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Abstract—Today, more and more sensitive data is stored on computer systems; security-critical business processes are mapped to

their digital counterparts. This situation applies to institutes that have different security requirements, such as the healthcare industry,

digital government, and financial service institutes. Authorization constraints help the policy architect design and express higher level

organizational rules. Although the importance of authorization constraints has been addressed in the literature, a systematic way to

verify and validate authorization constraints does not exist. In this paper, we specify both nontemporal and history-based authorization

constraints in the Object Constraint Language (OCL) and first-order linear temporal logic (LTL). Based upon these specifications, we

attempt to formally verify role-based access control policies with the help of a theorem prover and to validate policies with the UML-

based Specification Environment (USE) system, a validation tool for OCL constraints. We also describe an authorization engine, which

supports the enforcement of authorization constraints.

Index Terms—Role-based access control policy, authorization constraints, linear temporal logic, Object Constraint Language.
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1 INTRODUCTION

INFORMATION technology pervades more and more our daily
life. This applies to institutes that have different security

requirements, such as hospitals, government agencies, and
financial institutes. New technologies, however, go along
with new risks, which must be systematically dealt with.
Specifically, the information contained in the IT systems can
be regarded as a key resource of an organization and must
therefore be protected adequately. Due to the fact that insider
attacks are a major threat for large organizations [1], it is
mandatory to establish adequate mechanisms that enforce
the access control requirements demanded by the rules and
laws relevant to an organization.

For example, in Europe, strong privacy requirements
such as those formulated in Directive 95/46/EC [2] exist.
This directive, among other areas, applies to hospitals, and
hence, specific organizational rules must be implemented in
order to prevent privacy violations. A typical organizational
rule in a hospital might be “a nurse can only see the records
of all patients who have been on his or her ward within the
previous 90 days.” Another rule might state that a physician
can only delegate the permission to read a patient’s record
to another physician who has at the same time activated a
specialist role.

In the banking domain, other protection goals such as
data integrity and accountability are more important. In

particular, separation-of-duty (SoD) policies must be en-
forced [3], [4]. SoD is a well-known principle that prevents
fraud and error by requiring that at least two persons are
required to complete a task. A common example of such an
SoD rule is “a clerk must not prepare and approve a check.”

As pointed out by Sandhu et al., one of the main
advantages of role-based access control (RBAC) is that such
higher level organizational rules can be implemented in a
natural way [5]. Specifically, advanced RBAC concepts like
role-based authorization constraints1 are an important
means for laying out higher level organizational rules [6].
Due to the fact that RBAC has also become an accepted
standard for access control, we consider RBAC as the basic
access control model within this paper.

Usually, the control and protection goals of an organiza-
tion can only be expressed by a set of rules rather than a
single rule. Hence, we define an RBAC policy as hierarch-
ical RBAC in the sense of the RBAC standard [7] plus the set
of authorization constraints defined for the organization in
question. Unfortunately, authorization constraints can in-
crease the complexity of RBAC itself. Thus, it generally
becomes more difficult to make sure that certain required
properties hold in a given RBAC policy or that the policy is
free of contradictions. Through the combination of different
types of authorization constraints, undesirable properties
may arise. For example, assume that we have defined the
SoD rule mentioned above. Let us further assume that a
specific user has the permission for the approval of the
check and that he or she can delegate this permission to
other users. If the delegatee already has the permission to
prepare the check in question, then either the SoD property
is violated or the delegation cannot be executed.

New technologies such as Web services increase the
complexity and the dependencies of IT systems with respect
to access control. For this reason, it is an important task to
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find a suitable methodology to express and verify assertions
on organization-wide RBAC policies. Otherwise, unauthor-
ized access and, consequently, fraud may be expected.
Although there are several works on the specification of
authorization constraints, e.g., [6] and [8], there is a lack of
an appropriate tool support for the analysis/verification of
RBAC policies.

The work presented in this paper can be regarded as the
first step to help security officers in the definition process of
consistent (i.e., free of contradictions) and correct RBAC
policies. In addition, even if we have defined correct RBAC
policies, we also wish to enforce these policies automati-
cally by the IT system. Hence, tool support for the
enforcement of RBAC policies is also desirable.

In the following, we briefly discuss two different
approaches to the policy specification and verification.
The first approach is more formal and uses a theorem
prover [9] for the verification. In contrast, the second one is
more practical and is based upon a validation tool for
software models [10]. In any case, the verification should be
carried out in the design process of the policy and not after
the deployment. This way, only consistent RBAC policies
are implemented, and policies with undesirable properties
are ruled out early. Interestingly, the validation tool can also
be employed to implement an authorization engine, which
helps to enforce certain RBAC policies. This topic is
discussed after the verification sections.

1.1 Formal Specification and Verification

In domains with high security requirements, such as
banking applications, which deal with large amounts of
money, and military applications, a rigorous way of
specifying and analyzing RBAC policies is needed. Speci-
fically, this is required for the certification of an IT system
with respect to the Common Criteria for higher levels of
assurance [11].

We consider first-order linear temporal logic (LTL) [12]
as an appropriate formalism for specifying RBAC policies
because, often, one must cope with dynamic policies. In
banking applications, for example, dynamic SoD authoriza-
tion constraints must be enforced, such as history-based
SoD [13]. History-based SoD is a flexible variant of SoD, in
which a user may have all the privilege for a business
process but must not perform all the subtasks of this
process on a certain object (e.g., check). Furthermore, we
have often other types of dynamic authorization constraints
such as delegation rules or authorization constraints that
mandate a certain order of task execution as needed for
workflows. In these cases, first-order LTL allows for a
concise and elegant formulation of the RBAC policy in
question. Furthermore, first-order LTL has been extensively
studied in the literature [14], [12].

The formal verification assures that an RBAC policy
satisfies the properties intended by the organization (e.g.,
no user may prepare and approve a check). We will carry
out this verification by means of the theorem prover Isabelle
[9]. In particular, the first-order LTL (including axioms) is
embedded into Isabelle. Afterward, the proofs of those
properties to be fulfilled by an RBAC policy are auto-
matically checked by Isabelle. The details of this formal
verification are presented later in this paper.

1.2 Practical Specification and Validation

Due to the fact that theorem provers are still tools for
experts, the aforementioned formal verification approach is,
strictly speaking, not necessary in applications with
moderate security requirements. For this reason, we present
a more lightweight approach to policy specification and
analysis. Clearly, we can employ this approach in applica-
tion domains with high security demands too and then use
the formal verification if certain problems have been
detected in the practical verification step.

For the practical specification and verification, we
employ the Unified Modeling Language (UML) and Object
Constraint Language (OCL)2 [15]. As demonstrated in [16]
and [17], UML/OCL can be conveniently used to specify
several types of authorization constraints. Moreover, owing
to the fact that OCL has proved its applicability in several
industrial applications, OCL is an appropriate means for
such a practically relevant process as the design of RBAC
policies.

Hence, we demonstrate in this paper how to employ the
UML-based Specification Environment (USE) system [10] to
verify RBAC policies formulated in UML and OCL. USE is a
validation tool for UML models and OCL constraints, which
has been reportedly applied in industry and research. We
consider validation by generating snapshots (system states)
as prototypical instances of a UML/OCL model and
compare the generated instances with the specified model
(i.e., the RBAC policy in our case). From now on, we use the
term “validation” introduced by Richters [10] whenever we
discuss the practical verification.

Validation with the USE system helps to detect if certain
constraints conflict with each other or if constraints are
missing. The latter case may lead to a situation in which
unallowed access is possible. For example, if an SoD
constraint between a cashier and a cashier supervisor is
missing, a user who assumes both roles may commit fraud.
The former case, however, may have the effect that from the
security point of view, reasonable system states cannot be
established. While the validation allows the detection of
certain conflicting constraints, one cannot formally prove the
correctness of the RBAC policy in question. For this
purpose, a more formal approach is required such as
theorem proving.

