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ABSTRACT

The lucrative rewards of security penetrations into large organi-
zations have motivated the development and use of many sophis-
ticated rootkit techniques to maintain an attacker’s presence on a
compromised system. Due to the evasive nature of such infections,
detecting these rootkit infestations is a problem facing modern or-
ganizations. While many approaches to this problem have been
proposed, various drawbacks that range from signature generation
issues, to coverage, to performance, prevent these approaches from
being ideal solutions.

In this paper, we present Blacksheep, a distributed system for
detecting a rootkit infestation among groups of similar machines.
This approach was motivated by the homogenous natures of many
corporate networks. Taking advantage of the similarity amongst
the machines that it analyses, Blacksheep is able to efficiently and
effectively detect both existing and new infestations by comparing
the memory dumps collected from each host.

We evaluate Blacksheep on two sets of memory dumps. One
set is taken from virtual machines using virtual machine introspec-
tion, mimicking the deployment of Blacksheep on a cloud comput-
ing provider’s network. The other set is taken from Windows XP
machines via a memory acquisition driver, demonstrating Black-
sheep’s usage under more challenging image acquisition condi-
tions. The results of the evaluation show that by leveraging the
homogeneous nature of groups of computers, it is possible to de-
tect rootkit infestations.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software
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1. INTRODUCTION

Over the past several years, computer security has taken the cen-
ter stage, as several high-profile organizations have suffered costly
intrusions. Oftentimes, as in the case of the 2011 RSA compromise,
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such intrusions begin as a foothold on a single infected machine
and spread out from that foothold to infect a larger portion of the
enterprise. In the case of the 2010 Stuxnet attack on Irani nuclear
reactors, this infection took the form of a kernel-based rootkit.

Rootkits are pieces of software designed to stealthily modify the
behavior of an operating system in order to achieve malicious goals,
such as hiding user space objects (e.g., processes, files, and network
connections), logging user keystrokes, disabling security software,
and installing backdoors for persistent access. Although several
detection and prevention techniques have been developed and de-
ployed, all have considerable drawbacks, and as a result, rootkits
remain a security threat: according to recent estimates, the percent-
age of rootkits among all anti-virus detections is in the range of
7-10% [17,32].

The situation is further complicated by the fact that rootkit eva-
sion techniques are continuously evolving [17]. One recent devel-
opment that has greatly complicated rootkit detection is the emer-
gence of rootkits that work solely by modifying data, rendering
tools that focus on detecting code changes (such as the System Vir-
ginity Verifier [27]) ineffective. This drawback applies to most cur-
rent detection techniques, rendering them ineffective against memory-
only rootkits.

The goal of our work is to detect kernel rootkits, a broad class
of rootkits that operate by modifying kernel code or kernel data
structures. We focus on the Windows operating system, since it is
both the most widespread and the most targeted platform. How-
ever, most of the concepts and techniques used are applicable to
any operating system.

The observation that motivates our approach to the detection of
rootkits is the fact that modern organizations rely on large networks
of computers to accomplish their daily workflows. In order to sim-
plify maintenance, upgrades, and replacement of their computers,
organizations tend to utilize a standard set of software and settings
for the configuration of these machines. For example, a large com-
pany might make a standard image for employee workstations, an-
other image for servers, a third image for virtualized deployments,
and so forth. At the same time, such nearly-identical computers
are treated as unique entities when enforcing security policies and
scanning for malware. We believe that by leveraging the similari-
ties between these computers, rootkits can be detected with higher
accuracy and without the limitations of modern rootkit detection
techniques.

Therefore, we propose a novel technique for detecting kernel
rootkits, based on the analysis of physical memory dumps taken
from running operating systems. In our approach, a set of memory
dumps from a population of computers with identical (or similar)
hardware and software configurations are taken. These dumps are
then compared with each other to find groups of machines that are



similar. Finally, these groups are further analyzed to identify the
kernel modifications introduced by a potential rootkit infection. In
particular, we look for outliers that are different than the rest. Our
insight is that these differences are an indication of a malware in-
fection.

We implemented our approach in a tool, called Blacksheep, and
validated it by analyzing memory dumps taken from two sets of
computers. From each set, Blacksheep is able to detect kernel mod-
ifications introduced by all the kernel rootkits that we tested and
can successfully discriminate between memory dumps taken from
non-infected and infected computers.

Blacksheep has several advantages over the state of the art. First
of all, Blacksheep can detect stealthy rootkit infection techniques,
such as data-only modifications of kernel memory. Additionally,
Blacksheep does not need to be configured to detect specific modi-
fications, because it relies on the identification of anomalies among
a group of similar hosts. This means that Blacksheep does not use
or rely on signatures, and can detect 0-days as effectively as it can
detect long-known threats.

Since Blacksheep bases its analysis off of a crowd of similarly-
configured machines, the system can be used on groups of ma-
chines in which some instances are already infected with malware.
As long as a viable memory dump can be obtained, and as long as
the majority of the machines comprising the crowd are not com-
promised, Blacksheep will be able to identify infections by com-
paring the memory dumps of the involved machines. In contrast,
prior tools that utilize comparative techniques on data from a single
machine cannot be safely deployed onto infected computers, since
they would then have no safe baseline against which to compare.

Finally, because Blacksheep detects the differences among the
computers in a crowd, anti-virus software that modifies the ker-
nel (often producing false positives for other rootkit detection tech-
niques) can be properly accommodated, as such software would
be deployed on all machines. Unstable sections of the Windows
kernel, such as pages that contain self-modifying code for secu-
rity purposes, can also be handled, since such sections will differ
on each member of the crowd, and Blacksheep will not regard the
differences as suspicious.

Note that while we have implemented Blacksheep for Windows
XP and Windows 7, the approach that we take can be generalized
to any operating system with kernel memory.

In summary, our contributions are:

1. Forensics: We detail our forensic investigation into the Win-
dows kernel and describe the considerations that must be
taken into account to successfully compare memory dumps
from two machines and to obtain a meaningful similarity
measure.

2. Detection: We present and implement an approach utilizing
memory similarities to detect anomalies in a group of similar
machines. Our approach can detect rootkits that use stealthy
techniques to evade detection.

As part of our investigation into Windows kernel rootkits, much
research needed to be done on the internals of the Windows kernel
itself. Part of our contribution is the summary of this research,
hoping that it will be useful to other researchers.

