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ABSTRACT

To protect software systems from attacks, ARM introduced a hard-

ware security extension known as TrustZone. TrustZone provides

an isolated execution environment, which can be used to deploy

various memory integrity and malware detection tools. However,

a new type of rootkit, namely CacheKit, can exploit cache inco-

herency and cache locking mechanisms in TrustZone to hide itself

from such inspections. Therefore, it is imperative to design a new

approach to ensure the correct use of cache locking and prevent

malicious code from being hidden in the cache.

In this paper, we present CacheLight, which leverages the Trust-

Zone and Virtualization extensions of the ARM architecture to

allow the system to continue to securely provide these hardware

facilities to users while preventing attackers from exploiting them.

CacheLight restricts the ability to lock the cache to the Secure

World of the processor such that the Normal World can still request

certain memory to be locked into the cache by the secure operating

system (OS) through a Secure Monitor Call (SMC). This grants the

secure OS the power to verify and validate the information that will

be locked in the requested cache way thereby ensuring that any

data that remains in the cache will not be inconsistent with what

exists in main memory for inspection. Malicious attempts to hide

data can be prevented and recovered for analysis while legitimate

requests can still generate valid entries in the cache.
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1 INTRODUCTION

ARM introduced the TrustZone hardware security extensions, which

provide an isolated Trusted Execution Environment (TEE). In Trust-

Zone, the TEE, namely Secure World, is separated from the rich,

non-secure Normal World at the hardware level. Secure World

has privileged access to all system resources, while Normal World,

where the rich OS and untrusted applications run, can only access

those resources allocated to it.

Since the code in Secure World has the privilege to access Nor-

mal World memory and CPU registers, but not vice versa, system

integrity checking and malware detection tools can be installed in

the Secure World to monitor the potentially compromised Normal

World. Therefore, there have been various research efforts into

using the TEE provided by hardware to perform the detection of

rootkits in memory [7, 26]. However, all these solutions depend on

the ability of the high-privileged TEE to have access over the entire

physical memory and the malicious code being present in memory.

For example, Trustdump is a forensic toolkit that has a small piece

of memory acquisition and integrity checking code stored in Secure

World [24]. From the TEE it can attempt to verify physical memory

regions of the Normal World, beyond the reach of the potentially

corrupted system.

However, in order to avoid memory introspection tools running

in the SecureWorld (SW), more advanced rootkits are exploiting the

fact that Secure World does not have access to the Normal World

(NW) cache [27]. In the ARM TrustZone architecture all the re-

sources are tagged with an additional bit (the NS bit) that indicates

which world they belong to. Although the Secure World has access

to many of the Normal World resources, the presence of the addi-

tional NS bit means that the SecureWorld cannot access the Normal

World cache, which is referred to as cache incoherence. CacheKit

is a new type of rootkit, which exploits cache incoherence and cache

locking mechanisms to hide itself from introspection tools running

in the SecureWorld. By hiding the rootkit in Normal World cache, it

avoids introspection from Secure World tools and therefore evades

the primary method of detection used against rootkits.

These new stealthy attacks leave many real-time and embedded

systems that offer cache locking mechanisms exposed and vulner-

able. Therefore, a new defense approach is necessary to continue

to provide these hardware facilities for timing and performance

sensitive processes. Throughout this paper, we study possible so-

lutions to determine the best approach to defending against such
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attacks. After thorough research and experimentation, we design

and implement CacheLight, a lightweight approach for preventing

malicious abuse of cache locking mechanisms. This novel solution

leverages both the TrustZone and Virtualization extensions in the

ARM architecture to allow legitimate users to continue to utilize

cache locking while giving the Trusted Execution Environment

(TEE) the power to ensure system security by controlling and veri-

fying use of said mechanisms.

2 BACKGROUND: ARM, CACHE AND

TRUSTZONE

2.1 ARM Architecture

With the TrustZone Security Extensions enabled, an ARM processor

has 9 modes of operations. The usr mode has privilege level 0 and

it is where user space programs run. The svc mode has privilege

level 1 and is where most parts of the kernel run.

At the system level view, the AMRv7 architecture has 16 core

registers when Security Extensions are implemented; 13 general-

purpose 32-bit registers R0 - R12, the Stack Pointer (SP), Link Reg-

ister (LR) and the Program Counter (PC). Additionally, the Current
Program Status Register CPSR holds processor status and con-

trol information, including the current processor mode. The value

of this register is copied and saved upon entry in the respective

Saved PSR by all modes except User and System.