1.3 Authorization Engine

Beyond specification and validation/verification, the en-
forcement of RBAC policies is also an important issue. Such
an authorization engine should be designed and imple-
mented by sound software engineering techniques. In
particular, the main focus should lie in the modeling
process, whereas the implementation should be carried out
routinely and, as much as possible, automatically. In this
paper, we also demonstrate how to employ the USE system,
which is a validation tool for software models, to implement
an authorization engine. This engine serves as a key
component for enforcing various types of authorization
constraints. This way, RBAC policies for different organiza-
tions can be implemented.
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1.4 Structure of this Paper

The remainder of the paper is now organized as follows:
Section 2 gives a short overview of RBAC and authorization
constraints. In Section 3, typical dynamic authorization
constraints such as history-based SoD and delegation rules
are formalized in first-order LTL. Thereafter, we present the
formal verification of RBAC policies with Isabelle. Section 4
demonstrates how RBAC policies can be specified in UML/
OCL and validated by means of USE. Section 5 describes an
authorization engine built on the USE system, whereas
Section 6 discusses extensions of our work and related
work. Section 7 summarizes the results of this paper.

2 RBAC AND AUTHORIZATION CONSTRAINTS

RBAC [5], [7] has received considerable attention as a
promising alternative to traditional discretionary and
mandatory access control. The explicit representation of
roles simplifies the security management and makes it
possible to use security principles like SoD and least
privilege [5]. We now give an overview of (general)
hierarchical RBAC according to the RBAC standard [7]:

. The sets are U , R, P , and S (users, roles, permissions,
and sessions, respectively).

. UA � U �R (user assignment).

. PA � R� P (permission assignment).

. RH � R�R is a partial order called the role
hierarchy or role dominance relation, written as � .

Users may activate a subset of the roles they are assigned
to in a session. P is the set of ordered pairs of operations and
objects. In the context of access control, all resources
accessible in an IT system (e.g., files and database tables)
are referred to by the notion object. An operation is an action
on objects (e.g., read, write, and append). The relation PA

assigns to each role a subset of P . Therefore, PA determines
for each role the operation(s) it may execute and the
object(s) to which the operation in question is applicable for
the given role. Thus, any user that has assumed this role can
apply an operation to an object if the corresponding ordered
pair is an element of the subset assigned to the role by PA.

Role hierarchies can be formed by the RH relation.
Senior roles inherit permissions from junior roles through
the RH relation (e.g., the role chief physician inherits all
permissions from the physician role).

An important advanced concept of RBAC are authoriza-
tion constraints. Authorization constraints can be regarded
as restrictions on the RBAC functions and relations. For
example, an SoD constraint may state that no user may be
assigned to both the cashier and the cashier supervisor role,
i.e., the UA relation is restricted. It has been argued
elsewhere that authorization constraints are the principal
motivation behind the introduction of RBAC [5]. They allow
a policy designer to express higher level organizational
rules as indicated above. In the literature, several kinds of
authorization constraints have been identified, such as
various types of static and dynamic SoD constraints [13],
[18], [6], constraints on delegation [19], [20], cardinality
constraints [5], context constraints [19], [21], and workflow
constraints [22].

As indicated above, we now define an RBAC policy as
follows:

Definition 1. An RBAC policy of an organization is hierarchical
RBAC plus the set of authorization constraints defined for the
organization in question.

An RBAC policy should be distinguished from an RBAC
configuration:

Definition 2. An RBAC configuration consists of the concrete
roles, permissions, users, sessions, role assignments, and role
hierarchies currently defined within an organization.

3 FORMAL SPECIFICATION AND VERIFICATION OF

RBAC POLICIES

In the following, we describe our formal approach to the
specification and verification of RBAC policies in more
detail. We begin with the specification of dynamic
authorization constraints, namely, dynamic SoD, delega-
tion, and revocation rules, in first-order LTL. Later, these
authorization constraints are used in an example, which
demonstrates how the verification works.

3.1 Formal Specification of RBAC Policies in LTL

First-order LTL [12] is a linear temporal first-order logic.
Thus, it is powerful enough to express most mathematics
such as the Zermelo-Fraenkel set theory (including the
axiom of choice). Therefore, it is sufficient for reasoning
about RBAC policies on a conceptual level.3 On the other
hand, there is a clearly defined formal semantics based
upon Kripke frames for first-order LTL [12]. Since it is an
LTL, it is specifically well suited for reasoning about
temporal invariants as needed for IT security and for
safety-critical systems such as aircraft controllers or railway
control systems [14].

Subsequently, we explain the basic concepts of first-
order LTL. A temporal first-order signature consists of a set
of sorts, a set of function symbols, and a set of predicate
symbols (each symbol comes with a string of argument
sorts and, for function symbols, a result sort). There are rigid
and flexible predicate symbols: the former do not change
over time, whereas the latter may vary. Models live over
discrete time, indexed by the natural numbers as time steps.
They interpret the sorts with (time-independent) carrier
sets, function and rigid predicate symbols with time-
independent functions and predicates of appropriate types,
and flexible predicate symbols with families of functions
and predicates, where the families are indexed by natural
numbers.

Sentences are the usual first-order sentences built from
equations, predicate applications, and logical connectives
and quantifiers, e.g., 8 and 9. Additionally, we have the
modalities tu (always in the future), � (sometimes in the
future), and � (in the next step). The corresponding past
modalities are tu- , �-, and �- . Satisfaction is defined induc-
tively for a given time step, where the modalities allow for
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referring to other time steps. A sentence is satisfied in a

model if it is satisfied in time step zero.
We now specify RBAC in first-order LTL (see Fig. 1, upper

part). For this purpose, we use the notation of the algebraic

specification language CASL, as we have done earlier [23].

The function user is rigid (i.e., does not depend on the state),

whereas the predicates UA, PA, Active in, Exec s, and

Exec u are flexible (i.e., depend on the state). Exec s now

traces the operations performed, i.e.,Exec sðs; op; objÞmeans

that session s executes operation op on object obj in the

present (implicit) state. Note that we have left out the

predicates and axioms for role hierarchies to simplify the

discussion.

3.1.1 Specification of Dynamic SoD with History

Dynamic SoD is a flexible form of SoD. Here, a user may

perform certain steps of a task but only if he or she has not

done certain other steps of the task before. There are several

attempts to express dynamic SoD in the computer security

world, such as Sandhu’s Transaction Control Expressions

[24]. Practical applications of RBAC often need dynamic

SoD; see the works of Simon and Zurko [18] and Nash and

Poland [3]. In fact, Sandhu stresses the importance of

history [24].
Dynamic SoD properties [13], [18] can be elegantly

formulated in first-order LTL without explicitly talking

about states. We demonstrate this by means of two typical

examples, namely, object-based dynamic SoD and history-

based SoD. Note that we use the CASL-style representation

again, and hence, the variables after the forall quantifier

correspond to the parameters of the SoD predicates. The

SoD predicates are defined by equivalences, similar to the

Exec u predicate given in Fig. 1:

. Object-based dynamic SoD. A user may perform at
most one operation on a given object:

forall obj : Object;

ObjDSoDðobjÞ , ½8u : User; op; op0 :

Operation:op 6¼ op0

^ Exec uðu; op; objÞ ) tu:Exec uðu; op0; objÞ�:

. History-based dynamic SoD. A user in general may
execute all operations and may also execute more
than one operation on a given target object. How-
ever, he or she may not perform all operations (if
more than one) on this given target object:

forall obj : Object;

HDSoDðobjÞ , ½8u : User; op : Operation:

Exec uðu; op; objÞ ) 9op0 : Operation:ðop 6¼ op0^
tu-:Exec uðu; op0; objÞÞ _ 8op0 : Operation:op0 ¼ op�:

First-order LTL can also be employed in order to
formally specify SoD policies where the order of executions
matters, e.g., the dynamic object-based SoD variant,
proposed by Nash and Poland [3]. The Exec predicates
can then be used to express RBAC policies for workflows
where the tasks are executed in a certain order [22]. This is,
however, discussed elsewhere due to space limitations [25].

