
Authorization Management for Role-based
Collaborat ion*

Gail-Joon Ahn, Longhua Zhang, Dongwan Shin and Bill Chu
University of North Carolina at Charlotte

Charlotte, NC, U.S.A.
{gahn,lozhang,doshin,billchu}@uncc.edu

Abstract - Information sharing among collaborating
organizations usually occurs in broad, highly dynamic
network-based environments, and formally accessing the
resources in a secure manner poses a dificult chal-
lenge. The mechanisms must be provided to protect
the resources from adversaries. The proposed delega-
tion framework addresses the issue of how to advocate
selective information sharing among collaborating orga-
nizations. We introduce a systematic approach to man-
age delegated privileges with the specification of delega-
tion and revocation policies using a set of,rules. We
demonstrate the feasibility of our approach by providing
a proof-of-concept implementation. We also briefly dis-
cuss several issues from our experiment including future
directions.

Keywords: Role-based, authorization, collaboration,
delegation

1 Introduction
The Internet is uniquely and strategically positioned

to address the needs of a growing segment of population
in a very cost-effective way. It provides tremendous con-
nectivky and immense information sharing capability
which the organizations can use for their competitive
advantage. Several organizations have transited from
their old and disparate business models based on ink
and paper to a new, consolidated ones based on digi-
tal information on the Internet. However, information
sharing on the Internet usually occurs in broad, highly
dynamic network-based environments, and formally ac-
cessing the resources in a secure manner poses a diffi-
cult challenge. Balancing the competing goals of collab
oration and security is difficult because interaction in
collaborative systems is targeted towards making pec-
ple, information, and resources available to all who need
it, whereas information security seeks to ensure the in-
tegrity of these elements while providing it only to those
with proper authorization.

We first address some examples in the healthcare set-
ting to clarify the problem. In a healthcare organization,

'~7803-7952-7/0S/$l7.00 0 2003 IEEE.

a wide variety of information on its patients is needed
to provide effective medical services. The main purpose
of healthcare information systems is to provide a fully
integrated electronic patient record. Briefly, it includes
traditional clerical information ahout appointments and
admissions; results from specialties such as pathology,
radiology, and endoscopy; drug treatment; procedures;
and problem lists. In addition, it generates and stores
plans for nursing care, clinical correspondence, and dic-
tated note from ward rounds.

During a simple healthcare episode, many profession-
als involve in a number of medical acts. Healthcare
administration personnel, healthcare professionals, so-
cial care professionals, as well as patients need to s e
lectively interact with the healthcare information. The
specific level of access and permissions a user can have
to the healthcare information will he determined by his
responsibilities in the organization. In order to achieve
this, users are identified to the system as having one or
more roles, such as ward base nurse, specialist nurse, ju-
nior doctor, ward clerk, clinical consultant, neurologist,
gynecologist, radiologist, etc. Only a specialist doctor
may be allowed to see a section of the records of his pa-
tient that pertain to the results of very sensitive medical
test. However, in some situations, a specialist doctor
may need to share information with other specialists
within or across organizational boundaries. Consider
the case of a virtual hospital that consists of several
highly collaborative healthcare organizations connected
by high-speed network. Suppose that Jennifer is under
the care of a Neurologist, Dr. Chen. Suppose Jennifer
becomes pregnant and becomes a patient of Dr. Jain,
a Gynecologist. Dr. Chen and Dr. Jain must collabo-
rate very closely to share information during Jennifer's
pregnancy. Dr. Chen may further consult Dr. White in
a specialist clinic to prescribe a drug for Jennifer. Thus
Dr. White needs access to Jennifer's records too.

Another example we use to motivate our discussions
is a hospital's policy to enable access to anonymous
medical data for research purposes. Medical research
promotes human knowledge to improve the quality of
healthcare; therefore, it should he encouraged, stim-

41 213

mailto:gahn,lozhang,doshin,billchu}@uncc.edu

dated, and promoted as strongly as possible. How-
ever, preservation of confidentiality and respect for pa-
tient’s rights should take precedence over any scien-
tific purpose. For exiunple, anonymous medical data
removes names and social security numbers from pa-
tients’ records. But removing names and social security
numbers doesn’t ensure privacy and confidentiality of
medical information. Most of the US population can be
uniquely identified by combination of birth date, sex,
and ZIP code. Thus, a hospital may limit the access to
anonymous medical data only to authorized people, e.g.
only cardiologists are dlowed to access cardiac medical
records.