The rest of this paper is structured as follows. Section 2 details
the prior work in the field. Section 3 covers a high-level overview
of our approach. Section 4 covers the technical details of our imple-
mentation. We present our evaluation in Section 5, and a discussion
of our system and its limitations in Section 6. Finally, we conclude
the paper in Section 7.
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2. RELATED WORK

A considerable amount of research has been done towards de-
tecting and defending against rootkit infections. In this section, we
will discuss the state of the art and show where and how Blacksheep
improves on such approaches.

2.1 Signature-based detection

The traditional method to detect malware is to match a suspected
piece of malware against a database of byte-level signatures de-
scribing invariant content of known malicious software [14, 20].
Although this technique is still widely used, it suffers from sev-
eral major limitations. To begin with, the number of signatures that
are required to detect currently known malware infections is ex-
ponentially increasing. Even taking into account only kernel-based
malware, it is still difficult to generate signatures that describe poly-
morphic software. Additionally, writing such signatures takes time,
and a completely new piece of malware often enjoys precious un-
hindered time while new signatures for it are manually generated.

Furthermore, signature-based approaches generally utilize hooks
in order to scan software as it is written to disk or loaded for ex-
ecution. This is often accomplished by hooking system calls and
other kernel entry points; however, these methods can be evaded
by adequately sophisticated software. For instance, some malware
programs avoid saving themselves using the filesystem APl and in-
stead write themselves to disk by accessing it directly. Other mal-
ware samples utilize undocumented and unmonitored mechanisms
to execute themselves, thus evading detection by signature-based
antivirus software.

Because Blacksheep functions by detecting anomalous memory
dumps collected from a group of machines instead of looking for
specific signatures of infection, it does not require the use of signa-
tures. As such, it is well-built to handle previously-unseen malware
threats.

2.2 Behavioral heuristic analysis

To overcome the limitations of signature-based detection, anti-
virus software often combines signatures with heuristic behavioral
analysis [16]. With this approach, a process is analyzed during run-
time and its behavior is monitored for signs of maliciousness. For
instance, a process that calls some particular security-critical sys-
tem calls with certain parameters (e.g., modifying file access per-
missions or adding boot entries) might be classified as suspicious,
and the responsible process might be halted.

Behavior-based analyses are very hard to execute properly. Any
framework performing this analysis must have a very good under-
standing of the direct and indirect effects of monitored events. Such
understanding is often imperfect, allowing malware to evade de-
tection, by performing "mimicry attacks", similar to the ones de-
scribed in [33]. Blacksheep’s approach is based on the analysis of
the memory footprint of malware as opposed to its behavior, and,
therefore, such concerns do not apply.

2.3 Sandbox execution

Certain malware detection schemes execute programs in a virtual
environment, isolated from the rest of the operating system, and log
the actions performed, looking for the side-effects of an infection,
such as the creation of files, or the modification of the registry. This
method is a good solution to polymorphic malware, since it does
not depend on a signature of the file being analyzed. It can also be
combined with behavioral heuristics for a more in-depth analysis.



The two biggest drawbacks of this detection method are perfor-
mance and evasion. Such systems must wait until the sandbox ex-
ecution has yielded a classification before starting the program on
an actual system. This causes a noticeable delay in startup, affect-
ing the perceived performance of the system. Additionally, many
techniques allow malware to detect the presence of an emulated
environment and, if one is detected, to modify its execution flow.

Blacksheep does not rely on sandbox execution, but rather exam-
ines the modifications that the malware does to kernel memory. As
such, the startup speed of applications is not relevant, and evasion
is considerably more difficult.

24 System integrity checking

In the process of subverting normal system behavior, rootkits
must modify critical system code and/or data structures [15]. For
this reason, one method for detecting rootkits is the checking of the
critical components of an operation system to ensure that they are
in an expected state.

64-bit versions of the Windows kernel implement a feature called
Kernel Patch Protection (KPP) [24]. KPP comprises an obfuscated
kernel function that is periodically executed to check the integrity
of critical components. [26, Chapter 3.14] contains further infor-
mation as to which kernel components are checked by KPP.

A similar approach has been implemented in the System Virgin-
ity Verifier [27]. This tool is based on the idea that, excluding some
specific locations (e.g., relocated pointers, data sections), the image
in memory of a kernel module should be equal to the content of the
file from which it is loaded.

Other approaches, specifically designed as a defense against func-
tion pointer hijacking in kernel memory, have also been devel-
oped [35, 37].

Yet more solutions have been proposed that are based on the
hardware virtualization features in modern processors [23,31]. The
idea behind these approaches is to take advantage of hardware vir-
tualization to perform integrity verification at a higher privilege
level than the one at which the kernel code (and the rootkit) are
executed.

One fundamental challenge with these systems is the fact that
they must identify a baseline with which to compare the current
state of the system that they are protecting. In the case of the Sys-
tem Virginity Verifier, the baseline is defined to be the actual files
on disk from which the kernel is loaded. However, malware that
is motivated enough could also modify these files, thus corrupt-
ing the baseline. In other cases, the state of the system when the
software was loaded is used. If the system is already infected when
such software is loaded, however, this can also provide an improper
baseline. Blacksheep’s contribution over these existing systems is
the fact that a baseline does not have to be defined. Working on
the intuition that a malware infestation begins on a subset of ma-
chines, Blacksheep can determine a baseline that is unrelated to the
integrity of individual machines. Additionally, while most integrity
checkers analyze the code of a system, Blacksheep also carries out
a data analysis. This allows Blacksheep to detect rootkits that do
not analyze code.

2.5 Cross-view detection

Cross-view detection is another popular rootkit detection tech-
nique that is implemented by several detection tools [1,6,9]. This
approach relies on the fact that the same information about the
state of a system can be obtained in different ways. For instance,
the presence of a file is commonly detected by utilizing user-level
APIs. The information returned by such APIs can be easily altered
by a rootkit to hide the presence of files. However, scanning file
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systems using low-level primitives can often reveal a file hidden by
a rootkit. Comparing several sets of similar information obtained
by different means can often bring such inconsistencies to light,
and reveal the presence of a rootkit.

This approach can be undertaken not only with hidden files, but
with unlinked processes, network connections, and other such sys-
tem artifacts. Unfortunately, the number of such possible intersec-
tion points is very large, and the checks must, in general, be de-
veloped manually. Thus, missing a modification done by a rootkit
is very likely. Since Blacksheep examines the entire contents of
kernel memory, it does not suffer from this requirement for manual
test development.

