fig. 4.

A few interesting observations can be made:

1. Aggregators hide local bids and feasibility constraints from the 𝐺𝐿,
and instead they only show (expose) how they would react for the
particular price scenarios iterated through λ𝑘.

2. Because the cost and constraints of an aggregator are decompos-
able in terms of the prosumer profiles 𝒑𝑏, the problem could be
decomposed further to allow individual prosumers to keep 𝐶𝑏(𝒑𝑏)
and 𝑏 private, interacting with the aggregator in a similar manner
as shown in [51].

There are challenges with convergence of the distributed algorithm
(9) not commonly found in comparable centralized formulations. First,
the aggregate supply/demand curves must cross for a fixed price to
emerge, a standard requirement in market theory. Second, a rogue
aggregator may produce malicious values of 𝑝𝑛⋆ during the iterative

6 See e.g. [50] for its application to real time pricing.
6

Algorithm 2 Aggregator pricing algorithm; A step-by-step implemen-
tation of (9) to (11) from the perspective of aggregator 𝑛 ∈  , with ⇐
and ⇒ indicating writing to and reading from the ledger, respectively.

1: Define algorithm time limit 𝜏 and iteration limit 𝑘.
2: Wait until prosumer bidding interval ends.
3: 𝐿𝐿𝑛 ⇒ read all 𝐶𝑏, 𝑟𝑏, and 𝑏 values available on ledger, building

(𝑛) based on submitted prosumers.
4: Initialize λ▵ and 𝒑(𝑛)▵ to most recent solutions λ⋆ and 𝒑(𝑛)⋆ , or 𝟎 if no

prior solution exists.
5: Initialize λ0 ← λ▵, 𝑘 ← 0 and �̂�.
6: Build model (9) using λ0.
7: while 𝑘 < 𝑘 do
8: Solve model (9) for λ𝑘, enforcing the billing constraint for all

prosumers.
9: Retry writing solution 𝒑(𝑛)⋆ to 𝐺𝐿 until ACK received.

10: Start timer 𝜏 ← 0.
11: while Other aggregator solutions are not available from 𝐺𝐿 do
12: if 𝜏 < 𝜏 then
13: Wait 𝜀 seconds.
14: else
15: 𝐿𝐿𝑛 ⇐ 𝒑▵𝑏 for all prosumers 𝑏 ∈ (𝑛).
16: 𝐿𝐿𝑛 ⇐ 𝑟𝑏 ← 𝑟𝑏 + 𝒑▵𝑏

⊺λ▵ for all prosumers 𝑏 ∈ (𝑛).
17: Terminate algorithm, recycling last solutions.
18: end if
19: end while
20: 𝐺𝐿 ⇒ 𝒑(𝑚)⋆

⊺
λ𝑘 for all 𝑚 ∈  ⧵ {𝑛}.

21: Update λ𝑘+1 following (10) using 𝛼 = �̂�∕(𝑘 + 1).
22: if |λ𝑘+1 − λ𝑘| < 𝜖 then
23: λ⋆ ← λ𝑘.
24: 𝐿𝐿𝑛 ⇐ 𝒑⋆𝑏 for all prosumers 𝑏 ∈ (𝑛).
25: 𝐿𝐿𝑛 ⇐ 𝑟𝑏 ← 𝑟𝑏 + 𝒑⋆𝑏

⊺λ⋆ for all prosumers 𝑏 ∈ (𝑛).
26: Terminate.
27: end if
28: 𝑘 ← 𝑘 + 1.
29: end while
30: Terminate.

phase of Algorithm 2, potentially preventing the algorithm from con-

verging. There are numerous ways to detect such manipulations such

as bounding the gradient step (10), however, the details of those are
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beyond the scope of this paper and readers are referred to [52] for
additional information. Third, due to the non-convexity introduced by
the budget constraint in (3), there are no guarantees for convergence
to the global optimum. However, as this constraint is only tight for a
small number of prosumers, the problem often converges in practice.

4. EVE distributed robust state verification algorithm

While the blockchain TE framework ensures transparency and im-
mutability of transactions placed on the chain, it is still insufficient
to ensure that those transactions took place. Physical measurements
are needed to confirm power injections at each bus in the electric
grid. In a trustless system, aggregators have to cooperate to verify
measurement accuracy, noting that some aggregators (or some of the
prosumers they manage) may operate as adversaries by modifying
market operations and/or measurements to commit energy theft. The
essential tool described in Section 4.1 establishes accuracy by checking
consistency with the grid’s physical laws.

Before delving into algorithmic details, it is worth emphasizing
that the notion of distributed measurement verification introduced here
is new. The approach proposed for measurement verification consists
of solving a regression problem closely related to state estimation
in power systems fitting sensor data, but its goal is fundamentally
different. Securely estimating the entire state vector for the grid is
sufficient but not necessary to cross-validate the self-reported mea-
surements. The state variables themselves are therefore not essential,
and rather, we focus on the accuracy of reported real power injections
within an aggregator region and power flows between different aggre-
ators’ regions. This approach ensures appropriate billing aggregators
nd prosumers and permits penalties to be levied for discrepancies in
eporting. For measurements of the consumption/generation in time
indow 𝑖, we run the verification mechanism in time window 𝑖+1

as shown in Fig. 3. Considering an FDIA threat [53], our mechanism
extends the idea in [11] and adapts it to serve as a decentralized cross-
validation algorithm integrated within the EVE framework. The goal is
to extrapolate the actual power injections 𝒑(𝑛) of each aggregator 𝑛 ∈ 
from sensor measurements. Since 𝒑(𝑛) are continuous variables, this is
ot a binary decision and amounts to solving a regression problem.

.1. Physical constraints for the electric grid

Let 𝒙(𝑡) be the vector of system variables at time 𝑡, consisting of
us injection variables and branch flow variables. Here, the variables in
(𝑡) include real power injection, reactive power injection, and squared
oltage magnitude expressed as (𝑝𝑏(𝑡), 𝑞𝑏(𝑡), 𝑣2𝑏(𝑡))

⊺, ∀𝑏 ∈ . Branch flow
variables include the squared current magnitudes, real power flows,
and reactive power flows expressed as (𝑐2𝑙 (𝑡), 𝑃𝑙(𝑡), 𝑄𝑙(𝑡))⊺, ∀𝑙 ∈ 𝑒.
Let 𝒙(𝑡) include only the variables in 𝒙(𝑡) that are directly-measured
through a sensor. Measurements are noisy versions of physical param-
eters described by:

𝒛(𝑡) = 𝒙(𝑡) + 𝜖(𝑡). (12)

Within a margin of error due to the noise, these physical constraints
are a set of non-linear homogeneous equations written in vector form
as follows:

𝒉(𝒙(𝑡)) = 0 ; ∀𝑡 ∈  (13)

Appendix B specifies a possible 𝒉(⋅) using the Distflow [54] equations.

4.2. Malicious agents behavior

We assume that the adversary (a malicious agent or a group of co-
ordinating agents) is an insider who has legitimate physical and logical
access to the network and ledgers through the certification mechanism.
We also assume that the adversary is capable of manipulating sensors
7

measurements, either by compromising sensors or compromising the d
communication between sensors and aggregators. The insider is mo-
tivated to disrupt the verification process and cheat the system for
financial gain.

Utilizing sensor measurements reported at the 𝐿𝐿 level in (12) and
physical constraints in (13), we formulate a decentralized optimization
algorithm to complete the verification task using data from all sensors
under any aggregator. The optimization algorithm (detailed later in
Section 4.3.1) may be generalized into the following form:

min
𝒙(𝑛)

∑

𝑛∈
𝑓 (𝑛)(𝒙(𝑛)) (14a)

s.t. Consensus Constraints (14b)

where 𝑛 is a decentralized agent in set  7 and 𝑓 (𝑛) ∶ R𝑙 → R
is a cost function that agent 𝑛 has to minimize while cooperatively
minimizing the aggregate of cost functions from all the agents (14a),
subject to some consensus constraints (14b). Common algorithms used
to solve this problem using a certain communication graph 𝑐 ( , 𝑐 )
(14) involve iterative consensus updates to 𝒙(𝑛) ∈ R𝑙 as follows:

𝒙(𝑛)𝑘+1 =
∑

𝑚∈
𝑎𝑛𝑚𝒓(𝑚)(𝒙

(𝑚)
𝑘 ) at 𝑘 ≥ 0 (15)

where 𝑘 is the iteration index, 𝑎𝑛𝑚 ≥ 0 is a mixing weight (𝑛, 𝑚) ∈ 
such that ∑

𝑚∈ 𝑎𝑛𝑚 = 1, and 𝒓(𝑚) ∶ R𝑙 → R𝑙 is the information
received by 𝑛 from neighbor 𝑚. We see from (15) that neighbors on
the communication graph exchange information with one another in
each iteration.