We observe the following commonalities between two
examples above. First, selective information sharing is
necessary. We are dealing with friends, not enemies,
and should provide relevant information expeditiously.
Second, the information may be shared across organiza-
tional boundaries. Medical records may be exchanged
between collaborative hospitals for shared patient; re-
searchers may reside in different healthcare organiza-
tions. Because sharing a resource across organizational
boundaries often means authorizing a server to give ac-
cess to a third party, it implies enabling resource servers
to reason about previously unknown third parties. This
requirement contrasts with many conventional systems,
wherein a server need only reason about the set of users
known inside a given organization. Third, it is impossi-
ble to fully predicate what data should be shared, when
and to whom. And another thing is that a mechanism
must be provided for revoking the sharing when it is no
longer needed. All these factors have to be considered in
order to formulate the mechanism for information shar-
ing among collaborating organizations.

The rest of the paper is organized as follows. In sec-
tion 2, we discuss the related works. In section 3 we
discuss our approach based on existing models. Imple-
mentation details are described in section 4. Section 5
discusses the lessons learned from ow experiment and
concludes the paper.

2 Related Works
Historically, the access control problem has been

couched based on subjects and objects [13]. The sub-
jects may be users or processes acting on behalf of users.
The objects are data or resources in the system. Permis-
sions are a set of operations that a subject can have with
one or more objects in the system. Over the last few
decades, we have seen the evolution and development of
many access control models [ll, 131. As organizations
implement information strategies that call for sharing
access to resources in the networked environment, ac-
cess control concerns not only the protection of individ-
ual objects and subjects, but also the management of
access control decisions in dynamic, highly distributed
systems. Various approaches have been proposed.

Thomas et. a1 formulated tean-based access control
(TMAC) [12] and task-based access control (TBAC) [13]
as active security models. This approach models ac-
cess control from a context-oriented perspective than
the traditional subject-object one. TMAC and TBAC
are aware of the context information associated with
an ongoing activity. Thus, they provide a natural way
to control access for collaborative activities in teams
and workflows. However, We argue that TBAC modes
are specific configurations of role-based access control,
where context information can be viewed as constraints.

Rolebased access control is an enabling technology
for managing and enforcing security in large-scale and
enterprise-wide systems. The basic notion of RBAC is
that permissions are associated with roles, users are as-
signed to appropriate roles, and users acquire permis-
sions by being members of roles. Users can be easily re-
assigned from one role to another. Roles can be granted
new permissions. And permissions can be easily revoked
from roles as needed. This greatly simplifies security
management [Ill. Constraints can apply to relations
and functions defined in an RBAC model to establish
higher-level organizational policy.

Delegation is another important factor for secure dis-
tributed computing environment [14]. In large role-
based systems, the number of roles may be in the hun-
dreds or thousands, and users in the tens or hundreds
of thousands. In addition, today’s dynamic and collab-
orative work environment may require users assuming
temporary roles. Management of user assignment is a
formidable task and could not realistically be centralized
to a small group of security officers. Decentralizing ad-
ministration of user assignment is critical in distributed
role-based access control. It is natural to decentralize
the administration through delegation to increase the
scalability of rolebased systems. The basic idea behind
a rolebased delegation is that users themselves may del-
egate role authorities to other users to carry out some
functions authorized to the former.

Several papers have been published on security re-
quirements in healthcare environment [l]. Projects have
been undertaken to explore the use of RBAC and iden-
tify sample RBAC policies in healthcare information
systems [Si. It is generally accepted that RBAC is more
suited to healthcare than other access control mech-
anisms to meet the requirements for the security of
healthcare informatian. Also, we need to consider the
delegation needs for efficient collaborative environment.
The purpose of this paper is to investigate how to en-
hance the information sharing in healthcare information
system through rolebased access control and delega,
tion.

3 Our Approach
In order to deal with the aforementioned issues, our

work, called FRDIS (A Framework of Rolebased Dele-

41 2s

Director (DIR)

Lead Officer 1 Lead Officer 2
(P E)

Project Project Participant
Ofticer 1 Collaiwrator Collaborator 0 mc; 1 0 1 (PCI) 2(Pc2) (P02)

Participant

(POI)

/ Project1
ReDoner (PI)

Project2 \
(P2) Rewrter

Police Officer (PLO)

Figure 1: Role Hierarchy and Membership

Table 1: Role Membership

I ROLES DIR PL1 PL2 PO1 PO2 I
USERS John Deloris Cathy Michael Mark

David Lewis

gation for Information Sharing), leverages the existing
models [ll, 141. To illustrate each functional compo-
nent in our model, we use the role hierarchy example
illustrated in Figure 1 and Table 1.