2.6 Invariant-based detection

The problem of kernel integrity verification is similar to the prob-
lem of discovering and verifying invariant properties within kernel
memory. In particular, research has been conducted into the detec-
tion of such invariants in kernel data structures and the subsequent
verification of kernel memaory to ensure that it has not been violated
by a rootkit.

Petroni et al. propose an architecture to manually specify kernel
data invariants and to check them automatically [25]. This archi-
tecture allows one to easily declare properties that must hold inside
an uncompromised machine. However, manually specifying such
properties requires a deep knowledge of operating system internals,
and it is particularly difficult when no source code is available.
Even if such source code is present, the size of modern operat-
ing systems makes manually specifying such invariants extremely
difficult. Additionally, even if source code were present and invari-
ants are automatically specified, the ability to load kernel-resident
drivers in modern operating systems makes this task impossible, as
the contents of the kernel cannot always be known ahead of time
with complete certainty. Blacksheep does not require such knowl-
edge, and will function as long as the kernel modules in question
are present in a sizeable part of the machine crowd.

Other invariant-enforcing frameworks are Hello RootKitty [12]
and HyperForce [11]. However, these systems rely on a predeter-
mined list of invariants. Blacksheep has no such requirement.

The state of the art in automatic invariants detection is based
on Daikon [10]. Daikon is a tool developed to automatically dis-
cover pre-conditions and post-conditions that hold when program
functions are called. Baliga et al. have adapted Daikon to work
on kernel data structures. Their tool, Gibraltar [5], is able to de-
tect previously-known rootkit that modify the data structures of the
Linux kernel. However, this tool, and a similar approach imple-
mented for Windows, called KOP [8], requires kernel source code
to extract a graph of kernel data structure relationships. Such source
code is often unavailable, especially in the case of external drivers.
Furthermore, security systems that contain kernel-based compo-
nents introduce additional complexity into the real-world use of
such programs. In contrast, Blacksheep requires no knowledge of
source code.

The use of invariants based on graph signatures has been imple-
mented by SigGraph [22]. However, SigGraph requires the avail-
ability of source code or debug information, while Blacksheep has
no such requirement. Additionally, similar ideas have been applied
to filesystem changes with Seurat [36].

2.7 Physical memory analysis

Physical memory analysis is an active area of research whose
aim is to capture reliable and complete information from a live
acquisition of the physical memory of a running system. It has
been studied mainly in the context of forensic and malware analy-



sis [7,13], and several specialized tools have been developed to per-
form such analyses. Such tools include HBGary Responder Pro [2]
and Volatility [34].

\olatility is an open-source framework for physical memory anal-
ysis, containing an extensible plugin structure that allows for the
implementation of various analyses. Various plugins have been de-
veloped, including those that perform malware detection and anal-
ysis [21].

The detection of memory allocated inside the Windows kernel
heap has also been studied [29,30], as has the use of information ex-
tracted from the Windows swap file [19] (albeit, mainly for forensic
purposes).

Blacksheep utilizes Volatility with build-in and specifically de-
veloped plugins to support its operation. In addition, it is able to
deal with physical memory dumps created by several common tools
for memory acquisition.

3. APPROACH

Blacksheep is designed to detect rootkit infestations in kernel
memory. Blacksheep’s design is motivated by the realization that,
regardless of how much a rootkit tries to hide itself, it must still be
accessible by the operating system in order to be executed. This
concept is known as the Rootkit Paradox [18]. Additionally, even
if a rootkit manages to hide its code from the operating system,
the data modifications it makes can still be detected. While some
conceptual rootkits have been demonstrated that can completely
unplug themselves from the system [22], they do so by mangling
pointers and destabilizing the victim operating system. Even if the
operating system survives these modifications, the pointer manipu-
lations can still be observed.

With this basic idea in mind, we created Blacksheep, which com-
pares images of physical memory taken from similar machines to
identify differences associated with rootkit infections. Blacksheep
is most effective when operating on a crowd of similar machines.

Since we are comparing kernel memory snapshots, an under-
standing of this memory space is required. The Windows kernel
consists of many modules, which are PE files containing kernel
code and data. Modules can be operating system components (e.g.,
kernel32.dll) or hardware drivers (e.g., nvstor32.sys), and we use
these terms interchangeably. The module and driver files are loaded
into kernel memory in much the same way as dynamically linked
libraries (DLLs) are loaded into user-space programs, and make
up the functionality of the kernel. Similar to Windows DLLs, ker-
nel modules contain both code and data segments. These segments
require separate approaches in their comparisons, and Blacksheep
treats them separately.

In summary, Blacksheep performs the following four types of
analyses, which are detailed in Section 4:

e Configuration comparison;

Code comparison;

Data comparison; and

Kernel entry point comparison.

Configuration comparison. Some rootkits come in the form of
a kernel module that is loaded into the system. To identify such
changes, Blacksheep does a “configuration comparison,” compar-
ing loaded modules between two memory dumps. This allows the
system to detect additional (and potential malicious) components
that are introduced into the kernel. Details are presented in Sec-
tion 4.1.
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Code comparison. Most rootkits directly overwrite or augment ex-
isting code in kernel space with malicious content so that they can
perform subversive tasks (such as hiding resources) when this code
is executed. Thus, a difference in kernel code between machines
that should be otherwise identical can be a good indicator that a
rootkit may be present. However, due to the possibility of benign
differences resulting from, among other causes, code relocation and
anti-virus defense techniques, a detected difference might not nec-
essarily mean that the machine is infected. Blacksheep can filter
out benign differences and focus on suspicious code differences.
We discuss the specifics of this functionality in more detail in Sec-
tion 4.2.

Memory comparison. Detecting differences in kernel code alone
is not enough to detect the presence of rootkits with high accuracy.
For example, certain rootkits are able to subvert system function-
ality without performing any modifications to code running on the
system, and, instead, they change kernel data structures to avoid
detection through code comparison. Because of the threat of such
rootkits, we compare kernel data between machines.

Comparing such data between two different machines is a non-
trivial task, and constitutes a large portion of Blacksheep’s contri-
bution. For statically allocated data segments (i.e., those segments
that are defined in and loaded from the PE file), the main challenge
is handling relocation. However, dynamically allocated memory
provides a more substantial challenge. This data oftentimes con-
tains many layers of data structures linking to each other, which
must be navigated in order to ensure good coverage. Blacksheep
uses several methods to be able to identify and compare such data
structures, which are described further in Section 4.3.