The communications model is described as:

𝒓(𝑚)(𝒙(𝑚)𝑘 ) =

{

𝒙(𝑚)𝑘 , 𝑚 ∈ 
⋆, 𝑚 ∈ 

(16)

with  ⊆  and  ⊆  expressing the sets of regular and malicious
agents, respectively. That is, regular agents report their true states,
whereas malicious agents may inject false data and disrupt convergence
of the algorithm to suit their goals.

An attack by an agent results in the following update for a neighbor
𝑛:

�̃�(𝑛)𝑘+1 = 𝒙
(𝑛)
𝑘+1 + ⋆ (17)

where �̃�(𝑛)𝑘+1 is the false update and 𝒙(𝑛)𝑘+1 is the true update (if all the
neighbors communicated truthfully). For instance, a malicious agent
will attempt theft by paying less (as a consumer) or receiving a larger
compensation (as a producer). This occurs by under reporting energy
usage or over reporting generation by altering the appropriate field of
𝒛(𝑛)(𝑡) so that: �̃�(𝑛)(𝑡) = 𝒛(𝑛)(𝑡) + ⋆.

4.3. Robust state verification in the presence of FDIAs

Next, we provide details on the decentralized algorithm that allows
aggregators to cross verify if measurements of power injections are to
be trusted and, if not, which aggregators are likely responsible for the
FDIA.

4.3.1. Modeling of the optimization problem
We pose the state verification problem as a decentralized optimiza-

tion problem in which each aggregator 𝑛 ∈  has access only to
their private cost function 𝑓 (𝑛) ∶ R𝑙𝑛 → R and act on their own
private vector of system variables, 𝒙(𝑛)(𝑡). Here, 𝒙(𝑛)(𝑡) includes copies
of those variables in 𝒙(𝑡) that pertain to buses and lines inside and at
the periphery of aggregator region 𝑛 (see Fig. 5). That is,

𝒙(𝑛)(𝑡) = 𝑺(𝑛)𝒙(𝑡) (18)

7 We abuse the notation for the set of aggregators  to denote the set of
ecentralized agents in this subsection.
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where 𝑺(𝑛) is a selection matrix that extracts the appropriate entries that
make up 𝒙(𝑛)(𝑡) from 𝒙(𝑡). Since there are tie-lines between aggregator
regions, some of the entries in 𝒙(𝑛)(𝑡) will have identical counterparts
in 𝒙(𝑚)(𝑡) of a neighboring aggregator region 𝑚. For the extrapolated
injections to be valid, the regions have to match values at these tie-
lines. Failure to do so indicates an attack. The consensus constraint is,
therefore, a consensus on the tie-lines variables, that can be written as:

𝑺𝑛𝑚𝒙(𝑛)(𝑡) = 𝑺𝑚𝑛𝒙(𝑚)(𝑡), ∀𝑛 ∈  and 𝑚 ∶ 𝑛𝑚 ∈ 𝑐 (19)

where 𝑺𝑛𝑚 is the selection matrix that extracts from 𝒙(𝑛) common
variables between neighboring regions 𝑛 and 𝑚.

Thus, the goal of the set of aggregators is to minimize their in-
dividual cost functions (𝑓 (𝑛),∀𝑛 ∈  ) and the global cost function
(∑𝑛∈ 𝑓 (𝑛)) simultaneously subject to the consensus constraints (19)
defined over the communication graph, 𝑐 ( , 𝑐 ).

The optimization problem should find values of system variables,
𝒙(𝑛)(𝑡), at each aggregator 𝑛 that:

• Have the least residual error with respect to the measurements, 𝒛(𝑛)(𝑡),
to reduce measurement deviation from their corresponding system
variables (𝒙(𝑛) (𝑡)) being minimized. Letting 𝑺(𝑛)

 be the selection ma-
trix that extracts available measurements from 𝒙(𝑛)(𝑡), we can write

𝒙(𝑛) (𝑡) = 𝑺(𝑛)
 𝒙

(𝑛)(𝑡) (20)

• Have the least residual error with respect to the scheduled injections,
p⋆(𝑛)(𝑡), where the 𝑖th element of the vector is given by [p⋆(𝑛)(𝑡)]𝑖 =
𝑝𝑏𝑖 (𝑡), ∀𝑏𝑖 ∈ (𝑛). This seeks to minimize deviation of the scheduled
bus dispatch from their corresponding system variables (𝑺(𝑛)

 𝒙
(𝑛)(𝑡)),

where 𝑺(𝑛)
 is the selection matrix that extracts active power injections

variables from 𝒙(𝑛)(𝑡), and
• Fit the physical model equations, 𝒉(𝑛)(⋅),8 with the least residual error.

Power injection components, 𝑺(𝑛)
 𝒙

(𝑛), from the optimization problem
are used in EVE as the closest approximation for ground-truth billing.
The severity of deviations from the schedule

(

p⋆(𝑛)(𝑡) − 𝑺(𝑛)
 𝒙

(𝑛)
)

that

determines the penalties assigned to prosumers under a specific bus.
Finally, the state verification problem can be cast as the following

optimization problem, written in a form analogous to (14a) that is
amenable to ADMM decomposition [55]:

min
{𝒙(𝑛)(𝑡)}𝑡∈

𝑛∈

∑

𝑡∈

∑

𝑖∈
𝑓 (𝑛)(𝒙(𝑛)(𝑡)) (21a)

s.t. 𝑺𝑛𝑚𝒙(𝑛)(𝑡) = 𝑺𝑚𝑛𝒙(𝑚)(𝑡) , ∀𝑛𝑚 ∈ 𝑐 (21b)

𝒙(𝑛)(𝑡) = 𝑺(𝑛)𝒙(𝑡) , ∀𝑛 ∈  (21c)

𝒙(𝑛) (𝑡) = 𝑺(𝑛)
 𝒙(𝑡), ∀𝑛 ∈  (21d)

where:

𝑓 (𝑛)(𝒙(𝑛)(𝑡)) ∶= 𝑐1
‖

‖

‖

‖

Σ
−1∕2
𝑧(𝑛)

(

𝒛(𝑛)(𝑡) − 𝒙(𝑛) (𝑡)
)

‖

‖

‖

‖

2

2
+ 𝑐2

‖

‖

‖

𝒉(𝑛)(𝒙(𝑛)(𝑡))‖‖
‖

2

2
+

𝑐3
‖

‖

‖

p⋆(𝑛)(𝑡) − 𝑺(𝑛)
 𝒙

(𝑛)(𝑡)‖‖
‖

2

2
(22)

Here, Σ𝑧(𝑛) is the diagonal matrix such that [Σ𝑧(𝑛) ]𝑗𝑗 = variance([𝒛(𝑛)]𝑗 ).
Additionally, (21b) enforces consensus among the common variables
across neighboring regions for the constraints mentioned in (14b).

Remark 4.1. The terms 𝑐1, 𝑐2, 𝑐3 denote the weight of the penalty
levied on the solution if their respective objectives are violated. The
third term penalizes a solution that is further from the schedule, and
in noting this might hinder the verification step, practical applications
can choose 𝑐3 such that 𝑐3 ⋘ 𝑐1, 𝑐2.

8 Definitions of the functions 𝒉(𝑛)(⋅) are given in Appendix B.
8

Fig. 5. State verification architecture for a test case with five aggregator regions.