3.1.2 Delegation and Revocation

In the following, both delegation and revocation policies are
formalized within first-order LTL.

Delegation. Delegation is an important factor to fulfill
dynamic requirements for a secure distributed computing
environment. There are many definitions of delegation in
the literature [26], [27], [28], [29], [30]. In general, it is
referred to as the process in which one active entity in a
system delegates its authority to another entity to carry out
some functions on behalf of the former.

As proposed by Zhang et al. [30], we introduce two new
user assignment relations, called original user assignment
UAO and delegated user assignment UAD. This way, one
can make explicit whether a role is assigned to the user by
an administrator directly or a role was delegated by another
user. UA then is the union of these two assignment
relations, as shown in the lower part of Fig. 1.

Subsequently, we formalize a basic variant of delegation
in first-order LTL. In this variant, user u delegates role r to
user u1 and loses at the same time the power of the
delegated role r:

forall u; u1 : User; r; r1 : Role;

Delegateðu; r; u1; r1Þ ,
½UAOðu; rÞ ^ UAðu1; r1Þ ^ :UAðu1; rÞ ^ const
)�ðUADðu1; rÞ ^ :UAðu; rÞÞ�

:UAðu1; rÞ is required here because it is not useful to
delegate role r to a user u1 who has already been assigned
to this role. Moreover, u must obviously belong to r on
delegation, and often, u1 should hold the power of a certain
prerequisite role r1 on the delegation process. Sometimes,
there also exist additional constraints (e.g., concerning the
delegation depth or time) that must be satisfied to enable
the delegation process, i.e., the delegation depends on
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further predicates. These delegation constraints are repre-
sented by the const statement, which is a first-order LTL
formula.

Revocation. Often, it is necessary to revoke roles that have
been delegated, e.g., when a clinician returns from vacation.
Several different semantics are possible for user revocation,
such as [31] and [26]. We give here only the formal
specification of a simple revocation rule:

forall u : User; r : Role; Revokeðu; rÞ ,
½UADðu; rÞ ^ const)�:UADðu; rÞ�:

const stands for a revocation constraint. For example, the
power to read a patient’s electronic health record is lost if
the clinician does not belong to the current department of
the patient in question anymore.

3.2 Formal Verification of RBAC Policies

Having specified various types of authorization con-
straints in first-order LTL, we now generate RBAC policies
by combining several authorization constraints. However,
in doing so, we want to be sure that our RBAC policies
meet the requirements (see the end of Section 3.2.2) and at
the same time avoid unintended side effects like dead-
locks (cf. example in Section 3.2.2) or unallowed access.
For this reason, we treat the formal verification of RBAC
policies in this section. Formal verification may be
cumbersome, but it guarantees the highest degree of
assurance. Moreover, security assurance standards such as
the Common Criteria request formal methods as a
precondition for the highest assurance level (EAL7). Here,
we will use the theorem prover Isabelle as a tool for the
formal verification.

Isabelle is a generic proof assistant [9]. It allows
mathematical formulas to be expressed in a formal
language and provides tools for proving those formulas in
a logical calculus. Formal calculi and/or mathematical
theorems are encoded in theory files (suffix .thy) that can
be invoked to Isabelle. Invoking a theory file makes Isabelle
accept all definitions, axioms, etc., in this theory. Further-
more, Isabelle will check proofs of theorems given in this
theory.

3.2.1 How to Build Correct RBAC Policies

The first-order LTL with past modalities specified in
Isabelle/HOL as LTL.thy is a powerful formalism for
expressing and examining RBAC policies [32]. The most
important properties of this kind of LTL have been proved
as theorems in Basic_Inf_Rules.thy, Basic_Op_

Rules.thy, and Adv_Op_Rules.thy in this sequence,
which was a demanding task. RBAC is defined in
RBAC1.thy [32]. However, this can only help if the
specified RBAC policy is consistent. Consistency is to be
understood in the following sense:

Definition 3. An RBAC policy is consistent if a sequence of
nonempty RBAC configurations exists that satisfies all the
rules of the policy in question.

Note that we consider sequences of RBAC configurations
here and not only a single RBAC configuration because we
use an LTL as the formalism for policy specification. A

sequence of RBAC configurations is then a model of the
RBAC policy in first-order LTL, i.e., the RBAC policy is free
of inconsistencies. Finding such a sequence for which a
given RBAC policy holds proves the satisfiability of the
considered RBAC policy in the sense of first-order LTL.
Thus, applying adequate tools such as model checkers or
the USE tool can already help the policy designer to avoid
basic mistakes. However, this is often not enough. First-
order LTL allows the designer to derive properties from a
given RBAC policy.

Suppose an RBAC policy is specified as a set of sentences
in first-order LTL, and a requirement for this policy is given
as another sentence. If we can derive the requirement from
the given RBAC policy within first-order LTL, then the
requirement in question is fulfilled by this RBAC policy
with absolute certainty. In order to reach this certainty, the
policy designer has to supply proofs for the requirements,
as described above. The correctness of the proofs in
question can then be verified by Isabelle due to the work
described above. Assuming that Isabelle works correctly
and accepts the proofs, the desired certainty is assured.
Since first-order logic is generally undecidable (according to
results of the work of Turing [33]), the mentioned proofs
can usually not be fully automated but require human
intervention. This applies also to the example of such a
proof described in the following section.

3.2.2 Formal Verification of RBAC Policies

LTL is encoded in Isabelle (cf. LTL.thy) as described
above. Using LTL as a foundation, we then define RBAC as
described in RBAC1.thy. The main modification with
respect to [34] is the introduction of the predicates for
delegation, named UAO and UAD (see axioms UAO ax,
UAD ax, and UA2 ax). Consequently, the predicate UA is
not rigid anymore, but UAO now is.

Delegation is defined by an additional Isabelle theory
based on RBAC. In this theory, we introduce the predicate
DELEGATE and specify delegation axiomatically, as
defined in Section 3.1.2. However, the difference is that
we omit the prerequisite conditions for the delegated user
for reasons of convenience. In our theory, a user is allowed
to delegate a role r if and only if he or she is assigned to the
role r by UAO.

Having specified delegation and revocation exactly, it is
now possible to examine the interactions of these concepts
with various authorization constraints. This can lead to
unexpected results. We now describe an example policy
showing an undesirable deadlock behavior under certain
conditions. For this purpose, let us assume that delegation
and RBAC are defined as described above. Furthermore, we
have two distinct users u1 and u2 and an object o with an
object-based dynamic SoD condition, i.e., any user is
permitted to apply at most one operation to object o. As
an additional authorization constraint, we demand for
reasons of secrecy that any operation4 can be performed on
o by at most one user (i.e., no two distinct users are allowed
to apply the same operation to o). Finally, let r be the only
role having the permission to apply operation op1 to o and
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let u1 be the only user assigned to r by UAO. Pick now an
arbitrary point in time t from which the following actions
happen:

. t: User u1 delegates role r to u2.

. tþ 2: User u2 applies operation op1 to o.5

. tþ 3: User u1 revokes role r from u2 and from now
on never delegates it again to u2.