To simplify the discussion of delegation, we assume a
user cannot be delegated to a role if the user is already a
member of that role. For example, project leader Deloris
with role PL1 cannot be delegated the role PO1 or PC1
since he has already been an implicit member of these
roles.

3.1 Role Delegation
We first define a new relation called delegation rela-

tion (DLGT). It includes sets of three elements: original
user assignments UAO, delegated user assignment UAD,
and constraints. The motivation behind this relation is
to address the relationships among different components
involved in a delegation. In a user-to-user delegation,
there are four components: a delegating user, a dele-
gating role, a delegated user, and a delegated role. For
example, (Deloris, PL1, Cathy, PL1) means Deloris
acting in role PL1 delegates role PL1 to Cathy. A del-
egation relation is one-to-many relationship on user as-
signments. The delegation relation supports role hierar-
chies: a user who is authorized to delegate a role r can
also delegate a role r’ that is junior to r. For example,
(Deloris, PL1, Lewis, PC1) means Delwis acting in
role PL1 delegates a junior role PC1 to Lewis. A delega-

DLGT

Figure 2: Delegation Relation

tion relation is one-to-many relationship on user assign-
ments. It consists of original user delegation (ODLGT)
and delegated user delegation (DDLGT). Figure 2 il-
lustrates components and their relations in FRDIS. We
assume each delegation relation may have a duration
constraint associated with it. If the duration is not ex-
plicitly specified, we consider the delegation as perma-
nent unless another user revokes it. The function Dura-
tion returns the assigned duration-restriction constraint
of a delegated user assignment. If there is no assigned
duration, it returns a maximum value.

FRDIS has the following components and theses com-
ponents are formalized from the above discussions.

T is a set of duration-restricted constraint.

DLGT UA x UA is one to many delegation re-
lation. A delegation relation can be represented by
(U, r, U’, r’) E DLGT, which means the delegating
user U with role r delegated role r’ to user U‘.

ODLGT C_ UAO x UAD is an original user dele-
gation relation.

4130

DDLGT E UAD x UAD is a delegated user dele-
gation relation.

DLGT = ODLGT U DDLGT.

In some cases, we may need to define whether or not
each delegation can be further delegated and for how
many times, or up to the maximum delegation depth.
We introduce two types of delegation: single-step dele
gation and multi-step delegation. Singlestep delegation
does not allow the delegated role to be further delegated;
multi-step delegation allows multiple delegations until it
reaches the maximum delegation depth. The maximum
delegation depth is a natural number defined to impose
restriction on the delegation. Singlostep delegation is
a special case of multi-step delegation with maximum
delegation depth equal to one.

Also, we have an additional concept, delegation path
(DP) that is an ordered list of user assignment relations
generated through multi-step delegation. A delegation
path always starts from an original user assignment.
We use the following notation to represent a delegation
path.

uaog + uadl + uad, -+ uad ,
Delegation paths starting with the same original user

assignment can further construct a delegation tree. A
delegation tree (DT) expresses the delegation paths in a
hierarchical structure. Each node in the tree refers to a
user assignment and each edge to a delegation relation.
The layer of a user assignment in the tree is referred
as the delegation depth. The function Prior maps one
delegated user assignment to the delegating user assign-
ment; function Path returns the path of a delegated user
assignment; and function Depth returns the depth of the
delegation path.

Constraints are an important aspect of RBAC and
can lay out higher-level organizational policies. In t h e
ory, the effects of constraints can be achieved by estab-
lishing procedures and sedulous actions of security ad-
ministrators [5] . In FRDIS, the constraints are enforced
by a set of integrity rules that provide management
and regulators with the confidence that critical secu-
rity policies are uniformly and consistently enforced. In
the framework, when a user delegates a role, all context
constraints that are assigned to the user and anchored
to the delegated role are delegated as well.