4.3.2. Iterative update rule
In this section, we present equations that iteratively update state

variables vectors to arrive at the solution to problem (21). First, we
define two matrices that assist in formulating rules for iterative updates.
Suppose that 𝑙𝑛 is the number of variables pertaining to aggregator
region 𝑛, then 𝑫(𝑛) ∈ R𝑙𝑛×𝑙𝑛 is a diagonal matrix with [𝑫(𝑛)]𝑗𝑗 equal
to the number of regions with which region 𝑛 has the 𝑗th variable of
𝒙(𝑛) in common, ∀𝑗 ∈ [𝑙𝑛]. Similarly 𝑫

(𝑛)
∈ R𝑙𝑛×𝑙𝑛 is also a diagonal

matrix such that [𝑫
(𝑛)
]𝑗𝑗 = 1∕[𝑫(𝑛)]𝑗𝑗 if [𝑫(𝑛)]𝑗𝑗 ≠ 0, and [𝑫

(𝑛)
]𝑗𝑗 = 0 if

𝑫(𝑛)]𝑗𝑗 = 0.
To arrive at the minimizer of the problem in (21) for an interval

∈ 𝑖, the updates in (23) are executed iteratively ∀𝑘 ≥ 0 until a
ermination condition is satisfied9:

𝒙(𝑛)𝑘+1 =
(

𝑐1𝑺
(𝑛)


⊺
Σ−1

𝑧(𝑛)
𝑺(𝑛)
 + 𝑐2𝑯 (𝑛)⊺𝑯 (𝑛) + 𝑐3𝑺

(𝑛)


⊺
𝑺(𝑛)
 + 𝑐4𝑫(𝑛)

)−1

×
(

𝑐1𝑺
(𝑛)


⊺
Σ−1

𝑧(𝑛)
𝒛(𝑛) + 𝑐3𝑺

(𝑛)


⊺
p⋆(𝑛) + 𝑐4𝑫(𝑛)𝝊(𝑛)𝑘

)

(23a)

𝝍 (𝑛)
𝑘+1 =𝑫

(𝑛) ∑

𝑚∶𝑛𝑚∈𝑐

𝑺⊺
𝑛𝑚𝑺𝑚𝑛𝒙

(𝑚)
𝑘+1 (23b)

𝝊(𝑛)𝑘+1 =𝝊
(𝑛)
𝑘 + 𝝍 (𝑛)

𝑘+1 − 0.5
(

𝝍 (𝑛)
𝑘 + 𝒙(𝑛)𝑘

)

(23c)

here 𝑯 (𝑛) is defined in Appendix B with variables initialized as:

𝒙(𝑛)0 ∈ R𝑙𝑛 … initialize arbitrarily (24a)
(𝑛)
0 = 𝑫

(𝑛) ∑

𝑚∶𝑛𝑚∈𝑐

𝑺⊺
𝑛𝑚𝑺𝑚𝑛𝒙

(𝑚)
0 (24b)

𝝊(𝑛)0 = 1
2

(

𝝍 (𝑛)
0 + 𝒙(𝑛)0

)

. (24c)

Algorithm 3 describes the iterative process in (23) with a pictorial
representation of the algorithm given in Fig. 5. Buses in each aggregator
region 𝑛 have access to their local ledgers 𝐿𝐿𝑛. The aggregators, in
addition to their local ledger, also have access to 𝐺𝐿. The aggregator
collects measurements from their buses and stores them on 𝐿𝐿𝑛. Results

9 For the sake of readability, we write 𝒙(𝑛) instead of 𝒙(𝑛)(𝑡) and use 𝒙(𝑛)𝑘 to
denote iterates of the algorithm where 𝑘 is the iterate.
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after an ADMM update are also saved in 𝐿𝐿𝑛 for each aggregator. Ag-
gregators exchange state elements that correspond to tie-line variables
with a neighbor as shown in Fig. 5.

Algorithm 3 Robust state verification; A step-by-step implementation
from the perspective of aggregator 𝑛 ∀𝑛 ∈  . Here 𝐿𝐿𝑛 ∀𝑛 ∈  and 𝐺𝐿
represents the local and global ledgers respectively. The symbol 𝑎 ⇐ 𝑏
orresponds to upload from 𝑏 to 𝑎.
1: 𝐿𝐿𝑛 ⇐ Collect local measurements 𝒛(𝑛)(𝑡).
2: Initialize ADMM states according to (24), trust score 𝝅 = 𝟎, and

disagreements 𝑑𝑛𝑚 = 0, ∀𝑛𝑚 ∈ 𝑐 .
3: repeat
4: 𝝅− ← 𝝅 and [𝒙(𝑛)(𝑡)]− ← 𝒙(𝑛)(𝑡).
5: ADMM update of 𝒙(𝑛)(𝑡) according to Eq. (23a).
6: Send common variable information to neighbors via the 𝐺𝐿

with ABAC control: 𝐺𝐿 ⇐ {𝑺 𝑖𝑗𝒙(𝑛)(𝑡) ∣ 𝑚 ∶ 𝑛𝑚 ∈ 𝑐}.
7: Receive common variable information from neighbors:

{𝑺𝑚𝑛𝒙(𝑚)(𝑡) ∣ 𝑚 ∶ 𝑛𝑚∈𝑐 , 𝑚 sent information}⋃

{𝑺𝑚𝑛𝒙(𝑚)(𝑡 − 1) ∣ 𝑚 ∶ 𝑛𝑚 ∈
𝑐 , 𝑚 did not sendinformation} ⇐ 𝐺𝐿.

8: Update intermediate states according to (23b) and (23c).
9: Run Algorithm 4 to update 𝝅 and 𝑑𝑛𝑚, ∀𝑚 ∶ 𝑛𝑚 ∈ 𝑐 .
0: until One of the termination conditions T1. or T2. is satisfied
1: Restart the algorithm with {𝑐 ⧵

(

argmax𝑛 𝜋𝑛
)

}.

4.3.3. Threat model specific to RSV
The updates in (23b) to (23c) involve aggregating the shared state

variable 𝒙(𝑛) from agent 𝑛 with the same state variable from its neigh-
bors, similar to the updates in (15). Yet Section 4.2 showed that
approach to be vulnerable to FDI attacks via (17), thus indicating (23b)
is also vulnerable to malicious injections by neighbors.

A malicious user in region 𝑚 may modify values of its input mea-
surements to affect the aggregator’s measurement vector as follows:

𝒛(𝑚) = 𝒛(𝑚) + 𝒂(𝑚)

where the perturbation 𝒂(𝑚) has non-zero entries in the locations that
correspond to false sensor measurements. Similarly, if the aggregator
itself acts maliciously, it can inject false data (as seen in (16)) into the
updates of 𝑺𝑚𝑛𝒙(𝑚) that are passed to a neighbor aggregator 𝑛 in (23b).
Both changes lead to discrepancies in neighboring aggregators updates
as follows:

�̃� (𝑛)
𝑘 (𝑡) =𝝍 (𝑛)

𝑘 (𝑡) +𝑫
(𝑛)
𝑺⊺
𝑛𝑚𝑺𝑚𝑛𝒂

(𝑚)
𝑘 (𝑡) (25)

�̃�(𝑛)𝑘 (𝑡) =𝝊(𝑛)𝑘 (𝑡) +𝑫
(𝑛)
𝑺⊺
𝑛𝑚𝑺𝑚𝑛𝒂

(𝑚)
𝑘 (𝑡) (26)

�̃�(𝑛)𝑘+1(𝑡) =𝒙
(𝑛)
𝑘+1(𝑡) + 𝑐4𝑴𝑫(𝑛)𝑫

(𝑛)
𝑺⊺
𝑛𝑚𝑺𝑚𝑛𝒂

(𝑚)
𝑘 (𝑡) (27)

here 𝑴 =
(

𝑯 (𝑛)⊺𝑯 (𝑛) + 𝑺(𝑛)


⊺
𝑺(𝑛)
 + 𝑺(𝑛)


⊺
𝑺(𝑛)
 + 𝑐4𝑫(𝑛)

)−1
and (27) is

nalogous to the discrepancy in (17) where the inaccurate update is
modified version (�̃�(𝑛)𝑘+1(𝑡)) of the true update (𝒙(𝑛)𝑘+1(𝑡)).