From this situation, we conclude that UADðu2; rÞ is true
at tþ 1, tþ 2, and tþ 3. However, from tþ 4 and all time
steps later, UADðu2; rÞ is always false. Thus, it also follows
that UAðu2; rÞ must be false for those points in time since
only for UAOðu1; rÞ are they true and u1 and u2 are distinct
users. Thus, for those points in time, u2 will not be allowed
to apply operation op1 to o since the permission to do this is
limited to role r.

By our constraints and prerequisite conditions, we now
have the situation that from tþ 4 onward, no user can apply
operation op1 to o because user u2 cannot do this anymore
due to revocation, and the secrecy constraint forbids access
for any other user. Moreover, we can conclude that u2
cannot apply any operation to o since he or she has already
performed operation op1 on o (object-based dynamic SoD),
and once again, op1 is not available due to revocation. In
theorem Blockade, this is shown to be true from tþ 5
onward. The proof for this has been checked with Isabelle
and can be downloaded [32].

Of course, deadlocks are not desirable for an RBAC
policy. Therefore, let us mention a positive example
described by Drouineaud et al. [34]. In that scenario, a
bank safe is controlled by an IT system, which automatically
generates a key, i.e., a secret number. The system then uses
a secret sharing scheme to distribute shares of this key to
certain users (assigned to the roles cashier and/or director).
The distribution process is regulated by SoD (dual control).
As can be shown, this RBAC policy meets the requirement
to prevent the system from distributing a sufficient number
of shares for computing the key to a single user. Therefore,
Isabelle helps to verify security requirements.

3.2.3 Advantages of Verification

Proving properties of RBAC policies in first-order LTL with
a theorem prover such as Isabelle usually requires human
intervention (as shown in the previous section). On the
other hand, model checking [35] can be automated.
However, model checkers only examine a specific model.
If a model checker confirms that an RBAC policy and some
requirement hold for a given RBAC configuration/model,
this need not be true for another RBAC configuration. There
may be an RBAC configuration for which the considered
RBAC policy holds, but the requirement is not fulfilled. In
the worst case, a slight change of a single parameter, such as
one additional user or object, can cause that effect. There-
fore, one might have to run the model checker for each
access demand in order to ensure all given requirements by
model checking. At first glance, this may seem comfortable,
since one would only have to find and define the
requirements, and the IT system then could do the rest

automatically. Unfortunately, model checking has a high
degree of computational complexity, although it is a
decidable problem. Hence, the described simple solution
for access control may seem advantageous but would slow
down most IT systems to an intolerable extent.

Unlike model checking, deriving properties of RBAC
policies in first-order LTL with a theorem prover allows one
to give proofs that are independent of the number of users,
objects, operations, etc., due to quantification. Assuming
that the authorization constraints that the considered RBAC
policy consists of can easily be implemented, we obtain an
IT system that meets all IT security demands for access
control in a fast and efficient way. Since a complete
automation of verification is generally impossible, we
intend to make verification at least more comfortable by
doing the following:

. Identify important authorization constraints or
combinations of authorization constraints that may
serve as building blocks for relevant RBAC policies
in areas such as banking via case studies and prove
important properties of the discovered constraints or
combinations of constraints. The proven theorems
could then help policy designers who use some of
the described elements for building an RBAC policy
and thus save some effort. Indeed, these designers
could simply refer to the adequate results without
bothering about the proofs.

. Build a library containing theorems and their proofs
so that they can be reused for further proofs. For
example, we can build libraries for delegation, SoD,
context constraints, and workflow constraints.

. Investigate the existence of decidable fragments of
first-order LTL that may be well suited for the
verification of RBAC policies.

4 PRACTICAL SPECIFICATION AND VALIDATION OF

RBAC POLICIES WITH UML AND OCL

Having presented the formal specification and verification
of RBAC policies, we now turn to a more lightweight
specification and validation approach based upon UML
and OCL.

4.1 Specification of RBAC Policies in UML and OCL

First, we briefly explain the basic elements of UML and
OCL, and thereafter, we specify several types of authoriza-
tion constraints in OCL.

4.1.1 UML and OCL

UML is a general-purpose modeling language in which we
can specify, visualize, and document the components of
software systems [36]. It captures decisions and under-
standing about systems that must be constructed. UML has
become a standard modeling language in the field of
software engineering. UML permits the description of
static, functional, and dynamic models of software systems.
In this paper, we concentrate on the static UML models. A
static model provides a structural view of information in a
system. Classes are defined in terms of their attributes and
relationships. The relationships include specifically associa-
tions between classes. In Fig. 2, the static UML model for
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5. We assume here that until tþ 2, no other user has yet performed op1
on o and that u1 has not yet revoked role r from u2.



RBAC consisting of the RBAC classes and associations is
depicted (UML class diagram). The classes and associations
correspond to the RBAC sets and relations defined in
Section 2. A further diagram type relevant to our work is
the object diagram. Here, objects are instances of classes,
and links are instances of associations. An object diagram
then provides a snapshot of a system at a particular point in
time, showing objects, their attribute values, and links
connecting the objects [36].

OCL [15] is a declarative language that describes
constraints on object-oriented models. A constraint is a
restriction on one or more values of an object-oriented
model. Each OCL expression is written in the context of a
specific class. In an OCL expression, the reserved word
self is used to refer to a contextual instance. The type of
the context instance of an OCL expression is written with
the context keyword, followed by the name of the type.
The label inv: declares the constraint to be an invariant.
Invariants are conditions that must be true during the
lifetime of a system for all instances of a given type. The
following line shows an example of an OCL invariant
describing a role with at most one user:

context Role inv: self:user -> sizeðÞ < 2

self refers to an instance of Role. Then, self.user is
a set of User objects that is selected by navigating from
objects of class Role to User objects through an associa-
tion. The “.” stands for a navigation. A property of a set is
accessed by an arrow “-> ” followed by the name of the
property. A property of the set of users is expressed using
the size operation in this example.

The following shows another example describing that a
user can be assigned to a role r2 only if he or she is already
a member of r1 (prerequisite role constraint introduced by
Sandhu et al. [5]):

context User inv: self:role ->includesð0r20Þ implies

self:role ->includesð0r10Þ6

The expression self:role -> includesð0r20Þ means that
r2 is a member of the set of roles the user is assigned to.
The implies connector is similar to a logical implication.
Furthermore, OCL has several built-in operations that can
iterate over the members of a collection (set, bag, and
sequence), such as forAll, exists iterate, and any

(cf. [15]). These operations are used throughout the rest of
the paper.

4.1.2 Specification of Authorization Constraints in OCL

In the previous section, we have already specified the
prerequisite role constraint in OCL. Subsequently, we give
two further examples that demonstrate how to use OCL to
specify authorization constraints. The second example
shows that even more complex authorization constraints
can be formulated in OCL. In fact, we will even prove in
Section 6.1 that OCL is at least as powerful as the
authorization constraint specification language RCL 2000
[6]. As a consequence, our specification and validation
approach presented below can deal with all authorization
constraints formulated in RCL 2000.

Example 1. Simple Static SoD (SSoD). The first example
concerns an SoD constraint. Consider two conflicting
roles such as cashier and cashier supervisor. Mutual
exclusion in terms of UA specifies that one individual
cannot have both roles. This constraint on UA can be
specified using the OCL expression as follows:7

context User inv SSoD:

let CR : Set¼ffcashier; cashier supervisorg;
fr1; r2g; . . .g
in

CR ->forAllðcrj
cr ->intersectionðself:role Þ -> sizeðÞ < 2Þ

This formulation of SSoD is based upon the SSoD
specification given by Ahn [6]. Technically, CR denotes a
set that consists of conflicting role sets.