3.2 Role Revocation
Several different semantics are possible for user revc-

cation. Hagstrom and others [6] categorized revocations
into three dimensions in the context of owner-based ap-
proach : global and local (propagation), strong and
weak (dominance), and deletion or negative (resilience).
Barka and Sandhu [3] further identified user gran&
dependent and grant-independent revocation (grant-
dependency) . Since negative authorization is not con-
sidered in FRDIS, we articulate user revocation in the

~

4131

following dimensions: grant-dependency, propagation,
and dominance. Grant-dependency refers to the legiti-
macy of a user who cam revoke a delegated role. Grant-
dependent revocation means only the delegating user
can revoke the delegated user from the delegated role
membership. Grant-independent revocation means any
original user of the delegating role can revoke the user
from the delegated role. Dominance refers to the effect
of a revocation on implicit/explicit role memberships of
a user. A strong revocation of a user from a role requires
that the user be removed not only from the explicit
membership but also from the implicit memberships of
the delegated role. A weak revocation only removes the
user from the delegated role (explicit membership) and
leaves other roles intact. Strong revocation is theoreti-
cally equivalent to a series of weak revocations. To per-
form strong revocation, the implied weak revocations
are authorized based on revocation policies. However, a
strong revocation may have no effect if any upward weak
revocation in the role hierarchy fails [lo]. Propagation
refers to t.he extent of the revocation to other delegated
users. A cascading revocation directly revokes a dele
gated user assignment in a delegation relation and also
indirectly revokes a set of subsequent propagated user
assignments. A non-cascading revocation only revokes
a delegated user assignment.

Our preliminary study shows grant-dependent revc-
cation for brevity. Suppose the revocation in Figure 3
is weak non-cascading, for John to revoke Cathy from
role PL1, it is important to note that only Cathy’s mem-
bership of role PL1 is changed; other role memberships
of Cathy and all the delegated user assignments propa-
gated by Cathy are still valid. If the revoked node is not
a leaf node, non-cascading revocation may leave a “hole”
in the delegation tree. A solution might be the revok-
ing user takes over the delegating user’s responsibility.
In this example, John takes over the delegating user’s
responsibility from Cathy, and changes all delegation
relations: (Cathy, PL1, U, T) E DLGT to (John, DIR,
U, T) E DLGT. In this case, John takes over Cathy’s
delegating responsibility for Mark and Lewis.

3.3 Rule-Based Policy Specification

FRDIS defines policies that allow regular users to del-
egate their roles. It also specifies the policies regarding
which delegated roles can be revoked. A rulebased lan-
guage is adopted to specify and enforce these policies.
It is a declarative language in which binds logic with
rules. The advantage is that it is entirely declarative so
it is easier for security administrator to define policies.

Language

A rule takes the form:
H c Fl&F2&. . . & F n
wheE H, F l , F2,. . . , Fn are Boolean function&
There are three sets of rules in the framework ba-

sic authorization rules specify organizational delegation

Figure 3: Weak Non-cascading Revocation

and revocation policies; authorization derivation rules
enforce these policies in the healthcare information sys-
tem; and integrity rules specify and enforce role-based
constraints.

For example, a user-user delegation authorization rule
forms as follows:

candelegate(r,cr, n) + .
where T, cr, and n are elements of roles, prerequisite
conditions, and max-imum delegation depths respectively.

This is the basic user-to-user delegation authorization
rule. It means that a member of the role r (or a member
of any role that is senior to T) can assign a user whose
current membership satisfies prerequisite condition CT to
role r (or a role that is junior to T) without exceeding
the maximum delegation depth n.

A user delegation request is further authorized by
the user-user delegation authorization derivation
rule that takes the form:

der.mndelegate(u, T , U', ?-',dg_opt) t
candelegate(r", cr, n)&
active(u, T , s)&
delegatable(u, r)&
senior(r, r")&
in(u', cr)&
junior(r', T")&

in.(depth(u,r),n).
where U and U' are elements of users; T, T ' , and T" are

elements of roles; cr and s are elements of prerequisite
condition and sessions respectively; dlg-opt is a Boolean
term, if it is true, then further delegation is allowed.
This argument is used as Boolean control of delegation
propagation.

This rule means that a user U with a membership of
a role T senior to T" activated in session s can delegate
a user U' whose current role membership satisfies pre-
requisite condition CT to role T' (T I is junior to role T")

without exceeding the maximum delegation depth n.
Similar rules are also defined for role-based revocations
and are applied.to specify constraints.

'

4 Implementation Details
The notions described in FRDIS and the rule-based

policy specification language are designed to be utilized
within an administrative-directed delegation manage-
ment architecture. An overview of the proposed archi-
tecture is shown in Figure 4. It consists of a number of

services and management agents together with the ob-
jects to be managed. The enforcement agents are based
on a combination of roles and rules for specifying and
interpreting policies. Since delegation and revocation
services are only part of a security infrastructure, we
choose a modular approach to our architecture that al-
lows the delegation and revocation services to work with
current and future authentication and access control ser-
vices. The modularity enables future enhancements of
our approach.