The FDIAs will be successful at creating algorithm divergence, or
onvergence to a false optimum, if the ADMM updates in (23a) to (23c)
re used to solve (21a). Algorithm divergence is a special case of a
enial of Service attack in which aggregators are unable to complete

he verification process.
An additional area of concern is stealth attacks where the attacker

njects a sparse vector, 𝒂(𝑛). Here, non-zero entries of the attack vector
orrespond to the sensors being attacked, such that the constraint in
28) is satisfied even with the perturbed state:
(𝑛)(𝒙(𝑛) + 𝑺(𝑛)


⊺
𝒂(𝑛)) = 0 (28)

here 𝒙(𝑛) corresponds to the true variables. Here, without any change
n the loss function in the state verification problem (21a), the attacker
9

s still able to alter the algorithm’s output. These types of attacks are
nly possible when a malicious aggregator can gain complete knowl-
dge about its neighbors’ parameters. Such attacks are tough to detect,
nd even harder to mitigate, in the absence of a specially imposed
tructure on the actual measurement vectors. In practice, specially
esigned sparsity patterns for sensors can prevent such attacks.

.3.4. Detection of the malicious agent
Methods proposed in [11] are employed to detect an attack as

resented in Algorithm 4. Algorithm 4 is a detection subroutine with
he robust state verification of Algorithm 3.

Algorithm 4 Detection loop; 𝐹 (𝑑𝑛𝑚,𝑺𝑛𝑚𝒙(𝑛)(𝑡),𝑺𝑗𝑖𝒙(𝑚), ∀𝑚 ∶ 𝑛𝑚 ∈ 𝑐)

1: Set 𝛼, 𝜖 = 10−16

2: Calculate 𝑑𝑛𝑚 ∀𝑚 ∶ 𝑛𝑚 ∈ 𝑐 according to (29).
3: Calculate [𝑩]𝑛𝑚∀𝑚 ∶ 𝑛𝑚 ∈ 𝑐 according to (30).
4: Submit [𝑩]𝑛∶ to 𝐺𝐿 until ACK received.
5: [𝑩]𝑚∶ ⇐ 𝐺𝐿,∀𝑚 ∈  ⧵ {𝑛}
6: Compute 𝝅, the left principle eigenvector of 𝑩.
7: return 𝝅 and 𝑑𝑛𝑚, ∀𝑚 ∶ 𝑛𝑚 ∈ 𝑐 .

In Algorithm 4, each region 𝑛 calculates a measure of disagreement,
𝑑𝑛𝑚, in the shared variables with a neighboring region 𝑚 as:

𝑑𝑛𝑚 = (1 − 𝛼𝑘)𝑑𝑛𝑚 +
𝛼𝑘∕4

|𝑺𝑛𝑚𝒙(𝑛)(𝑡)||𝑖|

∑

𝑡∈𝑖

‖

‖

‖

𝑺𝑛𝑚𝒙(𝑛)(𝑡)−𝑺𝑚𝑛𝒙(𝑚)(𝑡)
‖

‖

‖

2

𝐹
(29)

nd the matrix of normalized disagreement scores 𝑩:

𝑩]𝑛𝑚 =
𝑑𝑛𝑚

∑

𝑚′∶𝑛𝑚′∈𝑐 𝑑𝑛𝑚′ + 𝜖
. (30)

he left principal eigenvector, 𝝅, of 𝑩 is then calculated. The value of
𝝅‖2 and the location of the highest element of 𝝅 represent the presence
f an attack and the index of the most likely attacker, respectively [11].

To mitigate the impact of FDIA, line 11 is added to Algorithm 3 to
estart the algorithm after isolating the identified attacker. However,
he structure of the communication graph can cause misidentification
rrors, resulting in divergence in the proposed algorithm. Conver-
ence can be guaranteed provided the following condition is met when
stablishing the structure of the communication graph:

heorem 1 (Proposition 3 [11]). Consider a system with 𝑁 > 2 regions,
f (𝑖) there exists a 3-clique in the graph 𝑐 and if (𝑖𝑖) for finite 𝑘 the RSV
oes not converge, then the stationary distribution 𝝅𝑘 exists and it is unique
nd can be computed.

.3.5. Termination conditions
Algorithm 3 terminates when either of the following two conditions

s satisfied.

1. The first condition is met when an aggregator converges, i.e.,
‖

‖

‖

𝒙(𝑛)𝑘 (𝑡) − 𝒙(𝑛)𝑘−1(𝑡)
‖

‖

‖∞
≤ 𝜖 (31)

2. The second condition is met when all aggregators have agreed
about the presence and identity of an FDI attacker, i.e.,

‖

‖

𝝅𝑘 − 𝝅𝑘−1‖‖∞ ≤ 𝜖𝜋 and 𝜋𝑚 > 𝜇𝑚(𝝅) + 𝛽𝜎𝑚(𝝅) (32)

for some 𝛽 > 0, 𝑚 ∈ 𝑛, where each agent 𝑛 calculates 𝜇𝑚(𝝅) and
𝜎𝑚(𝝅) as the excluded average and excluded standard deviation,
respectively:

𝜇𝑚(𝝅) =
1

|𝑛| − 1
∑

𝑚′∈𝑛⧵{𝑚}𝜋𝑚′

𝜎𝑚(𝝅) =
√

1
|𝑛| − 1

∑

𝑚′∈𝑛⧵{𝑚}
|𝜋𝑚′ − 𝜇𝑚′ (𝝅)|2

(33)
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Fig. 6. 𝑒 is the network graph corresponding to the 141 bus radial distribution network. The network in the box shows the communication graph 𝑐 with the nodes representing
aggregators.
4.3.6. Placement of measuring instruments
Partitioning the electric grid into 𝑁 aggregator regions must be

done according to a ruleset. Recovering a unique 𝝅𝑘 during the con-
vergence failure of the RSV algorithm requires the presence of at least
one 3-clique in the communication graph 𝑐 (Theorem 1). However, the
radial structure of the distribution grid and the requirement for each
aggregator region to contain a contiguous set of buses limits the number
of possible 3-cliques on 𝑐 . A possible solution is to allow aggregators
o access a small amount of sensor measurements from the neighboring
ggregators to improve accountability at the expense of privacy.

. Numerical simulation

This section demonstrates performance of the distributed pricing
nd robust state verification algorithms before describing implemen-
ation on HLF in Section 6.

.1. Simulation setup

Fig. 6 shows the radial MATPOWER [56] 141 bus distribution
etwork used as the demonstration case. The distribution network is
eparated into 7 aggregator zones (𝑁 = 7). The choice of 𝑁 and
istribution of buses within 𝑁 is selected to increase common state
ariables between aggregators and to increase the number of 3-cliques
n the communication graph (𝑐 in Fig. 6) to satisfy the required
onditions introduced in Section 4.3.6. The utility is represented as
he substation and belongs to the first aggregator. A total of 3900
rosumers are placed randomly across the distribution network. The
otal number of prosumers is arbitrary selected and sufficiently high
o show algorithm scalability. The distributed pricing algorithm is run
or six(6) ten-minute intervals to create a one-hour look-ahead window
s a common duration of interest. The choice of interval length and
he number of intervals can be selected to match local or regional
uidelines on settlement time frames since the generalized formulations
re independent of the length and number of intervals.

.2. Distributed pricing

Each aggregator includes EVs, energy storage devices, DAs, ther-
ostatically controlled loads (TCLs), and renewables, as summarized

n Fig. 7, with each aggregator including a similar percentage of
ach prosumer type (generated randomly). Each prosumer has differ-
nt properties and cost/utility functions uniformly sampled from an
10
Fig. 7. Asset types within each aggregator region.

identical distribution. Renewables are configured as price-takers (they
have no cost/utility), TCLs have a quadratic cost function demanding
payments for deviations from their thermostat reference temperature,
storage devices require a linear payment proportional to their usage,
and DAs and EVs have a linear cost function. The slack bus has a
quadratic cost function.

Cost/utility functions and prices are represented by an arbitrary
monetary unit in which the price reflects the marginal cost of increasing
load by a ‘‘single unit’’. Any changes in asset cost parameters are
expected to influence the converged price of (9).