Example 2. SSoD-Conflict Users (SSoD-CU). Even more
complex authorization constraints can be formulated in
OCL. One example of such a constraint is SSoD-CU,
identified by Ahn [6]. SSoD-CU means that two or more
colluding users cannot be assigned to conflicting roles.
For example, it might be the company policy that
members of the same family cannot be assigned to the
roles cashier and cashier supervisor. SSoD-CU can now
be expressed in OCL in the following way:

context User inv SSoD-CU:

let

CU : SetðSetðUserÞÞ ¼ SetfSetfFrank; Joeg;
SetfSue; Larsgg,

CR : SetðSetðRoleÞÞ ¼
SetfSetfcashier; cashier supervisorg; . . .g

in

CR -> forAllðcrj
cr -> intersectionðself:role Þ -> sizeðÞ < 2Þ

and

CU -> forAllðcujCR -> forAllðcrj
cr -> iterateðr : Role;

result : SetðUserÞ ¼ Setfgj
result -> unionðr:userÞÞ

-> intersectionðcuÞ -> sizeðÞ < 2ÞÞ
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6. The word “role” is a keyword in the USE specification format, which is
introduced later. In order to distinguish the USE keyword from the word
“role” in the sense of RBAC, we append the underscore for this meaning of
the word “role.”

7. For the sake of simplicity, we have left out here the part for
the definition of role instances such as cashier and cashier_

supervisor with the help of OCL’s any operation, e.g.,
cashier : Role ¼ Role:allInstances -> anyðname ¼0 cashier0Þ. S i m i l a r
remarks hold for the subsequent OCL specifications.

Fig. 2. Class model for RBAC entity classes.



SSoD-CU is a composite constraint consisting of two parts:
an SSoD part and an additional part concerning the
conflicting users. The SSoD part is required, because
otherwise, obviously, the whole constraint would not be
useful. The iterate operation iterates over all roles r

belonging to a set of conflicting roles and collects all users of
these roles. CR has the same meaning as in Example 1,
whereas CU is a set consisting of all conflicting user sets.

4.2 Policy Validation with USE

OCL is a lightweight formalism, which helps in specifying
RBAC policies. We now demonstrate how the USE tool [10]
is employed for the validation of RBAC policies formulated
in UML/OCL. Before describing the validation process in
more detail, we first explain the functionality of USE.

4.2.1 The USE Tool

USE allows the software modeler to validate UML and OCL
descriptions and is the only OCL tool allowing interactive
monitoring of OCL invariants and the automatic generation
of system states. In particular, we use the term “system
state” in the following sense:

Definition 4. A system state or snapshot consists of the
current objects and links given by a UML object diagram
(cf. Section 4.1.1). A system state must adhere to a UML
model, i.e., for each object a class and for each link, an
association must exist in the corresponding class diagram. A
nonempty system state contains at least one object.

The central idea of the USE tool is to check for software
quality criteria like correct functionality of UML descrip-
tions already in the design level in an implementation-
independent manner. This approach takes advantage of
descriptive design-level specifications by expressing prop-
erties concisely and in a more abstract way. Such properties
are given by OCL invariants, and these are checked by the
USE system against the generated snapshots. These abstract

design-level tests are expected to be also used later in the
implementation phase.

The USE tool expects a textual description of a UML
model and its OCL constraints as an input (for an example
of such a description refer to Fig. 4). After syntax checks, the
model can be displayed by the graphical user interface
provided by USE. In particular, USE makes available a
project browser that displays all the classes, associations,
and invariants of the current model.

Fig. 5 shows a USE screenshot with an example, which is
discussed later in Section 4.2.2. On the left, we see the
project browser displaying the classes, associations, and
invariants. In a detail window below, a selected constraint
is pictured. Next to the project browser, we see an object
diagram with the current snapshot. The evaluation of the
invariants in this system state is pictured in the class
invariant window to the right of the object diagram
window. The invariant window gives the developer feed-
back about the validity of the invariants.

The USE tool can now be employed in various ways in
the context of RBAC policies (cf. Fig. 3). Specifically, it can
be used for the specification (cf. Fig. 4) and for the
validation of RBAC policies in the design phase. Validation
is the topic of the following section. Furthermore, an
authorization engine can be built by using the Java API
provided by the USE system. This is discussed in more
detail in Section 5. The last use case is testing concrete
RBAC configurations, i.e., after the deployment of the
policy. This aspect is more thoroughly discussed elsewhere
[37] and is not a topic of this paper.

At this point, we differentiate between administrators
and policy designers. The latter are responsible for
designing policies, whereas the former deploy policies.
We make this distinction because a policy designer should
possess significant knowledge about organizational rules.
In addition, we expect that policy designers are more
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familiar with modeling languages and validation tools than
administrators.

4.2.2 Policy Validation

As indicated above, the USE approach to validation is to
generate system states and check these states against the
specified constraints. In our case, the system states are
certain RBAC configurations. The RBAC configurations can
be created automatically by running a script with the state
manipulation commands, which are supported by the USE
tool, or alternatively, with a graphical user interface
provided by the USE system [10].

The result of the validation can lead to different
consequences. First, we may have reasonable system states
that do not satisfy one or more authorization constraints of
the policy. This may indicate that the constraints are too
strong. Second, the RBAC policy may allow undesirable
system states, i.e., the constraints are too weak. In the first
case, we may have conflicting constraints, whereas in the
second case, constraints are missing. Subsequently, both
situations are discussed more thoroughly. However, we
first describe an RBAC policy that will serve as an example
policy throughout the rest of this section.

Example RBAC policy. The USE specification of the
example RBAC policy is depicted in Fig. 4. It consists of
the RBAC-related class and association definitions and a set
of authorization constraints (cf. Definition 1). The constraints
are formulated as OCL invariants. In particular, we define
two constraints, one is a prerequisite role constraint between
two roles r1 and r2, and the other is an SSoD-CU constraint.
However, the SSoD part of the SSoD-CU constraint given in
Section 4.1.2 is left out. The reason for this becomes clear
when we describe our approach to the detection of missing
constraints. Moreover, our example is rather simple for
didactic reasons. One should bear in mind that in reality,
RBAC policies may be considerably more complex, consist-
ing of different kinds of authorization constraints such as
various SoD properties, context constraints, and delegation
rules. In fact, we also experimented with more complex
policies, which contain complex constraints such as object-
based SSoD.

Conflicting constraints. USE helps the policy designer find
conflicting constraints, as will be demonstrated by means of
the aforementioned example. In particular, let us assume
that the policy designer has forgotten that he or she had once
defined the prerequisite role constraint between r1 and r2.
Later, the policy designer decided to define r1 and r2 to be
mutually exclusive due to a change of organizational rules
and adds an SSoD constraint between r1 and r2 to the policy.
Obviously, the constraints cannot be satisfied at the same
time, and hence, the composite constraint is too strong. The
USE screenshot in Fig. 5 displays the situation after user u
has been assigned to r2. Clearly, the policy designer cannot
assign u to role r1; otherwise, the new SSoD constraint
would be violated. However, now, the constraint User::
PrerequisiteRole is evaluated to false (cf. “Class
invariants” view in Fig. 5), and hence, the current RBAC
configuration is not a correct system state according to the
given policy specification, although the configuration seems
to be reasonable.

Admittedly, the mere information that a constraint is
false might often not help to find the real reason for the
problem and to resolve the conflict. Additional information
is required about which objects and links of the current state
violate the constraint. For such a purpose, the policy
designer can debug the constraints that are not satisfied
by the current system state with the “Evaluate OCL
expression” dialog made available by USE. For example,
in Fig. 5, the result of the query “all users who are assigned
to r2 but not to r1” applied to the given RBAC configuration
is shown. Here, one can learn that u is not assigned to r1,
although this is required by the prerequisite role constraint.
If one now conversely tries to assign u to r1, the SSoD
constraint fails, and as a consequence, one can conclude that
the constraints are contradictory.