Entry point comparison. Additionally, rootkits might subvert ba-
sic interfaces to the Windows kernel in order to carry out their tasks.
This includes the Windows kernel SSDT, driver IRP communica-
tion channels, and certain hardware registers in the x86 architec-
ture. Blacksheep is able to compare such kernel entry points by
processing the machines’ dumps of physical memory. We present
the details of this kind of analysis in Section 4.4.

Clustering and detection. After comparing each pair of mem-
ory dumps, Blacksheep places them into clusters, according to the
differences present between them. The larger clusters are then as-
sumed to contain the clean dumps, and the smaller clusters are la-
beled as suspicious. The assumption is that only a small fraction
of the hosts are infected, and these hosts stand out as outliers when
compared to the other machines in the crowd. This step is discussed
in Section 4.5.

4. SYSTEM DETAILS

Blacksheep computes the differences between two memory dumps
to produce a distance metric. In the computation of differences,
Blacksheep looks for four categories of differences: high-level con-
figuration differences, code differences, data differences, and dif-
ferences in kernel entry points.

4.1 Configuration Analysis

Blacksheep is able to utilize configuration information obtained
from memory dumps to assist its analysis. Specifically, it is im-
possible to meaningfully compare the code of a kernel module be-
tween two memory dumps if one of the dumps does not have such a
driver loaded while the other does. Since rootkits often cause such
differences (because they load additional components), Blacksheep
carries out the comparison of loaded kernel modules as a separate
analysis. To accomplish this, a list of loaded kernel modules is
identified in each memory dump. Each kernel module is repre-



sented as a pair, consisting of the size of it originating PE files
and the CRC checksum. The lists are sorted and compared. The
distance metric that Blacksheep generates for this analysis is equal
to the number of differences between the lists of kernel modules.
That is, each addition or deletion of a kernel module adds one to
the distance value.

Note that some rootkits can (and do) masquerade the modules
they inject as common Windows kernel modules. In such an event,
the configuration analysis might not find the difference between a
malicious driver and a legitimate module installed in another ma-
chine. However, this difference will be detected in the subsequent
code analysis step instead (as the rootkit code will be very different
from the legitimate driver).

4.2 CodeAnalysis

Most Windows rootkits inject code into kernel memory and redi-
rect legitimate flow of execution to it. Blacksheep’s code analy-
sis checks for signs of such redirections by identifying differences
in driver code. Since the header information from the PE files of
kernel modules is stored in memory, Blacksheep can examine the
headers of all loaded drivers to identify segments containing driver
code.

For each kernel module that is loaded in both memory dumps,
Blacksheep compares all code segments within both modules, byte-
by-byte, to identify a list of bytes that differ. In principle, one could
expect that the code segments associated with two identical mod-
ules are the same between machines (after all, it is the same code
on disk). However, this is not the case, and there are several in-
stances of expected differences that will be present between code
segments. Blacksheep handles these cases specifically. More pre-
cisely, when differing bytes are identified, Blacksheep checks them
against the following categories, which we consider benign:

Relocation differences. The most frequent differences between
driver code segments are caused by relocation. That is, since drivers
are loaded into a location in memory that is unknown at com-
pile time, and Windows module code is not position independent,
pointers within the driver have to be updated to reflect this loca-
tion. Since, other than relocation, the relative memory layout of
loaded modules is kept intact, relocation differences between two
memory dumps can be easily identified. The reason is that the dif-
fering bytes will be part of pointers that point to the same relative
locations within each driver. Thus, when Blacksheep finds differ-
ing bytes, it first checks whether these bytes are possible pointers
(values that point into code segments of the driver). If two such
pointers are identified, and they point to the same relative offset
into the same driver, this code difference is marked as benign.

Note that on the x86 architecture, pointer locations need not be
aligned at word boundaries. Hence, if there is a one-byte difference
between the code of two modules in two different memory dumps
on a 32-bit system, Blacksheep would make four comparisons: one
with that byte as the most significant in the pointer, one with it as
the second-most significant, and so forth.

Importsand exports. Another benign difference between mod-
ules can be caused by imported and exported symbols. These ex-
ported symbols take the form of lists of resource names and mem-
ory locations. When the drivers that are exporting these symbols
are relocated, the export tables are updated accordingly. These be-
nign changes can be detected in a similar way to the detection of
relocation differences. If an identified difference is not part of a
relocation difference, Blacksheep checks if the different bytes are
part of a pointer which points to the same offset within some other
driver. If the bytes in both dumps are pointing to the same rela-
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tive offset within the same driver, the difference is considered to be
benign.

Hooking. The hooking of kernel functions is another potential
source of benign differences. Function call hooking is a technique
in which calls to a kernel function are redirected (and cause the
execution of some other piece of code). In many cases, this is
done by overwriting the first instruction of a hooked function with
a jump instruction pointing to the hooking function (so that a call
to the hooked function will immediately result in the hooking func-
tion being executed). When the hooking function in both memory
dumps is located at the same offset in some module (in a static code
region), the hook is treated as benign.

Hooks that point to dynamically allocated memory must be treated
differently, since their offset to the hooking driver will not be con-
stant. To this end, Blacksheep first identifies the hook target: The
differing bytes are checked to determine if they are the argument of
a jmp or call instruction. If so, Blacksheep calculates the memory
addresses pointed to by the hook in the two dumps from the jump
target. If the bytes are not used as the argument for a direct con-
trol transfer instruction, we check whether they are the argument
of a push instruction, and if a ret instruction follows. The result
of executing these instructions would also be a jump to the pushed
memory address. In this case, Blacksheep recognizes the argument
of the push instruction as the location of the hooking function.

Once Blacksheep identifies the locations the hooking functions,
it needs to compare the functions themselves to detect differences.
Blacksheep identifies the end of the functions by linearly disas-
sembling them until a ret instruction is found. Each byte before
the ret is then compared using the same mechanism as for regular
code segments. Using this method, Blacksheep can compare hooks
pointing to dynamically allocated memory, which are often used by
security software.

PE header differences. Windows sometimes modifies specific
fields in the PE header of kernel modules as the modules are loaded.
Because of this, we consider differences in the following PE header
fields benign:

e ImageBaseAddress
e PointerToRelocations (for each PE section)
e NumberOfRelocations (for each PE section)

Suspicious differences. Any differences that are not classified
as benign, according to the above categories, are considered suspi-
cious. Since a common modification done by rootkits is a pointer
modification, we count any adjacent set of 4 (or fewer) bytes into
one difference. Blacksheep uses the number of such differences
as the distance metric for its code analysis. Due to the number
of changes introduced by rootkit infections, this distance is higher
between an infected and clean memory dump than between two
clean dumps (or two dumps infected with the same rootkit). In
particular, the number of suspicious code differences between two
non-infected dumps is usually zero.