Power transfer between different resources is shown in Fig. 8a. The
slack bus is a net generator (as the utility) since all other aggregators
are composed mostly of consuming loads. Fig. 8b shows prices for each
time interval in the one-hour look-ahead window and how those prices
evolve as the distributed algorithm iterates to solve all dispatches and
prices for all intervals at once. The price only fluctuates by approxi-
mately 2% across the iterations because of the significant load shifting
behavior of flexible resources. A total of 28 out of 3900 prosumers
are budget-constrained (need to curtail consumption due to insuffi-
cient funds); however, the algorithm converges without problems, even
though convergence is not guaranteed.

To summarize, given a reasonable initial price for the algorithm,
typically obtained from the previous solution, the algorithm solves
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Fig. 8. (a) Power transfer between different resources (b) Progression of the shadow
rice λ𝑘 as Algorithm 2 iterates, with each line denoting an element of λ which reflects

price for a particular interval.

in a distributed fashion the optimal schedule of all aggregators in a
small number of iterations (< 100 in this illustrative example) while

anaging to honor the individual budget constraint. As mentioned in
ection 3.2, convergence is not guaranteed due to the non-convexity
ntroduced by the budget constraint in (3), which may lead to cyclic
ehavior in the gradient descent. However, for a low number of active
onstraints, the method often works as was the case in our experi-
ents. This approach chooses an epsilon (Step 22 in Algorithm 2) that

xpresses the price difference between iterations to determine when
rices have stabilized, and hence iterations conclude.

The approach developed here for distributed pricing can easily be
dapted to the scenario when each prosumer can trade power directly
ather than working through an aggregator. In that case, each pro-
umer will participate in the iterative pricing algorithm by interacting
ith the blockchain architecture through smart contracts as shown in
ection 6.2. And while that approach is possible with the generalized
athematical framework introduced here, the authors advise caution as
11

o

Fig. 9. Real power injections (in MW) by common nodes of aggregators 0 and 1 (a)
Convergence to the optimal point under no attack (b) Convergence to a non-optimal
point when aggregator 0 is an attacker.

the approach will be computationally burdensome because the number
of market participants engaging with the 𝐺𝐿 has an exponential ef-
fect on the number of transactions and hence slows the convergence
process.

5.3. Distributed verification

Verification algorithm Algorithms 3 and 4 presented in Section 4
are demonstrated here with the following parameters: 𝜖𝜋 = 1𝑒 − 3,
𝜖 = 1𝑒 − 3, 𝛼𝑘 = 1∕𝑘, 𝑐3 = 𝑐4 = 0.5, 𝛽𝑛 = 2, ∀𝑛 ∈  . Measurements
f available variables, 𝒙, were noisy versions of MATPOWER power
low output for the 141 bus radial distribution feeder case. The noise,
𝑤𝑛, was chosen to be Gaussian with zero mean and a variance of 1.

To illustrate the veracity of the verification algorithm, we set one
f the aggregators, 𝑚, to be a malicious entity capable of injecting false
ata into its communications with neighboring aggregators. The FDI
ttack from aggregator 𝑚 constitutes an injection from attack vector
(𝑚𝑛) to the communications received by a neighboring aggregator 𝑛
f the attacker in (23b). In each iteration of the algorithm, the attack
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Fig. 10. The stationary distribution, 𝝅, of 𝑩 under FDI attack. 𝝅 represents the trust
score: higher the value of 𝜋agg{𝑛}, lower is the trust in aggregator 𝑛. In scenario 𝑚,
agg{𝑚} is the attacker.

vector is chosen randomly subject to ‖

‖

‖

𝒂(𝑚𝑛)‖‖
‖2

= 0.5
√

|𝑺𝑚𝑛𝒙(𝑚)(𝑡)|, where
𝑺𝑚𝑛𝒙(𝑚)(𝑡)| is the length of the vector 𝑺𝑚𝑛𝒙(𝑚)(𝑡), i.e., the number of
ommon variables shared by region 𝑚 and its neighbor 𝑛.

Consider an example with aggregators 0 and 1 that has buses 42,
3, 54, and 73 as adjacent nodes with common variables between two
ggregator regions as shown in the network topology of Fig. 6. Common
ariables include real power injection, reactive power injection, and
oltage magnitude. Fig. 9a shows convergence of the four sets of
ommon variables (one for each bus) shared by aggregators when there
s no attack, whereas Fig. 9b shows their divergence when region 0 is
n attacker. In Fig. 9a, both aggregators converge to the optimal point
⋆
𝑏 , ∀𝑏 ∈ {42, 43, 54, 73}. The attack in Fig. 9b creates a situation in
hich the parameters reach to the same value yet do not converge
t the optimal point. This prevents the verification algorithm from
ompleting. The subroutine described in Algorithm 4 aims to stop
uch attacks from occurring by tracking disagreements in the common
ariables between neighbors and identifying the most likely attacker.

The detection of FDI attacks from selfish entities on the TE market
s accomplished using the stationary distribution 𝝅 of the disagreement
atrix 𝑩, as discussed in Section 4.3.4. Fig. 10 shows results for
= 7 in which each aggregator is shown to be the attacker. Each set

ontains seven bars representing the element of vector 𝝅 corresponding
o each of the seven aggregators. As the height of the bar increases, that
ggregator is seen as more untrustworthy by the other aggregators. For
xample, in scenario 0 where agg0 is the attacker, the corresponding
ar plot indicates that the network of aggregators trust agg0 the least
i.e., 𝜋agg0 is highest, as calculated in line 6 of Algorithm 4). Similarly,
n the other scenarios, we observe that the corresponding attacker
masses the lowest trust level.

It is worthwhile to discuss the distribution of distrust in the network.
he distrust is spread among aggregators 0, 1, and 3 considering
cenario 0. This can be explained by reflecting on node connectivity
f the 𝑐 graph in Fig. 10, in which agg1 and agg3 are neighbors
f agg0. In scenario 4, where agg4 is the dishonest entity, we note
hat agg4 is the most untrustworthy, yet it is not as untrustworthy as
he attackers in other scenarios. We also notice that distrust is more
venly spread across all aggregators in this scenario. In referring to
𝑐 , the reason for this outcome could occur because aggregator 4 has
he highest betweenness centrality and is the only cut vertex in the
etwork,10 i.e., agg4 controls information flow between the two clusters

10 A vertex in an undirected connected graph is a cut vertex iff removing
t (and edges through it) disconnects the graph or creates more components
han the original graph.
12

p

(aggregators 0, 1, 2, 3; and aggregators 5, 6). For the communication
graph 𝑐 , agg4 dictates the spread of disagreements amongst the aggre-
gators from either cluster. This process to identify attackers will then
permit restart of the algorithm to complete the verification process. As
billing then occurs the guilty party is penalized, fined, or disconnected
from participating in the transactive energy network.

6. Design and implementation on HLF

This section details implementation on HLF of the CPS described in
Section 2, using the pricing algorithm from Section 3, and the verifica-
tion algorithm in Section 4. The choice of a permissioned blockchain
architecture, such as HLF, allows consensus protocols that are far less
energy-intensive than the proof-of-work consensus protocols employed
by permissionless blockchain architectures [57].

6.1. Network setup

The ordering service for any blockchain framework requires a con-
sensus protocol to ensure unambiguous ordering of transactions and
guaranteed integrity and consistency of the blockchain across dis-
tributed nodes. The developed framework is adaptive to the currently
supported Solo, Apache KAFKA, and RAFT algorithms for withstanding
crash faults as an ordering service.

Each aggregator is assigned a unique Certificate Authority (CA) [12]
that is responsible for dynamically generating certifications (identities)
for authenticating prosumers under each aggregator’s purview. When
joining the network, an individual prosumer shares information on
their type of distributed energy resource and requests a new set of
credentials with a unique prosumer identification (ID) from their as-
sociated aggregator. The credential issued by the aggregator includes a
resource specific attribute in addition to the unique ID. Unlike prior
works [32], here the ID is embedded in the prosumer’s certificate
to add additional security to the issued certificate for that prosumer.
Any interaction between the blockchain network and an aggregator re-
quires admin identities [12]. In contrast, any communication between
EVE and a prosumer involves the use of prosumer’s unique identity
generated by the respective CA.