A policy designer can now employ USE in a similar way
for other constraint types such as cardinality constraints or
other SoD properties. In particular, this approach is helpful
if a new constraint is added to a complex policy, in order to
check if it is in conflict with the composition of the already
defined constraints, i.e., if at least one of these constraints is
evaluated to false.
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Nevertheless, USE may find conflicts only in certain
cases, and there is no guarantee that all conflicts can be
detected. Had u not been assigned to r2, the conflict would
not have been detected. In order to eliminate contradictory
constraints to a larger extent, a more formal approach such
as theorem proving is required. On the other hand, the
USE approach is only meant to improve the design of an
RBAC policy and does not aim at a formally proven
design. Given the condition that there is often a lack of
tools for policy analysis, the USE approach can be
considered as the first practical step toward more reliable
security mechanisms. The formal verification as described
in Section 3.2 and the validation with USE can hence be
regarded as complementary.

However, various heuristics can be applied that may
streamline the conflict detection process with USE. One
approach is sketched in the following. This approach is
based upon an automatic snapshot generator that is made
available by the USE system [38]. This snapshot generator
allows one to define certain properties on the snapshots and
to automatically construct sequences of snapshots, apart
from manually giving commands or applying the graphical
user interface provided by USE. For this purpose, a
language called A Snapshot Sequence Language (ASSL)
has been introduced such that snapshots can be constructed
in a more declarative way. In addition, ASSL has formal
semantics, which has been given by Gogolla et al. [38]. Due
to the fact that loop constructs and a backtracking
mechanism are provided by ASSL, sequences of snapshots
can be generated. Moreover, invariants can be dynamically
loaded at runtime, in order to either further restrict the
snapshots to be constructed (controlling invariants) or
certify given properties. This way, we can rule out trivial
snapshots such as the empty snapshot, which obviously
satisfies the conflicting constraints mentioned above and
does not reveal the conflict.

One remark should be made on the appropriate number
of RBAC elements (such as users, roles, and user assign-
ments) of which a snapshot should consist. As a rule of
thumb, the snapshots should contain the elements occur-
ring in the RBAC policy under investigation. As a
consequence, the number of RBAC elements is roughly
the sum of the number of elements that occur in the RBAC
policy.

The following general recipe helps in detecting conflict-
ing constraints by means of the automatic snapshot
generator (assuming that a new constraint is added to a
set of nonconflicting constraints):

. Specify the set of nonconflicting constraints in a file
in USE format.

. Define ASSL procedures for generating appropriate
entities, attributes, and links between the entities
(e.g., users, roles, and UA and PA relations) and then
call these procedures.

. In certain cases, load further controlling invariants
dynamically.

. Dynamically load the new constraint.

. If there do not exist any snapshots that satisfy all the
constraints at the same time, there may be conflicting

constraints, and a further investigation of the RBAC
policy is required.

Note that the aforementioned steps will not necessarily
be carried out in the given order. ASSL procedure calls are
usually interleaved with dynamically loading further
constraints (such as controlling invariants) in order to
produce the appropriate snapshot sequences.

In the following, we briefly describe, by means of the
running example, how to use the snapshot generator for
the detection of conflicting constraints. In Fig. 6, a
protocol file can be found, which contains the central
steps for the generation of the snapshot sequences. The
aim is to produce snapshots that reveal the aforemen-
tioned conflict. First, the RBAC policy in USE format is
loaded, containing only a prerequisite role constraint and
the RBAC model. Thereafter, appropriate numbers of
users and roles are generated, including the roles r1 and
r2. In order to give an impression of how ASSL
procedures look like, the procedure generateRoles is
depicted in Fig. 6. This procedure creates roles and
checks within a for-loop that no duplicates are generated.

In the next step, the controlling OCL invariant Role::
inv1 is loaded, which guarantees that every user is
assigned to at least one role, and conversely, every role
has at least one user. This prevents the creation of trivial
snapshots. Then, in the main step, the new constraint, SSoD,
is dynamically added to the policy, and six UA links are
generated. As a result, we obtain no snapshot that satisfies
all the so far defined conditions. This may indicate that
there are conflicting constraints, and we can use the query
facilities provided by the USE system for a further
investigation.

The snapshot generator can also be applied to detect
chains of conflicting constraints, consisting of more than
two constraints. Here, we can remove one constraint after
the other from the USE specification until we obtain a
snapshot. The constraint removed in the last step may
belong to a conflicting chain. If we remove the constraints in
another order, we may identify other constraints of the
conflicting chain.

Detection of missing constraints. The second consequence
of constraint validation may be that a policy permits
undesirable system states, i.e., the authorization constraints
are too weak. Once again consider the example policy in
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Fig. 4. If we create a system state in which u is assigned to
the roles r1 and r2, all constraints (in our case, specifically
the conflict user part of the SSoD-CU constraint) defined so
far are evaluated to true. Hence, the policy seems suppo-
sedly to be correct, although the policy permits a user to be
assigned to the mutually exclusive roles r1 and r2.
Obviously, the policy designer has forgotten to define the
SSoD part of the SSoD-CU constraint. Therefore, a further
SSoD constraint must be added to the policy in order to
exclude the undesirable state and to obtain a more
restrictive RBAC policy.

In general, we can create snapshots that deliberately violate
requirements that the RBAC policy under investigation must
satisfy. If still all authorization constraints defined so far are
fulfilled, then one or more constraints are missing. More-
over, we can also use the aforementioned automatic snap-
shot generator for detecting missing constraints. This can be
done in the following way: First, the requirement to be
investigated is formulated as an OCL invariant and is at the
same time logically negated. For this purpose, a special
negate flag can be set with the help of the USE system [38].
By means of the snapshot generator, we can then try to create
sequences of system states that satisfy both the added
(negated) requirement and the already defined constraints.
If we find such a system state, one or more constraints are
missing.

5 AUTHORIZATION ENGINE

In this section, we demonstrate how an RBAC authorization
engine can be built based upon the functionality of the USE
system. This tool helps to enforce several kinds of
authorization constraints like those listed in [6]. A more
detailed description of the authorization engine can be
found in [39].

More explicitly speaking, the authorization engine can be
used in principle to specify and enforce all authorization
constraints expressible in OCL. As a consequence, types of
authorization constraints beyond those enumerated by Ahn
[6] can also be supported. In the following, the functionality
of the authorization engine will be presented. Thereafter,
we describe more thoroughly how this tool has been
implemented.

5.1 Functionality of the Authorization Engine

The prototype of the authorization engine currently sup-
ports most of the functionality demanded by the RBAC
standard [7]. This means that we have implemented
administrative functions, system functions, and review
functions. Administrative functions are required for the
creation and maintenance of the RBAC element sets and
relations (e.g., UA, PA, and RH). For example, AddUser and
AssignUser belong to this class of functions. System functions
are required by the RBAC authorization engine for session
management and for making access control decisions. Thus,
examples are CreateSession and CheckAccess. Review functions
can be employed for inspecting the results of the actions
created by administrative functions. Typical examples of
review functions are AssignedUsers and UserPermissions.

Beyond this basic functionality, the RBAC authorization
engine provides mechanisms for defining and enforcing role
hierarchies and authorization constraints such as various
SoD properties, cardinality constraints, prerequisite roles,

and context constraints with respect to location. In addition,

the tool can be quite easily extended to support other

authorization constraints. This way, it is flexible enough to
enforce various RBAC policies, depending on the internal

rules of the organization in question.
To give a better overview, a screenshot of the current

prototype of the authorization engine is shown in Fig. 7. In

particular, authorization constraints can be defined with
the help of dialog windows such as the window on the

right-hand side for a SSoD constraint. The current RBAC

configuration is visualized by the large window in the
middle.