4.3 DataAnalysis

Recently, proof-of-concept rootkits have been demonstrated that
affect the functionality of a system without making any lasting
modifications to system code. In order to detect such rootkits,
Blacksheep must be able to compare kernel data in a sophisticated
matter. Windows kernel modules can allocate memory in two dif-
ferent ways: by statically reserving it, as in the various PE data
segments, and through dynamic allocation.

To compare data memory between two memory dumps, Black-
sheep utilizes a “memory crawling” approach to compare kernel



data. Memory crawling works as follows: The system processes
one memory region at a time, starting at the statically-allocated
data regions of each driver. These serve as the roots for the memory
exploration. When Blacksheep finds pointers to additional data re-
gions (potentially allocated dynamically), it follows these pointers
and continues the exploration recursively.

For each region, Blacksheep examines the value contained in ev-
ery (32-bit) dword and assigns it a category, as follows:

ZERO when the dword value == 0x00000000.

VALUE when the dword is a value that does not correspond to a
mapped location in memory.

POINTER when the dword is a pointer to a mapped memory lo-
cation.

Additionally, Blacksheep tracks the target of the pointers. For
each dword classified as a POINTER, Blacksheep assigns one of
the following subcategories.

POINTER_SELF when the dword is a pointer to the memory lo-
cation of that pointer (self).

POINTER_NEXT when the dword is a pointer to the dword fol-
lowing itself.

POINTER_CODE when the dword is a pointer into a module’s
code segment.

POINTER_DATA when the dword is a pointer into a module’s
data segment.

POINTER_POOL when the dword is a pointer into a dynamically-
allocated pool.

POINTER_DLIST when the dword is a pointer to an element in a
doubly-linked list.

When Blacksheep encounters a POINTER_POOL (dynamically-

allocated memory) or POINTER_DLIST (doubly-linked list) sub-
category, additional work is necessary, as discussed in the follow-
ing two paragraphs.
Dynamically-allocated memory. Dynamic allocation is handled
in Windows through the use of memory pools. Each discrete allo-
cation that is requested by a driver is tagged with a pool allocation
structure, containing the length of the allocation and a 4-character
tag identifying the allocating driver. Before comparing data, Black-
sheep builds a list of allocated pools inside the kernel. This list can
then be used to detect pointers into dynamic memory.

If a dword is of subcategory POINTER_POOL, all dwords from
the target allocation pool are also added to the analysis. That is,
when Blacksheep finds a pointer into a pool of memory, this pool
is recursively added and analyzed (since it can be reached through
a root). Any further dwords that are classified as POINTER_POOL
are processed recursively. This is done up to three levels of nesting,
as a compromise between data coverage, execution time, and noise
in the analysis.

Doubly-linked lists. The Windows kernel contains many data struc-
tures, and their definitions are available both through the Windows
Research Kernel [4] and through Windows debugging symbols.
Relying on the availability of such definitions does not work in the
general case, however, as many kernel modules (for example, mod-
ules from third-party providers such as hardware manufacturers or
security companies) do not provide this information. Nevertheless,
one extremely common structure is the standard doubly-linked list.
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This structure is extensively used for various purposes in the Win-
dows kernel, and is easily recognizable in memory due to the lay-
out of the list pointers: the list comprises identically-sized doubly-
linked list elements starting and ending at a standard list header.
Thus, Blacksheep detects and treats doubly-linked lists in a distinct
way.

Because doubly-linked lists are often used to keep track of simi-
lar data (for example, a process list), Blacksheep treats all elements
of the list in aggregate. That is, Blacksheep keeps track of a single,
representative, element for the entire list, assigning a category and
subcategory to each dword that best describes dwords at that loca-
tion in every element of the list (that is, it picks the most general
type). For example, if a list has two elements, Aand B, and the first
dword of A is classified as VALUE whereas the first dword of B is
classified as ZERO, Blacksheep will classify the first dword of the
representative element as VALUE. Blacksheep uses the size of the
dynamically allocated pools that the list elements are located in to
determine the size of the list elements.

Naming. After generating a list of reachable memory locations
(dwords) and their categories, Blacksheep assigns canonical names
to each location to facilitate comparisons against other memory
dumps. The names are assigned as follows:

For statically allocated data, Blacksheep generates a name con-
sisting of the name of the module and the relative offset of the
data element within that module. For example, a statically-
allocated dword within a ntoskrnl.exe’s data segment (say,
102,088 bytes from the start of the driver) would be named
“(ntoskrnl.exe+102,088)".

For doubly-linked list headers, Blacksheep generates a name con-
sisting of the offset of the list header within its page in mem-
ory, the pool tag of the list header’s pool (if available), the
size of each element in the list, and the offset of the forward-
link field within each list element. For example, a list header
at offset 2,034 bytes into a pool tagged “NTKL,” with ele-
ments of size 24, which have the forward link field at offset
8, would be named “(NTKL+2,034, 24, 8)".

For datain alinked list element, Blacksheep generates a name con-
sisting of the offset of the list header name, and the offset
within the element. Note that this is done only for the rep-
resentative list element. For example, the dword at offset
of 4 bytes into an element of the list “(NTKL+2,034, 24,
8)” would receive a canonical name of “(NTKL+2,034, 24,
8)+4”.

Blacksheep considers changes in the category or subcategory
of identically-named dwords between two memory dumps to be
differences. For example, if “(ntoskrnl.exe+102,088)” is in cate-
gory ZERO in one dump and POINTER in another, Blacksheep will
count this dword as differing. We chose this granularity of compar-
ison because more specific comparisons (for example, comparing
the actual values of integers) resulted in unmanageable amounts of
noise (benign differences) in the analysis. Likewise, any more gen-
eral analysis quickly becomes meaningless.

The distance metric for data analysis is determined by the to-
tal number of dwords whose classification differs between the two
dumps being compared. The differences that rootkits make to the
data structures in memory cause such malicious dumps to stand out
in this analysis.

4.4 Kerne Entry Points

Several mechanisms are used by Windows to switch execution
from user-mode to kernel-mode and to handle hardware interrupts.