The use of ‘‘channels’’ here provides the required isolation between
individual aggregators and prosumers [58]. Each transaction in EVE
is channel-specific and no data can pass among channels, ensuring pri-
vacy and efficient handling of parallel transactions. The EVE blockchain
uses 𝑁 + 1 number of separate channels (one channel for each of the
𝑁 individual aggregator for accessing the corresponding 𝐿𝐿, plus one
commonchannel among aggregators accessing the 𝐺𝐿) to handle access
to smart contracts and the ledger. A specific transaction with a specific
ledger requires invoking the appropriate smart contract.

6.2. Implementation of EVE through smart contracts

Table 1 lists associations between channels, smart contracts, ledgers,
and participant access control. Interactions between smart contracts is
summarized in Figs. 11 and 12 for pricing and verification, respec-
tively. Pricing and verification algorithms are written in Python as
external applications. Node.js applications are developed to handle
ommunications between external applications and smart contracts
llowing read and write operations to appropriate ledgers. Note that
ach application interacts with different smart contracts to accomplish
ts required objective.
Account Contract (ACT) manages aggregator-level information

uch as total production/consumption and associated total cost at the
us-level. At the beginning of the bidding window, each aggregator
s required to establish their respective bus information by creating
imestamped entries in the 𝐺𝐿 through ACT.
Bid Contract (BC) contains a set of functions to manage individual

rosumer bids, dispatch values, and budget information. This contract
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Fig. 11. Graphical depiction of pricing Algorithms 1 and 2 using smart contracts and ledgers for aggregator 𝑛 ∈  .
Table 1
List of channels and associated smart contracts, ledgers, and participant access for  = {0,… , 6}.

Channel Installed smart contract Ledger access Participant access

Commonchannel Account Contract, Record Contract 𝐺𝐿 Aggregator 𝑛; ∀𝑛 ∈ 
Agg{𝑛}channel Bid Contract, Measurement Contract 𝐿𝐿𝑛 Aggregator 𝑛 ∈  and all prosumers 𝑏 ∈ (𝑛); 𝑛 ∈ 
o
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p
n
a
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t
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n
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h
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allows a prosumer to use its certificate to submit any number of bids
within the bidding window. However, only the last submitted bid
within the bidding window is accepted by each aggregator. When
submitting a bid, the prosumer is required to provide its asset type
(i.e., EV, renewable generation, DA, TCL, storage device, and inflex-
ible load) and corresponding parameters. The smart contract extracts
the prosumer’s ID from the certificate and ties the submitted bid
with the prosumer’s unique identity to prevent malicious prosumers
from impersonating other prosumers. After the bidding window closes,
the aggregator queries submitted bids with their associated budgets
from the 𝐿𝐿 through the aggregator’s dedicated channel. The aggre-
gator then executes the distributed pricing algorithm by exchanging
information with other aggregators.

Record Contract (RC) is responsible for data exchange for the
terative pricing algorithm through 𝐺𝐿. After achieving convergence,

each aggregator updates its prosumers’ dispatch and cost information in
the 𝐿𝐿, and bus dispatch values in the 𝐺𝐿 for future verification. This
iteration can be computationally intensive because each interaction
(reading and writing) with the 𝐺𝐿 is a transaction in HLF.

Measurement Contract (MC) handles local measurements from
smart meters installed within individual aggregator zones for future
verification purposes. Note that the developed algorithm is independent
of the sensor location, allowing smart meters to be placed randomly in
each aggregator zone for illustration purposes here. The EVE frame-
work can accept measurements at each interval of  as separate
transactions or all measurements for 𝑇 intervals at the same time as

single transaction. The distributed verification step is always one
ime step behind the distributed pricing algorithm. For the simulated
ramework, data from smart meters are generated by solving a non-
inear AC power flow problem using the prosumers’ dispatch values
s input and then adding noise to it. The RC handles information
xchange for the distributed verification process. Each transaction is
ssigned a type to ensure separation of entries inside RC for pricing
nd verification, thus allowing the use of a single smart contract to
andle both iterative algorithms.

Algorithms 2 and 3 have different data sharing requirements. Each
teration of Algorithm 2 by one aggregator requires information from
ll aggregators, whereas each iteration of Algorithm 3 requires informa-
ion from just neighboring aggregators. Private data sharing between
eighboring aggregators can be achieved by creating neighbor-specific
hannels. Nevertheless, this process is burdensome because (1) more
hannels are required to handle private data sharing, and (2) changes
re required in the existing blockchain network if the communica-
ion graph changes (due to changes in sensor deployments among
ggregators or distribution network reconfiguration). Therefore, the
eveloped framework leverages the ABAC feature of HLF to handle
13
Table 2
Benchmark results for Hyperledger Caliper to Test 200 iterations of information
exchange for Algorithm 2.
𝑁 Total

transactions
Sent
rate (tps)

Max
latency (s)

Min
latency (s)

Throughput
(tps)

6 1200 6 1.8 0.31 6
7 1400 7 1.55 0.32 7
8 1600 8 1.77 0.36 8
9 1800 9 1.59 0.38 9
10 2000 10 1.49 0.39 10

Table 3
Security analysis of reviewed surveys.

Reference EVE [32,42] [59] [60] [9,34,61] [21]

Implementation framework Hyperledger Ethereum
Threat model ✓ x ✓ ✓ x ✓

Attack scenario ✓ x ✓ x x ✓

Physical verification ✓ x x x x x

private communication using the existing commonchannel. When a
new edge is created in the communication graph, the new relationship
can be added to RC by upgrading the smart contract following the rules
f the initial agreement.

.3. Results

Performance results of the proposed framework are generated using
redefined use cases in Hyperledger Caliper. For test cases with varying
umbers of aggregators (𝑁) between 6–10, and assuming the pricing
lgorithm requires 200 iterations for convergence, Table 2 shows bench-
ark results in terms of the maximum latency, minimum latency, and

hroughput.11 For each scenario shown in Table 2, the sending tps rate
s equivalent to 𝑁 because the number of aggregators is the maximum
umber of writes that can occur to the ledger.

.4. Security analysis

Security and privacy of the proposed EVE blockchain introduced
ere are compared against other leading blockchain approaches.
able 3 summaries security considerations of the reviewed works that
sed blockchain for TE. Most do not fully consider security aspects such

11 Latency = (time when response received - submit time) in second.
Throughput = (total valid committed transactions/total time in seconds for
all committed nodes in the network) in transactions per second (tps).
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Fig. 12. Graphical depiction of verification Algorithm 3 using smart contracts and ledgers for aggregator 𝑛 ∈  .
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as threat model, attack scenario, and verification mechanism at the
physical layer. This indicates that the security of these works depends
on the built-in security mechanism of the blockchain framework and
is not analyzed in-depth for additional threats or weaknesses. In this
work, the proposed EVE blockchain framework has been designed and
implemented with direct inclusion of cyber-security and specific threat
models and attack scenarios. Table 4 provides a summary of potential
threats and countermeasures referenced by the NIST Guide to Industrial
Control Systems [62] and the HLF security mechanism as they relate
to the threat model outlined in Section 4.2.

As the currently supported ordering mechanisms in HLF only pro-
vide crash fault tolerance and do not provide BFT [63], a customized
BFT-SMART [13] state machine replication and a consensus library has
been integrated into this work too. By reinforcing the design with this
mechanism, our approach can achieve BFT resilience and durability to
avoid a single point of failure. Also, using sensor measurements in the
verification stage allows EVE to assure prosumers’ compliance with the
scheduled transaction.