The authorization engine can be employed both at

administration time and runtime in order to enforce the

aforementioned authorization constraints. For the enforce-
ment of static constraints, an administration tool similar to

that depicted in Fig. 7 can be used by a security officer. In

case of simple dynamic SoD [18], the session mechanism
provided by the considered application can be used:

Whenever an application session is generated, a correspond-

ing RBAC session is created in the authorization engine.
Similarly, the fact that roles are activated or deactivated can

be communicated to the authorization engine. The engine

then makes the access decision based upon the application’s
current security state (cf. Section 5.2.4), and hence, the

authorization engine can be regarded as a policy decision

point [40]. One can even integrate the authorization engine
with Web services in order to enforce the RBAC policies on

the middleware and not on the application level. Then, the

Web service session can be mapped to an RBAC session.

5.2 Implementation Aspects

The authorization engine has been implemented by using a
Java API made available by the USE tool. This way, the

functionality of USE is hidden from the administrator/

security officer by the graphical user interface of the
authorization engine. Now, our implementation, based

upon the USE API, will be described in more detail. In

particular, we explain how the administrative functions,
system functions, and review functions have been realized.

Thereafter, the constraint checking mechanism is sketched.
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5.2.1 Administrative Functions

The core operations provided by the authorization engine
are administrative functions. An administrator can change
an RBAC configuration with these functions. We have
implemented administrative functions by the state manip-
ulation commands of the USE system [10]. To demonstrate
this, we subsequently consider the operation AssignUser,
which assigns a user to a role. AssignUser can be expressed
by the state manipulation command !insert(u, r) into

UA (with a user u and a role r). This command can then be
called by employing the command execution facility
provided by the USE API called executeCmd(). The other
administrative functions have been realized in a similar
way. Clearly, in order to remain in a state consistent with
the current RBAC policy, all (relevant) authorization
constraints must also be checked. This will be explained
in more detail below.

5.2.2 Review Functions

RBAC review functions are demanded by the RBAC
standard and have also been conveniently implemented
by employing the USE functionality. For this purpose, we
have employed the query facilities of USE (cf. Section 4.2.2).
In particular, the USE API provides the method eval(),
which evaluates a query consisting of an OCL expression in
the current system state. For example, the following OCL
query expresses the UserPermissions function, which returns
all permissions of a user:

UserPermissionsðu : UserÞ : SetðPermissionÞ ¼
u:role -> iterateðr : Role;

result : SetðPermissionÞ ¼ fgj
result -> unionðr:permissionÞÞ

This query has been specified in a USE file (such as that
presented in Fig. 4), which is read when the authorization
engine is started. Then, the eval() method of the
expression evaluator provided by the USE system is invoked
with the two parameters “UserPermissions” and the user
“u,” whose set of permissions is to be determined. The other
review functions have been implemented similarly.

5.2.3 System Functions

Some RBAC system functions such as CheckAccess have
been realized with USE similar to the review functions. As
in the case of review functions, the CheckAccess function has
been specified in the USE file and is then executed by the
aforementioned eval() method. In contrast, the session-
related system functions like CreateSession must be realized
in the same way as the administrative functions by means
of the state manipulation commands.

5.2.4 Constraint Checking

The basic idea of the constraint checking mechanism is
described as follows: The authorization engine checks if the
relevant authorization constraints are still satisfied after an
administrative or system function such as CreateSession has
been carried out. This is done by the check() method
made available by the USE API. If any constraint is violated,
the last administrative or system function is automatically
revoked with the help of an undo() method. As a
consequence, the tool produces only RBAC configurations
that are consistent with the specified RBAC policy.

6 DISCUSSION AND FUTURE WORK

There are several directions for further research. We mainly
discuss two extensions of our approach that seem to be
worthwhile pursuing. First, LTL and OCL are only general-
purpose specification formalisms. However, we do not have
a formalism at hand that is specially tailored toward the
need of a policy designer. For this reason, we discuss here
how RCL 2000 specifications can be translated into OCL
statements. The policy designer can then decide to use OCL
and/or RCL 2000 for the specification of the RBAC policies.
In the latter case, the policy designer can then employ the
USE tool for validation and the authorization engine after
the translation process.

The second extension of our work concerns history-
based constraints. Owing to the fact that USE can only
check the current snapshot of a system, history-based
authorization constraints cannot be dealt with. For this
purpose, a temporal extension of OCL is needed. In the
following, we discuss both extensions in more detail. We
also compare our approach with other works in a section on
related work.

6.1 Relationship between RCL 2000 and OCL

Given the expressive power of OCL, specification languages
for authorization constraints such as RCL 2000 [6] can be
translated into OCL. This gives the policy designer the
opportunity to specify authorization constraints in a
security language and then to validate and enforce the
constraints with the help of USE. Subsequently, we show
that RCL 2000 expressions have appropriate counterparts in
OCL, i.e., we demonstrate that the syntactical constructs of
RCL 2000 can be translated into OCL expressions. The
reader can refer to Ahn’s thesis [6] in order to obtain more
information on the details of RCL 2000’s syntax.

RCL 2000 sets and relations. The basic RBAC sets such as
U , R, and P are modeled by UML classes. The relations
such as UA, PA, and RH can be represented by the UML
associations presented in Fig. 4. In addition, the sets CU ,
CP , and CR are expressed by local variables in a let

statement (cf. Section 4.1.2). Although OCL only supports
finite sets, this is no problem here because RCL 2000 itself
only supports finite sets.

Operators. Operators like ) , ^, � , and � have their
obvious counterparts in OCL, namely, implies, and, � ,
and � . jXj returns the cardinality of a set X and can be
expressed by OCL’s size operator.

RBAC functions. RCL 2000 supports various RBAC
functions. We now demonstrate by means of several
examples that the RBAC functions can be modeled in
OCL. Due to space limitations, we do not cover every RBAC
function here. One example is the user function, which
returns the unique user of a session. This function can be
trivially represented by self.user if the context of the
OCL expression is Session. The overloaded roles function
returns all the roles belonging to a user, session, and
permission, respectively. Moreover, roles	 is a variant of
roles that additionally takes the role hierarchy into con-
sideration. For example, roles	ðuÞ ¼ fr 2 Rj9r1 2 R:r �
r1 ^ ðu; r1Þ 2 UAg returns all the roles assigned to user u
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and all the roles junior to them. roles	 can be formulated in
OCL as follows:

roles starðu : UserÞ : SetðRoleÞ ¼
Role:allInstances -> selectðrj
r:senior -> existsðr1ju:role -> includesðr1ÞÞÞ.

Note that r.senior, by definition, already contains all
the roles senior to r due to the transitivity of � . Hence, we
need not specify a function that calculates the senior roles of
r recursively.

Nondeterministic functions. The central functions of RCL
2000, however, are OE (one element) and AO (all other),
which are both nondeterministic functions. OEðXÞ selects
nondeterministically one element from a set X. Multiple
occurrences of the expression OEðXÞ within an RCL 2000
statement return always the same element of X. AOðXÞ
gives then the complement X 
 fOEðXÞg on any set X.
Hence, we have the equation X ¼ fOEðXÞg [AOðXÞ.

The OE function can be expressed by the any operation
provided by OCL with the condition set to true, i.e.,
OEðXÞ corresponds to X -> anyðtrueÞ. As mentioned above,
multiple occurrences of the OEðXÞ expression always yield
the same element. This can be conveniently expressed by
factoring out the any expression in a let expression.
AOðXÞ can then be translated to X-fX -> anyðtrueÞg.