When an event triggers such a transition, a handler function pointer
is loaded, and the kernel-mode execution begins at the location
pointed to by that function pointer. We call these function point-
ers kernel entry points, since they are addresses where user-mode
code “enters” the kernel.

The analysis of these pointers is useful for in rootkit detection
tools, since rootkits frequently modify their values to allow rootkit
functionality to be executed when a specific event occurs. This
technique allows rootkits to subvert kernel behavior, in essence fil-
tering kernel function invocations. Blacksheep checks the follow-
ing kernel entry points.

Interrupt Description Table(IDT). The IDT is a hardware mech-
anism offered by an x86-compatible processor to allow the operat-
ing system to respond to interrupts. Windows only uses a limited
set of interrupts, mapped the remaining interrupts to generic func-
tions (named nt! KiUnexpectedinterruptXX, where XX is a number
corresponding to the interrupt). In a non-infected system, all inter-
rupts are mapped to kernel functions inside ntoskrnl.exe or hal.dll
modules.

Interrupt Ox2E is used to switch to kernel-mode when a system
call is performed. Even though Windows uses the SYSENTER in-
struction as opposed to the IDT to switch to kernel mode on modern
processors, this IDT entry is still set to nt!KiSystemService.

SYSENTER. The SYSENTER assembler instruction is used to
quickly switch from user-mode to kernel-mode execution on mod-
ern x86 machines. When this instruction is called, the execution
moves to an address that is stored in particular machine-specific
registers (MSR). Windows sets these registers in such a way that
whenever the SYSENTER instruction is executed, the kernel func-
tion named nt!'KiFastCallEntry is called. This function, in turn,
calls the requested system call according to the value stored in the
EAX register and the currently active thread.

System Service Dispatch Table (SSDT). The SSDT is an ar-
ray of virtual addresses, where each address is the entry point of
a kernel function. When a kernel function is invoked, the function
nt!Ki SystemService reads this table and jumps to the required entry.

The address where the SSDT is located is specified on a per-
thread basis in the KTHREAD data structure. Moreover, a thread
can use more than one SSDT.

Usually, all threads share the same two SSDTs (KiSystemSer-
vice for native Windows APIs, implemented by ntoskrl.exe, and
W32pServiceTable for user and Graphical Display Interface func-
tions, implemented by win32k.sys). However, a rootkit can create
a new SSDT and modify a KTHREAD structure to make the asso-
ciated thread use the new SSDT. Using this method, a rootkit can
avoid being detected by tools checking only the two canonical SS-
DTs.

Call Gates. Call Gates are yet another mechanism to transfer
control between x86 privilege levels. Call Gate descriptors are
specified in the Global Descriptor Table (GDT), a data structure
used by x86 processors that defines the characteristics of various
memory areas.

Even though Call Gates are not normally used by modern oper-
ating systems, they can still be utilized by rootkits as a backdoor to
enable the calling of kernel-mode functions from user-mode pro-
grams without the need of a persistent rootkit kernel module.

I/0 request packet handlers. 1/0 request packets (IRPs) are
kernel data structures used by Windows kernel modules to commu-
nicate with each other and with user-mode code. When a kernel
module is loaded, an array of function pointers (one for each IRP
type the module can handle) is initialized. Each of these functions
is invoked when the corresponding 1/O request is received by the
kernel module.
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Kernel entry point differences. Kernel entry points are com-
puted by comparing the target addresses between the dumps. Black-
sheep checks that each entry point points to the same offset within

the same driver in both dumps. If the entry point points into dynamically-

allocated memory, Blacksheep adds these memory sections to its
code analysis. The distance metric that is calculated for the entry
point analysis is the total number of such differences found between
two dumps.

45 Clustering

In the clustering step, Blacksheep calculates a distance between
every pair of dumps, creates hierarchical clusters based on this dis-
tance, and uses these clusters to classify the dumps.

451 Combined Distance

Blacksheep uses the four analyses previously described to calcu-
late four differences between each memory dump pair. Our four
analyses measure different things, which results in very different
ranges of distance values. To combine our analyses results, Black-
sheep first scales the distance values to a unit range (between 0 and
1). To this end, we find, for each of the four distances, the maxi-
mum distance value between any pairs of dumps. This maximum
is used as the respective normalization factor. Once normalized,
the four distance values are simply summed up, for a final distance
value between each pair of memory dumps. While simple, this
approach allows each analysis to contribute equally to the final dis-
tance, and our experiments show that it works well.

452 Clusters

Utilizing the distance metric, Blacksheep divides the memory
dumps into clusters, using a standard, hierarchical clustering ap-
proach. We use the implementation provided by SciPy, with a "dis-
tance" linkage function. The threshold for the clustering step were
derived manually, based on small scale experiments (we found that,
overall, the distances between clean and infected dumps are typi-
cally noticeably larger than between two clean dumps).

Any generated clusters that contain less than a set threshold of
memory dumps are marked as infected. This threshold is selected
based on the size of the analyzed set, under the assumption that no
more than a certain fraction of the dumps would be infected simul-
taneously. With modern attack patters, we feel that this assumption
isavalid one. Specifically, a characteristic of APTs (Advanced Per-
sistent Threats) is the compromise of a small amount of machines
by an attacker in a stealthy manner. For example, in the Stuxnet
attack on Irani nuclear reactors, malware was distributed over USB
drives to a small amount of machines. Likewise, many examples
of APTs starting with a spear-phishing campaign to infect a single
machine have been documented. While Blacksheep would not be
effective against a network worm that propels a rootkit throughout
a crowd of machines, it would be effective against a compromise
seeking to establish a foothold inside an organization.

Examining the clusters that Blacksheep produces can be informa-
tive for further analyses, as certain rootkit families reliably cluster
together. This can provide valuable insight into tracking infections
throughout an enterprise.

5. IMPLEMENTATION

We initially implemented Blacksheep for the analysis of memory
acquired through either QEMU [3] introspection or through the use
of a memory dumping driver. This allows Blacksheep to be used in
both cloud computing and physical deployment scenarios.

The implementation of the Blacksheep approach consists of sev-
eral phases. First, memory is acquired (by one of several meth-



ods as described in Section 5.1) and transferred over the network
to our analysis server. Then, the analysis server submits jobs to
distributed comparison workers, which generate comparisons be-
tween each pair of memory dumps. Finally, the clustering engine
processes the comparison reports and generates clusters, and detect
infections.