7. Conclusion

A blockchain-enabled transactive energy platform entitled Elec-
tron Volt Exchange is presented in this paper. The integration of
blockchain allowed a secured process for handling individual bids
(prosumers) and collective bids (aggregators). Implementing aggre-
gators for the distributed pricing algorithm allowed efficient use of
the Hyperledger Fabric distributed architecture, as demonstrated here
for a 141 bus radial network. A secure mechanism for pricing and
later verifying economic transactions through a distributed consensus
process is also presented. Future work will explore the implementation
of additional Hyperledger Fabric features (e.g., idemix, smart con-
tract packaging), other market mechanisms, and verification algorithms
through distributed consensus for meshed networks.
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𝒑

Appendix A. Demand response resource models

A.1. Electric Vehicles (EVs)

An EV requires a certain amount of charge 𝑢 over a period of length
𝜏. Primary constraints are:

1. Rate of charge when grid-connected is �̇�(𝑡) = −𝑝(𝑡) for 0 ≤ 𝑢(𝑡) ≤ 𝑢
and zero when the EV is full, with 𝑝(𝑡) < 0 since charging is a load.

. Charging is permitted only at a constant rate of −𝜌, i.e., 𝑝(𝑡) ∈
{0,−𝜌}. Discharge to the grid is not permitted.

. Charging has a deadline, i.e., 𝑢(𝑡𝑑 ) = 𝑢(𝑡𝑎 + 𝜏𝑐 + 𝜏𝑠) = 𝑢.

Here 𝑡𝑎 denotes the EV arrival time, 𝑡𝑑 the EV departure time, 𝜏𝑐 the
time needed for charging, and 𝜏𝑠 the leftover (slack) time. Considering
a large number of loads, the constraint on charging rate can be relaxed
as −𝜌 ≤ 𝑝(𝑡) ≤ 0. In discrete time and vector form, assuming that the
variable 𝑢(𝑡) is the energy normalized by the sampling period (i.e., the
time that elapses between 𝑡 and 𝑡 + 1), we can write:

𝒑 = 𝑨𝒖 + 𝓵, 𝑢(𝑡𝑑 ) = 𝑢, − 𝜌 ≤ 𝑝(𝑡) ≤ 0 ∀ 𝑡 ∈  (A.1)

In (A.1), 𝑨 computes the finite difference of the state of charge values
in 𝒖. Using 𝑱 to denote an off-diagonal shift matrix, the following can
be written:

𝑨 = (𝑱 − I) ∈ R| |×| |, 𝓵 = [𝑢(𝑡𝑎), 0,… , 0]⊺ ∈ R| |×1 (A.2)

In this case 𝑨† = 𝑨−1 is a triangular matrix of all negative ones.
𝑨† performs a cumulative sum of the entries of −𝒑, which is the
inverse operation of taking the finite difference (similar to the integral
is the inverse operation of the derivative). In general, we assume a
prosumer is willing to pay more for having their EV charged earlier,
and expects a discounted electricity price if not charging at full power.
This conceptualization of energy price is a function of time, with price
decreasing monotonically with time as 𝒄1 and 𝑐d < [𝒄1]𝑡 ∀𝑡 ∈  :

𝐶(𝒑) = 𝒄⊺1𝒑 − 𝑐dmin(𝑢 − 𝑢
| |

, 𝜌max(0, 𝜏𝑐 + 𝜏𝑠 − | |)) (A.3a)

= 𝒄⊺1𝒑 − 𝑐dmin(𝑢 + 𝟏⊺𝒑, 𝜌max(0, 𝜏𝑐 + 𝜏𝑠 − | |)) (A.3b)

.2. Deferrable Appliances (DAs)

These loads include appliances such as washers, dryers, and water
umps that can be programmed to start their cycle at different times of
ay. The feasible set of power demand is based on a load profile ℎ(𝑡),
minimum activation time 0 ≤ 𝑡𝑎 ≤ | | − 1, and a slack 𝜏𝑠 ≥ 0:

(𝑡) = −ℎ(𝑡 − 𝑡𝑎 − 𝜏), 0 ≤ 𝜏 ≤ 𝜏𝑠 (A.4)

here the price function depends on the slack 𝜏𝑠. Let us assume without
oss of generality that 𝑡𝑎 = 0 as the arrival time can be embedded into
he signal ℎ(𝑡). Suppose also that the duration of ℎ(𝑡) is 𝑑 and that
he slack and time are discrete. The signal 𝑢(𝑡) can indicate the time
t which DA starts its cycle, which naturally means that 𝑢(𝑡) ∈ {0, 1}
nd the 𝓁1 norm ‖𝒖‖1 = 1. Considering a large enough population, this
onstraint can be relaxed to obtain an approximation of the feasible set
s follows:

= 𝑨𝒖, ‖𝒖‖ = 1 (A.5)
1
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Table 4
Feasible threats and countermeasures in EVE.

Layer Feasible threats Countermeasures (HLF) Countermeasures (EVE)

Application Stealth FDIA, DoS attack, Smart
Contract, Malware

MSP (Fabric CA) MSP, FDIA Detection (Physical
Verification)

Blockchain Relay attacks, Privilege Elevation,
Repudiation, Info disclosure, Byzantine
Fault, Civil attack

Read/Write Set Validation, MSP
Traceability with digital signature,
Channel isolation

BFT-SMART with features
from HLF

Network DoS attack, Eclipse attack [64] TLS ABAC with features from HLF

Client Identity Theft, Malware MSP (Fabric CA), Hardware Security
Module

ABAC with features from HLF
d
f
l
q
t

w

→

A

c
c
a

𝒑

where 𝑨 ∈ R(| |+𝑑)×| | equal to:

⊺ = −

⎡

⎢

⎢

⎢

⎢

⎣

ℎ(0) … ℎ(𝑑) 0 … 0
0 ℎ(0) … ℎ(𝑑) … ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 ℎ(0) … ℎ(𝑑)

⎤

⎥

⎥

⎥

⎥

⎦

(A.6)

The price a prosumer is willing to pay decreases as the delay increases.
The price ranges from a maximum price the consumer is willing to pay
to a minimum price that is the lowest possible energy cost. Suppose that
we want the cost to grow linearly with time, and let 𝑐 be the constant
in the cost expression. Let �̃�1 = 𝑐1 ⋅ (| | − 1, | | − 2,… , 1, 0). The cost
an be obtained as follows:

(𝒑) = 𝒄⊺1𝒑 + 𝑐0 = 𝑐1
| |−1
∑

𝑡=0
(| | − 1 − 𝑡) ⋅ 𝑢(𝑡) + 𝑐0, (A.7)

⇒ 𝒄⊺1 = �̃�1𝑨
†, 𝑐0 = 𝑐0 (A.8)

A.3. Thermostatically Controlled Loads (TCLs)

These loads include space heaters, air conditioners, and water
heaters. Similar to prior works [65], we assume that the temperature
dynamics of a heat pump based TCL can be modeled as a first-order
differential equation:

𝐶�̇�(𝑡) = (𝜃o(𝑡) − 𝜃(𝑡))𝑅−1 + 𝑝(𝑡)𝜂 + 𝜀(𝑡)𝑅−1, 𝑝(𝑡) ∈ {0,−𝜌} (A.9)

with 𝑅 being thermal resistance, 𝐶 thermal capacitance, 𝜃(𝑡) the inside
temperature, 𝜃o(𝑡) the outdoor temperature, 𝜂 the efficiency of the heat
pump (𝜂 > 0 for cooling and 𝜂 < 0 for heating), 𝜌 continuous electrical
power rating,12 and 𝜀(𝑡) denoting a random perturbation of temperature
by external factors such as opening of windows/doors or operation of
stoves. We denote the thermostats reference temperature as 𝜃r. Let:

𝑢(𝑡) ≜
𝜃(𝑡) − 𝜃𝑟(𝑡)

𝑅𝜂

𝓁(𝑡) ≜
𝜃𝑟(𝑡) − 𝜃𝑜(𝑡)

𝑅𝜂
+

𝜀(𝑡)
𝑅𝜂

+ 𝐶
𝜂
�̇�𝑟(𝑡), 𝜏ℎ ≜ 𝐶𝑅

(A.10)

o express the inter-temporal constraints as well as the comfort zone
f the user, we can rearrange and relax the set of constraints in (A.9)
s follows:

(𝑡) = 𝐶
𝜂
(�̇�(𝑡) − �̇�𝑟(𝑡)) +

𝜃(𝑡) − 𝜃𝑟(𝑡)
𝑅𝜂

+
𝜃𝑟(𝑡) − 𝜃𝑜(𝑡)

𝑅𝜂
+

𝜀(𝑡)
𝑅𝜂

+ 𝐶
𝜂
�̇�𝑟(𝑡)

(A.11a)

= 𝜏ℎ�̇�(𝑡) + 𝑢(𝑡) + 𝓁(𝑡), 𝑢 ≤ 𝑢(𝑡) ≤ 𝑢, − 𝜌 ≤ 𝑝(𝑡) ≤ 0 (A.11b)

where we have relaxed the integer constraint 𝑝(𝑡) ∈ {0,−𝜌}.
It is notable that the 𝓁(𝑡) term in this affine relationship is random,

since the outdoor temperature is random and so is the perturbation
of the indoor temperature from sources other than the heat pump.