The role service is provided by a role server, which
is an implementation of the lU3AC96 and FRDIS com-
ponents. A role server maintains M A C database and
provides user credentials, role memberships, associated
permissions, and delegation relations of the system. The
rule service is provided by a rule server, which is used to
manage delegation and revocation rules. A delegation
or a revocation rule is always associated with a role,
which specifies the role that can be delegated. They are
implemented as authorization policies that authorize re-
quests from users. The delegation agent is an adminis-
trative infrastructure, which authorizes delegation and
revocation requests from users by applying derivation
authorization rules and processes delegation and revo-
cation transactions on behalf of users. The implementa-
tion requirements related to the delegation framework
are not only a delegation agent, but also authentication
and access control agents. The authentication agent is
used to authenticate users during their initial sign-on
and supply them with an initial set of credentials. The
reference monitor makes access control decisions based
on information supplied by the access control agent. In
large role-based system, there may be tens or hundreds
of delegation and revocation rules. The rule editor is de-
veloped to simplify the management of these rules. As
a portion of an integrated RBAC administration plat-
form developed to manage various W A C and FRDIS
components, the rule editor is used to view, create, edit,
and delete delegation and revocation rules.

Our implementation leverages FRDIS features and
X.509 attribute certificate. We attempt to imple
ment the proof-of-concept prototype implementation
of FRDIS on privilege management infrastructure
(PMI) 171. PMI provides certificate-based authorization
with attribute certificates while public-key infrastruc-
ture (PKI) does certificatebased authentication with
public-key certificates, so called identity certificates.
One of the great benefits of PMI is to establish the
trustiness among different authorization domains as
long as each domain keeps the meaning of attributes
intact. Thus, access control could be enforced not just
within a single authorization domain, but also across
multiple domains (2, 91.

Three components are identified for managing at-
tribute certificates: privilege asserter, privilege verifier,
and PMI attribute authority. Two different attribute

4132

Figure 4 FRDIS Architecture

certificates are employed: role assignment attribute cer-
tificate (M A C) for assigning roles to a user and role
specification attribute certificate (RSAC) to assign spe-
cific permissions to a role. Our tasks are divided into
two phases. The first phase is to build APIs for both
a rolebased decision making engine and attribute cer-
tificates. Those APIs are the core building blocks for
constructing an access control policy server and an at-
tribute certificate server. The second phase is to imple
ment each entity integrating with APIs. Currently we
are in the transition period from the first phase to the
second.

Privilege asserter is a client. The client is a user or
a system. It asks for and retrieves RAACs from PMI at-
tribute authority and requests access to web services (or
protected resources). We developed a simplified priv-
ilege asserter using ActiveX control, named attribute
certificate manager. The manager enables a user to im-
port downloaded BER-encoded M A C S into Windows
registry. It also allows the user to view and select on
of M A C S in the registry. The selected M A C will he
presented for requesting access to resources. We use Mi-
crosoft Internet Explorer (Version 6.0) to activate the
ActiveX control-based privilege asserter.

Privilege verifier is composed of server, access con-
trol policy server, and policy database. The server is
a protected resource server or an application server.
When a client wants to access the server, the server
asks the access control policy server if the client has the
privilege to access what it requests. The access control
policy server makes access control decisions based on
both the client's roles from a M A C and the permis-
sions assigned to the roles from a RSAC. The M A C

can be obtained from the PMI attribute authority or
the policy database. The policy database maintains all
RSACs that are previously retrieved from the PMI at-
tribute authority. Internet Information Server (Version
5.0) is used as a server. An HTTP raw data filter, called
AC filter, was developed using Microsoft ISAPI (Inter-
net Server API) technology. Its main task is screening
the incoming raw data from a client to see if the client
presents any attribute certificate.

We also developed an application working as an ac-
cess control policy server. This application has been de-
veloped in C++. An engine for making access control
decisions is a major component in this application. Af-
ter receiving a valid RAAC and requested objects (with
operation type) from the web server, the engine extracts
permissions from the RSAC and checks if the requested
object (with operation type) is in the list of permissions.
The programming library, called RBAC API, was devel-
oped to facilitate such procedures.

at-
tribute certificate server, AC storage, role database, and
role engineering administration. The attribute certifi-
cate server signs and issues both RAACs and S A C S .
After issuing those certificates, it stores them into a
publicly accessible repository, AC storage. Private role
database retains all components required to construct a
role-based infrastructure and is used for role engineer-
ing, which is referred to as an approach to defining roles
and assigning permissions to the roles [4]. A simple
version of attribute certificate server was developed in
C++ to generate M A C S and S A C S . The progrm-
ming library, called AC SDK, was built for supporting
the functionality related to the generation of the at-

PMI attribute authori ty has four entities:

4133

tribute certificates. Netscape Directory Service 5.0 was
used for both a role database and an AC storage.