51 Memory acquisition

A variety of methods exist to acquire a dump of the physical
memory (and, if applicable, a copy of the swap file) from a running
machine. The method of choice affects the integrity and complete-
ness of the dump and the possibility of evasion by rootkits. We will
present a brief summary of these methods, and discuss their ad-
vantages and disadvantages. While the acquisition method affects
the results, Blacksheep supports dumps acquired with any of these
methods.

Software memory acquisition. Several tools exist with the pur-
pose of acquiring physical memory dumps from Windows XP and
Windows 7 operating systems. Such tools usually rely on access-
ing the physical memory via the \\Device\PhysicalMemory device
present on these versions of Windows. Since the contents of phys-
ical memory are highly sensitive from a security perspective, mod-
ern versions of Windows restrict access to this device to kernel
drivers only. This necessitates the creation and loading of kernel
drivers to accomplish this task.

Additionally, acquiring the swap file of the system is another
tricky task. Two software-based methods exist: (i) finding and
cloning the handle to the swap file that Windows creates on startup
(so that the handle can be later passed to userspace and the swap
file read using standard Windows APIs), and (ii) parsing filesystem
structures on the disk to copy the raw data directly. We chose the
former approach, since it is independent of the underlying filesys-
tem settings.

Memory dumps acquired in this way tend to contain a large
amount of inconsistencies, for several reasons. First, the dumping
driver and application itself must be loaded into memory, thereby
modifying it. More importantly, however, is the fact that dump-
ing memory by software is not an atomic operation, so the memory
itself continues to be modified while the dumping procedure is per-
formed. Additionally, such software can be easily tampered with
by rootkits, as it runs with the same privilege levels and in the same
memory space as the rootkit itself.

Despite the disadvantages, since all that is required is a software
installation, this method is the easiest to deploy on a large scale.

Crash dumps and hibernation files. When a Windows system
crashes or it is hibernated, the operating system saves a snapshot
of the physical memory to disk. Once this occurs, the memory and
swap can easily be read from the disk and utilized by Blacksheep.

Even if these methods are effective in creating memory dumps,
they are not feasible for a widespread usage due to the fact that they
require the system to be interrupted.

Physical devices. Hardware solutions have been proposed for
dumping physical memory, exploiting the fact that external periph-
erals can utilize DMA to achieve direct access to system memory.
In particular, hardware devices working on Firewire, PCI, PCle,
and ExpressCard interfaces are available.

This method does not need any running software on the target
system, but some inconsistencies in the dumped memory are still
possible if the system is not suspended while dumping the memory.
Additionally, some specific memory locations, and the swap file,
cannot be accessed by this method.

Techniques to avoid the dumping of some memory regions by
hardware devices have been studied [28]. Such techniques depend

348

[ebp+68h]
<copy of MSR 0x176 register>

mov ecx,
cmp ecx,

Figure 1: Thevalue of the M SR 0x176 register isstored in the
KiTrap01 kernel function in Windows XP SP3.

on the specific hardware methods being used, and do not appear
to have been utilized by rootkits as of yet. However, a software
method might be helpful along with a hardware approach, to make
sure that the dumps generated by the hardware device have not been
tampered with.

This method is difficult to deploy on a wide scale due to the
hardware requirement.

Virtual machine introspection. When a system is running in-
side a virtual machine, the virtualization software running on the
host operating system can easily image the memory of the guest
system. For instance, in QEMU, this is achieved through the use
of the pmemsave command. While the dump is being captured, the
virtual disk can be parsed to recover the swap file.

Dump artifacts are minimized because the dump is taken while
the guest operating system is suspended. Minor inconsistencies are,
however, still possible due to in-progress memory writes, especially
in multi-processor systems.

Using virtual machine introspection, the dumping process can-
not be tampered with by rootkits running on guest operating sys-
tem, since the process runs on the host. However, a rootkit could
use virtual machine detection techniques to modify or terminate its
behavior when running inside a virtual machine, evading detection.

5.2 Dump Comparison

We utilize Volatility as a library to process Windows memory
dumps in the comparison step. This allows us to support sev-
eral different versions of Windows (specifically, Volatility supports
32-bit versions of Windows from Windows XP SP2 through Win-
dows 7 SP1, and 64-bit support is planned as well), and abstracts
away minute changes between Windows service packs and major
releases. We have implemented parts of Blacksheep as Volatility
plugins to be able to process swap memory, because this function-
ality was not available in Volatility.

Additionally, the SYSENTER target address described in Sec-
tion 4.4 and utilized in the kernel entry point analysis is actually
stored in the MSR 0x176 x86 CPU register. This is problematic
due to the fact that for certain memory acquisition methods, such as
the dumping of memory over DMA through the use of a hardware
device, hardware registers (including MSR 0x176) are not saved.
To surmount this obstacle, we have identified a location in memory
where the Windows kernel stores an updated value of this register.
For example, Windows XP SP3 keeps this value in the KiTrap01
kernel function, as seen in Figure 1. However, this is system spe-
cific, and care has to be taken with regards to system upgrades when
using such an acquisition method.

6. EVALUATION

We evaluated Blacksheep on two sets of memory dumps. The
first was acquired from a set of Windows 7 virtual machines using
QEMU VM introspection. Our virtual machines were images of
Windows 7 on the same QEMU host system (so, we expect the
operating system code to be identical in terms of hardware drivers
and kernel modules). As we discussed in Section 5, the acquisition
of memory images in this fashion from a virtual machine produces
a very small amount of memory artifacts, and thus, this is the ideal
setting for Blacksheep.
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Table 1: Cluster resultsfor the Windows 7 dataset with a clus-
tering threshold of 1.8.

The second set of memory dumps was acquired using our mem-
ory acquisition driver from Windows XP machines (running on
VirtualBox) to test the performance of Blacksheep on non-perfect
dumps. The driver was used to acquire the memory dumps, and
these dumps were transferred over the network to a central server.
This method of acquisition produces many inconsistencies, and
thus, introduces noise into Blacksheep’s analysis.

In addition, we have performed different, common tasks on the
different machines (such as web browsing, working on Office doc-
uments, watching media files, ...) to ensure that the memory dumps
are diverse.

We tested these configurations against a range of publicly avail-

able rootkits. In particular, we used the well-known Mebroot, Stuxnet,

Rustock, and Blackenergy rootkits, two rootkits in the TDSS family
(tdss and tdI3), and the r2d2 Trojan developed by the German gov-
ernment. Unfortunately, several existing rootkits do not function
properly on Windows 7, so the range of tested rootkits is smaller
for the first data set (the Windows 7 - QEMU data).