12 Water heaters can be described using the same principles, with an
dditional energy loss component describing the hot water being replaced by
old water. However, in this paper, we will focus on heat pump based TCL
ecause they are more dependent on external temperatures than water boilers.
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In discrete time, we can average the behavior and approximate the
relationship as follows:

𝒑 = 𝑨𝒖 + 𝓵, 𝑢 ≤ 𝑢(𝑡) ≤ 𝑢, − 𝜌 ≤ 𝑝(𝑡) ≤ 0 (A.12)

Using (A.10) and (A.11a) the following can be written:

𝑨 = 𝜏ℎ(I − 𝑱 ) + I, 𝑨† = 𝑨−1 = ((𝜏ℎ + 1)I − 𝜏ℎ𝑱 )−1

𝓵 = �̃� − 𝜏ℎ[𝑢(0), 𝟎⊺]⊺ ∈ R| |×1 (A.13)

and �̃� = (𝓁(1),… ,𝓁(| |)) with 𝓁(𝑡) being defined in (A.10). The price
emand function should represent the prosumer’s willingness to deviate
rom reference temperature. The prosumer is willing to pay less for
arger temperature deviations than expected. We represent this cost as
uadratic with the value of 𝒖, i.e., proportional to ‖𝒖‖2. This means
hat the demand function is 𝑐0 − 𝑐2‖𝒖‖2 and:

𝐶(𝒑) = 𝒑⊺𝑪2𝒑 + 𝒑⊺𝒄1 + 𝑐0 = 𝑐0 − 𝑐2
‖

‖

‖

𝑨†(𝒑 − 𝓵)‖‖
‖

2
(A.14)

here:

𝑪2 = −𝑐2𝑨−2, 𝒄1 = 2𝑐2𝓵𝑨−2, 𝑐0 = 𝑐0 − 𝑐2𝓵⊺𝑨−2𝓵 (A.15)

.4. Storage devices

Typically, battery rate of charge or discharge is constrained to be a
onstant value, meaning 𝑝(𝑡) ∈ {−𝜌, 0, 𝜌}. If we relax this non-convex
onstraint as done before, the load constraints are analogous to that of
n EV, except that the unit can discharge:

= (I − 𝑱 )𝒖 − [𝑢(0), 𝟎], |𝑝(𝑡)| ≤ 𝜌, 0 ≤ 𝑢(𝑡) ≤ 𝑢 (A.16)

where 𝑱 is the shift matrix, shifting to the right each of the entries
of 𝒖. Here it is natural to assume that the price for discharging is
higher than the price of charging, but it is also possible to express
a cost that depends on the battery state. In addition, if storage is
charged by the random injection of, for instance, solar PV, the forecast
can be incorporated into the vector 𝓵 in the model. We ignore other
complexities here for simplicity. Considering (𝑎)+ = max(0, 𝑎), we can
express the cost as:

𝐶(𝒑) = (𝒑)⊺+(𝒄
+
1 ) + (−𝒑)⊺+(𝒄

−
1 ) (A.17)

where 𝒄+1 and 𝒄−1 are non-negative cost vectors.

A.5. Renewables

The power injection from wind or solar PV has no marginal cost,
therefore the only meaningful way for renewables to participate is
posting a forecast of future production 𝒑 with zero cost, i.e., 𝐶(𝒑) = 0.

A.6. Supply from the transmission grid

We assume that the transmission grid appears in the system as the
slack bus and has a certain cost function for selling and a certain
cost function for buying power below and above a schedule 𝒑 that
𝑠
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was cleared in previous wholesale market stages. Therefore, at the
substation bus we have a single supplier with supply function:

𝐶(𝒑) = (𝒑 − 𝒑𝑠)
⊺
+(𝒄

+
1 ) + (−𝒑 + 𝒑𝑠)

⊺
+(𝒄

−
1 ) (A.18)

For simplicity we assume that any deviation is feasible, so that the dis-
patch is always feasible, and the slack bus compensates for any shortfall
or surplus of power subject to physical constraints in Appendix B.

Appendix B. Electric grid constraints

A radial electrical distribution system can be represented by a set of
buses , edges 𝑒, and a root node (commonly the substation node or
slack bus) where each edge 𝓁 = (𝑏, 𝑏′) ∈ 𝑒 and 𝑏, 𝑏′ ∈ . The from and
to functions are defined as 𝑓 (𝓁) = 𝑏 and 𝑡(𝓁) = 𝑏′ to return the source
node and incident node for an edge, respectively. The inverse function
𝑡−1(𝑏) gives back the edge pointing to bus 𝑏 (for a radial graph the to bus
𝑏 for each edge is unique) and 𝑓−1(𝑏) returns all the edges originating
at bus 𝑏. Dropping the time index for brevity, the power flow equations
at each of the branches 𝓁 ∈ 𝑒 are given by [54]:

𝑝𝑡(𝓁) = 𝑃𝓁 −
∑

𝓁′∈𝑓−1(𝑡(𝓁))

𝑃𝓁′ − Re(𝑧𝓁)𝑐2𝓁 (B.1a)

𝑞𝑡(𝓁) = 𝑄𝓁 −
∑

𝓁′∈𝑓−1(𝑡(𝓁))

𝑄𝓁′ − Im(𝑧𝓁)𝑐2𝓁 (B.1b)

𝑣2𝑓 (𝓁) = 𝑣2𝑡(𝓁) + 2(Re(𝑧𝓁)𝑃𝓁 + Im(𝑧𝓁)𝑄𝓁) − |𝑧𝓁|
2𝑐2𝓁 (B.1c)

𝑣2𝑓 (𝓁) =
𝑃 2
𝓁 +𝑄2

𝓁

𝑐2𝓁
. (B.1d)

ll these equations are linear in the bus and branch quantities (𝑝𝑏(𝑡),
𝑏(𝑡), 𝑣2𝑏(𝑡)) and (𝑃𝓁(𝑡), 𝑄𝓁(𝑡), 𝑐2𝓁(𝑡)) except (B.1d). However, including

n auxiliary variable 𝑥′𝓁 =
𝑃 2
𝓁
+𝑄2

𝓁

𝑐2
𝓁

can simplify the description of
the physical constraints. By expressing 𝒙(𝑡) as the auxiliary variables,
then without loss of generality (B.1a) to (B.1d) can be written in the
following linear form:

𝑯𝒙 = 𝑯𝒙 +𝑯𝑢𝒙𝑢 = 𝟎, (B.2)

Though constraints in (13) are non-linear in general, here the con-
straints are relaxed by ignoring the non-linear relationships among
the auxiliary variables and the remaining entries of the vector 𝒙. The
measurements are represented by 𝒛 = 𝒙 + 𝝐 and the physics of the
system implies that 𝒙 satisfies (B.2).

From the vantage point of each aggregator region 𝑛, only a subset of
the variables 𝒙(𝑛) are measured, meaning that 𝒛(𝑛) = 𝒙(𝑛) +𝝐(𝑛). Also, not
all constraints in (B.2) include the variables 𝒙(𝑛). Hence, the equations
hat involve buses/lines in region 𝑖 can be isolated and written as:
(𝑛)(𝒙(𝑛)) = 𝑯 (𝑛)𝒙(𝑛) = 𝟎. (B.3)

hese equations are used to verify that measurements and injections
alues are consistent with the laws of physics. The available measure-
ents in each zone and the neighboring zones are used to interpolate

he unknown variables as discussed in Section 4.3.1.
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