5 Conclusion
In this paper we have implemented a role-based del-

egation framework to manage information sharing for
collaborating organizations. The central idea is to use
delegations as a means to propagate access to protected
resources by trusted users. We presented the architec-
ture and described our implementation for the delega-
tion framework. A key feature to enhance the adminis-
trative operations of the framework is the rule specifica-
tion which allows us to manage delegation and revoca-
tion policies. \lie believe our approach can be utilized to
support any collaborative environments. I t is our future
work to extend our framework to support information
sharing in critical infrastructures.

Acknowledgment
This work was partially supported at the Labora-

tory of Information of Integration, Security and Pri-
vacy at the University of North Carolina at Charlotte
by the grants from National Science Foundation (NSF-
11s-0242393).

References
R. Anderson. A security policy model for
clinical information systems. In proceedings
of IEEE Symposium on Security and Pri-
vacy, pages 30-45, Oakland, CA, May 6-8
1996. IEEE.

Gail-Joon Abn, Ravi Sandhu, Myong Kang,
and Joon Park. Injecting RBAC to secure a
web-based workflow system. In Proceedings
of 5th ACM Workshop on Role-Based Access
Control, Berlin, Germany, July 26-27 2000.
ACM.

E. Barka and R. Sandhu. Framework for
role-based delegation model. In Proceedings
of 83rd National Information Systems Secu-
rity Conference, pages 101-114, Baltimore,
h4D, October 16-19 2000.

E. Coyne. Role engineering. In Proceedings
of 1st ACM Workshop on Role-Based Access
Control, Gaithersburg, MD, November 1995.
ACM.

David F. Ferraiolo, John F. Barkley, and
D. Richard Kuhn. A role based access
control model and reference implementation
within a corporate intranet. ACM Transac-
tions on Information and System Security,
2(1), February 1999.

1111

[121

1131 .

~ 4 1

4134

A. Hagstrom, S. Jajodia, F. P. Presicce, and
D. Wijesekera. Revocations - a classifica-
tion. In Pmc. 14th IEEE Computer Security
Foundatiom Workshop, pages 44-58, Nova
Scotia, Canada, June 2001.

ITU. ITU-T Recommendation X.509. In-
formation Technology: Open Systems In-
terconnection - The Directory: Public-Key
And Attribute Certificate F”eworks, 2000.
ISO/IEC 9594-8.

G. Potamias, M. Tsiknakis, D. Katehakis,
E. karabela, V. Moustakis, and S. Or-
phanoudakis. Role-based access to patient
clinical data: InterCare approach in the r e
gion of Crete. In Proceedings of MIE and
CMDS 2000, pages 1074-1079, Hannover,
Germany, August 27 - September 1 2000.
10s Press.

Dongwan Shin, Gail-Joon Ahn, and Sangrae
Cho. Rolebased EAM using x.509 attribute
certificate. In Pmceedings of Sizteenth An-
nual IFIP WG 11.3 Working Conference on
Data and Application Security, Cambridge,
UK, July 29-31 2002. IFIP.

Ravi Sandhu, Venkata Bbamidipati, and Qa-
mar Munawer. The ARBAC97 model for
role-based administration of roles. ACM
hnsactions on Information and &stem Se-

I61

[71

PI

191

[lo1

curity, 2(1), February 1999

Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-
puter, 29(2):38-47, February 1996.

Roshan Thomas. Team-based access control
(tmac). In Proceedings of 2nd ACM work-
shop on Role-Based Access Control, pages
13-19. ACM, Fairfax, VA, November 6 7
1997.

Roshan Thomas and Ravi Sandhu. Task-
based authorization controls (TBAC): Mod-
els for active and enterprise-oriented authw
rization management. In T. Y. Lin and Xi-
aolei Qian, editors, Database Security XI:
Status and Prospects. North-Holland, 1997.

Longhua Zhang, Gail-Joon Ahn, and Bill
Chu. A rulebased framework for rolebased
delegation. In Proceedings of 6th ACM Sym-
posium on Access Control Models and Tech-
nologies, pages 153-162, Chantilly, VA, May
3-4 2001. ACM.