6.1 Windows7- QEMU Introspection

We tested Blacksheep against a set of 40 memory dumps taken
through QEMU VM introspection. Within the set, 20 of the dumps
were clean, and 20 were infected with rootkits, with 4 machines in-
fected with each of 5 rootkits. After analyzing these dumps, Black-
sheep generated a hierarchical clustering, shown as dendrogram in
Figure 2. Based on the selected cluster distance threshold, two pos-
sible sets of clusters are shown in Table 1.

The detection rate of Blacksheep depends on the threshold cho-
sen in the clustering step. After producing clusters, all clusters of
size 4 or less were tagged as malicious. This is because we expect
that benign dumps group together, while infected dumps form out-
liers, and that infected dumps will not account for more than 10%
of the installed machines in an organization. With a threshold of
1.8, Blacksheep achieves a true positive rate of 100%, and a false
positive rate of 0%. As expected, all rootkits cluster together with
other rootkits in their families. This is because of the similar dif-
ferences that these rootkits introduce into the kernel code and data.

6.2 Windows XP - Driver-acquired Memory

Blacksheep was also tested in detecting rootkits on Windows XP.
Again, 10 clean dumps were clustered, this time together with 8
rootkits. The hierarchical clustering results are shown in Figure 3,
and resulting clusters are shown in Table 2. Again, all clusters of
size one were tagged as malicious.

With a clustering threshold of 0.6, Blacksheep produced 62.5%
true positives and 0% false positives, and with a clustering thresh-
old of 0.4, Blacksheep produced 75% true positives and 5.5% false
positives.

349

tdss
tdss
tdss
-tdss
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected

non-infected
non-infected
non-infected
non-infected
non-infected
—Enon—infected
non-infected

non-infected
|:non-infected

non-infected
Fnon-infected
non-infected

non-infected
,—r2d2
Lr2d2
|-r2d2
tr2d2
stuxnet
—:stuxnet
,—stuxnet
L_stuxnet
—tdI3
—tdI3
~tdi3
tdI3
fzeroaccess
lzeroaccess

jzeroaccess
lzeroaccess

Figure 2: Hierarchical cluster dendrogram for the Windows 7
dataset.
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Figure 3: Hierarchical cluster dendrogram for the Windows
XP dataset.
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zeroaccess Zeroaccess
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Table 2: Cluster results for the Windows XP dataset with a
clustering threshold of 0.5 (Ieft) and 0.4 (right).
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These results demonstrate how critical consistent memory dumps
are to Blacksheep’s operation. Specifically, while configuration
analysis, code analysis, and entry point analysis performed as well
as for the QEMU images, data comparison suffered. This is due to
kernel data continuing to change while the dump is being acquired,
creating inconsistencies in the final image. In contrast, the code
and entry point sections of kernel memory are considerably more
stable.

6.3 Performance

The runtime performance of Blacksheep depends on several fac-
tors, including the size of the memory dumps, the size (or absence)
of the swap file, and the hardware involved. For memory dumps
of one gigabyte of RAM, we were able to compute the differences
between a pair of memory dumps in 10 minutes. The hierarchical
clustering requires O(n?) comparisons, but the results are cached
so that after the initial clustering, every new dump will require
O(n) comparisons to recompute the clusters. The comparisons
themselves are trivial to parallelize, and the clustering step is com-
puted very quickly, so Blacksheep can be horizontally scaled to
linearly increase performance.

7. DISCUSSION

In this section, we discuss the limitations of our approach. Black-
sheep relies on two main assumptions: i) it is possible to collect
comparable memory dumps, and ii) rootkit infections modify mem-
ory dumps in a detectable way. When either of these assumptions
is violated, the approach implemented by Blacksheep fails.

The first issue is related to how and when the dumps are col-
lected. To maximize the homogeneity among memory dumps, it
would be best to collect memory snapshot in similar states (and at
similar times) across all hosts. Unfortunately, it is not always easy
to determine “checkpoints” that are comparable across machines,
and, therefore, it can often be the case that memory dumps are col-
lected at very different times, and in very different states, resulting
in unwanted differences in memory layout and contents.

Furthermore, it is extremely important to minimize the number
of inconsistencies in the analyzed memory dumps. This is an espe-
cially challenging problem when acquiring memory from physical
hardware, as the various acquisition methods detailed in 5 all have
various drawbacks.

Virtualization and cloud-based systems offer an ideal setting for
the collection of memory dumps, as many virtualization environ-
ments offer the ability to take snapshots of the guest operating sys-
tem at well-defined times, which improves the chances of collect-
ing homogeneous images. In addition, virtualized hardware can
offer a level of homogeneity that real hardware would not be able
to achieve, as real hardware can fail and might be substituted with
different lines of products, which, in turn, might require different
drivers.

The second issue is related to the way in which rootkits affect the
layout and contents of memory. Rootkits could attempt to evade
detection by modifying parts of the kernel memory that, by design,
change frequently across machines. These high-entropy areas can-
not be used as a basis to determine the crowd invariants, and, there-
fore, represent an opportunity for evasion. Our technique cannot
detect this type of rootkits. However, the implementation of such
system would be very challenging (and, in fact, there are no known
instances of such malware), because the same unpredictability that
makes deriving invariant difficult, would likely make a rootkit un-
stable.

Another problem is the process of updating a crowd of similar
computers, which might introduce changes that are mis-detected as



an infection. In this case, Blacksheep would need to be disabled
until a sizable amount of machines are updated, and a sufficient
baseline re-established.

Finally, it is important to note that Blacksheep’s approach is ag-
nostic to memory location randomization techniques such as ASLR.
This is due to the fact that Blacksheep compensates for relocation
in its code analysis, and uses relative memory locations for its data
and entry point analyses.

8. CONCLUSIONS

In this paper, we have described Blacksheep, a novel system
designed to detect kernel-level rootkit infestations in a crowd of
similarly-configured machines. We have discussed the current state
of the art in the field, argued why Blacksheep extends it, and pre-
sented the results of our analyses. We feel that Blacksheep would
be an useful tool for organizations with the right population of ma-
chines, as such organizations can greatly benefit from Blacksheep’s
ability to recognize existing infections and 0-days and its ease of
administration compared to present security offerings.

Furthermore, we have offered the insight into some internal work-
ings of the Windows kernel in the hopes that it would be useful to
the scientific community.
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