For example, consider the following RCL 2000 expres-
sion containing OE and AO terms:

OEðOEðCRÞÞ 2 rolesðOEðUÞÞ )
AOðOEðCRÞÞ \ rolesðOEðUÞÞ ¼ ;:

Then, the corresponding OCL expression is

let

CR : SetðSetðRoleÞÞ ¼ f. . .g,
cr : SetðRoleÞ ¼ CR -> anyðtrueÞ,
r : Role ¼ cr -> anyðtrueÞ,
u : User ¼ User:allInstances -> anyðtrueÞ

in

u:role -> includesðrÞ implies

ððcr-frgÞ -> intersectionðu:role Þ ¼ fgÞ
Having shown that the basic elements of RCL 2000 can

be converted to OCL, we now briefly sketch a translation
algorithm. In the first step of this algorithm, all the
AO expressions are eliminated from the RCL 2000 expres-
sion. Then, we iteratively translate OE terms into OCL
expressions, introducing new local variables in a let

construct as explained above. This way, the same occur-
rences of OE expressions within an RCL 2000 expression
can be factored out. If we have nested OE expressions, the
translation will be started from the innermost OE term.

The analysis of the runtime depends on the number of
OE terms. Therefore, this algorithm can translate an RCL
2000 expression in OðnÞ, supposing that n is the number of
the different OE terms. As future work, a compiler could be
developed that parses the RCL 2000 statements and
converts them into OCL expressions, based upon the
aforementioned algorithm.

6.2 History-Based Constraints

OCL is quite similar to first-order predicate logic. As
expressions of the predicate calculus, OCL expressions used
in invariants are evaluated in a system state. However, due

to the fact that we consider here only one snapshot of the
system, we have no notion of time. Hence, authorization
constraints that consider the execution history, such as
history-based or object-based dynamic SoD, cannot be
expressed.

In the following, we sketch how history-based author-
ization constraints can be specified in Temporal OCL
(TOCL) [41], an extension of OCL with temporal elements.
In particular, temporal operators like always (in the
future), sometime (in the future), and next are available.
To demonstrate how history-based authorization con-
straints can be formulated in TOCL, we take object-based
dynamic SoD as an example. In order to specify object-
based dynamic SoD, we use the predicate Exec uðu; op; objÞ
introduced in Section 3.1.1. However, due to the fact that
Exec u is a ternary predicate and an OCL does not directly
support ternary associations,8 we extend (T)OCL with an
additional predicate Exec_u to express ternary associa-
tions, as proposed by Gogolla and Richters [42]. Then, we
obtain the following TOCL specification for object-based
dynamic SoD:

context Object inv ObjDSoD:

Operation:allInstances -> forAllðop; op1j
User:allInstances -> forAllðuj
ðExec uðu; op; selfÞ and op1 <> opÞ

implies always not Exec uðu; op1; selfÞÞÞ
This corresponds to the first-order LTL specification

given in Section 3.1.1:

8u : User; op; op1 : Operation; obj : Object:op 6¼ op1^
Exec uðu; op; objÞ ) tu:Exec uðu; op1; objÞ:

Having a formalism for the specification of history-based
constraints at hand, the next step would be to extend USE
itself in order to support TOCL. This way, the authorization
engine could also enforce history-based constraints, which
are often required in the context of workflows [3].

In this respect, another direction for future work would
be to develop a compiler that translates TOCL specifications
into first-order LTL. Then, we could utilize Isabelle to
formally verify properties of the LTL representation (and,
indirectly, of the TOCL specification) of the RBAC policy in
question. To sum up, we could now enforce dynamic RBAC
policies with the enhanced USE system and at the same
time verify dynamic RBAC policies by means of Isabelle.
This way, the gap between the (T)OCL and the first-order
LTL approach can be filled. As a summary, Table 1 presents
the essential properties of the RBAC specification languages
discussed in this paper.

6.3 Related Work

There are several works on the formal specification of
authorization constraints, such as [21], [6], [8], and [13].
Gligor et al. [13] formalize history via traces of states but
end up with rather complex formulas explicitly talking
about states. In contrast, first-order LTL allows for an
elegant formulation of history-based SoD constraints.

Joshi et al. define the GTRBAC model, which has the
notions of temporal constraints and events [21]. Joshi et al.
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explicitly introduce points in time and duration in order to
specify temporal contexts, whereas we currently concen-
trate on history-based and order-based SoD constraints.
Clearly, we can extend our library of Isabelle theories in
order to support GTRBAC and could introduce predicates
for events. This is needed, for example, if we would like to
deal with temporal delegation constraints such as duration
constraints on delegation rules. In addition, Shafiq et al.
present a verification framework using Petri nets, which is
based on GTRBAC [43]. Similar to the validation approach
with USE, the framework can detect conflicting and missing
constraints. In contrast to the USE approach, the verification
is tailored to GTRBAC’s event-based model. However, this
verification approach can handle only finite sets of RBAC
entities and has exponential time and space complexity. In
contrast, we can prove general theorems on RBAC policies
by means of theorem proving with Isabelle, regardless of
whether the underlying sets are infinite or change at
runtime.

Often, the graph-based approach presented by Koch
et al. [44] is mentioned in the context of policy verification.
Among other aspects, this approach ensures that concrete
RBAC configurations remain consistent with respect to a
specified RBAC policy when administrative RBAC func-
tions (represented as graph rules) are performed. In this
respect, this approach is similar to our enforcement
mechanism based upon USE. In fact, one could also build
an authorization engine based upon a graph transformation
engine. In addition, Koch et al. present an approach to the
detection and resolution of conflicting constraint pairs,
similar to the validation with USE. Currently, however, no
tool support for the detection of conflicting constraints
seems to exist.

Crampton presents another authorization engine [45].
However, with Crampton’s approach, for example, neither
the SSoD-CU constraint nor context constraints are sup-
ported. On the other hand, no history-based SoD constraints
can be currently enforced with the USE approach.

In this paper, we only presented a simple delegation and
revocation scheme. In fact, newer schemes [28], [46], [29]
could also be expressed by means of the LTL approach. For
example, Atluri and Warner extended the notion of delega-
tion to allow conditional delegation, where the delegation
conditions can be based on time, workload, and task
attributes, specifically focusing on constraints associated
with workflow systems [28]. In addition, GTRBAC has
recently adopted role-based delegation notions with hybrid
hierarchies and multiple hierarchy semantics to support
fine-grained delegation schemes [29].

7 CONCLUSION

In this paper, we presented a methodology for the

specification, verification, and enforcement of RBAC poli-

cies. In particular, we demonstrated that several types of

authorization constraints can be specified with the help of

formalisms such as first-order LTL, OCL, and TOCL. Due to

the fact that UML/OCL is quite familiar in industrial

environments, there is hope that OCL could be used by

policy designers in many organizations. In addition, we

demonstrated that the theorem prover Isabelle helps in

formally verifying properties of complex dynamic RBAC

policies. The validation approach with the USE system,

however, would be regarded as a front line of defense,

which can be used to fulfill several practical needs. First,

USE can be employed to validate authorization constraints,

allowing that certain conflicts between authorization con-

straints and missing constraints can be detected. Second, the

Java API provided by USE can be utilized to build an

authorization engine that helps to enforce various RBAC

policies.
In summary, we strongly believe that both formal and

practical approaches for policy specification and verifica-
tion are needed in the design phase to rule out any
inconsistencies and undesirable properties of RBAC policies
at the early stage. Also, our approach can be integrated with
system development tools as a systematic complementary
component to support well-known access control features.
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