The ARM architecture supports coprocessors to extend the func-

tionality of the ARM processor. Each coprocessor has its own set of

registers. Coprocessor instructions provide access to sixteen copro-

cessors in the ARMv7 architecture described as CP0 - CP15. CP15
is called the System Control coprocessor and is reserved for the

control and configuration of the ARM processor system, including

architecture and feature identification [3].

2.2 ARM TrustZone

TrustZone is a set of hardware security extensions on the processor,

memory, and peripherals that ensure complete system isolation for

running secure code. The isolated environment is referred to as the

SecureWorld while the NormalWorld is the name given to the other

environment where the OS and other programs run. The Secure

World is thought to oversee the Normal World as it has higher

access privileges. This means that the Secure World can access

most of the resources that belong to the Normal World. However,

NormalWorld does not have access to any of the resources available

to the Secure World.

To divide the two worlds, CP15 has a Security Configuration
Register (SCR) with a non-secure (NS) bit that determines the se-

curity context of the processor. When the NS bit is set, this indicates

that the processor is in the Normal World and when it is cleared,

the processor is in Secure World. The two worlds are separated by

adding this NS control bit to all system resources. Monitor Mode is

responsible for handling world-switches. To enter Monitor Mode,

the process must execute a Secure Monitor Call (SMC) instruction,

at which point Monitor Mode handles the world switching and

determines the necessary function or handler to execute [1].

2.3 ARM Cache

Caches can be divided into types based onwhether the index and tag

bits correspond to physical or virtual addresses. Physically indexed,
physically tagged (PIPT) caches use the physical address for both
the index and the tag. While this is simple and avoids problems

with aliasing, it is also slow, as the physical address must be looked

up in the translation tables before that address can be looked up in

the cache. Virtually indexed, physically tagged (VIPT) caches use the
virtual address for the index. They are faster than PIPT caches as

the cache line can be looked up in parallel with the TLB translation,

however the tag cannot be compared until the physical address is

available. While they still face aliasing problems, the physical tag

bits make sharing more manageable than with Virtually indexed,
virtually tagged (VIVT) caches that use the virtual address for both
the index and the tag. In general, the ARM L1 instruction cache

is VIPT for greater speed and since instructions generally are not

shared. However, the L1 data cache and any lower level caches

are generally PIPT, with some options for implementing them as

VIPT [4].

With the implementation of TrustZone technology, the processor

cache is also extended with an additional tag bit. This tag bit is

used to record the type of memory access made; secure or non-

secure. This makes it so that the processor always knows which

lines of cache belong to which world and cache flushing between

world switches is not necessary. The two worlds can evict each

other’s lines in the cache as needed [3]. However, it is possible

to prevent cache lines from being evicted by locking them. While

this allows for performance optimization, it also gives rise to the

cache incoherence which CacheKit exploits to hide from memory

inspection tools. After the virtual address and physical address

translation has occurred in the Translation Lookaside Buffer, cache

stores the memory data of the physical address and keeps the NS

bit to indicate the security state needed to access the entry. This

NS bit is set by hardware and it is not directly accessible by system

software [2].

3 BACKGROUND: CACHEKIT ATTACK

CacheKit is a new type of rootkit that exploits a cache incoherence

and cacke locking mechanisms in the ARM TrustZone architec-

ture [27]. Dividing the two worlds completely results in a cache

incoherence where the contents of Secure and Normal World are

different even if they map to the same physical address. CacheKit

exploits the fact that even though the Secure World can access the

memory of Normal World, the two worlds are separated such that

they cannot gain access to the other’s cache. There are three major

steps in establishing CacheKit: Loading, Locking, and Hiding. First,

a technique known as Cache-as-RAM is used to ensure that the

rootkit is loaded only into cache of the Normal World where it can

avoid detection from the Secure World [20, 28]. Then, the ARM

hardware support settings are exploited to keep the code persis-

tent in cache as long as possible. Finally, the translation tables are

modified such that the malicious code in cache maps to unused I/O

addresses in physical memory so that if cache content is flushed to

RAM for inspection, the data is simply lost. This ensures that even

if the rootkit were to be flushed into memory for any reason, any

trace of the malicious code would be lost [27].
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3.1 Loading

In the ARM architecture, the only way to read or write a cache

line is to have the processor read from or write to virtual memory.

Therefore, to load the rootkit into cache the CacheKit module must

first enable caching on memory. This is done by setting the paging

table memory attribute as WriteBack. The WriteBack configuration

ensures that load register (LDR) instructions trigger a cache line fill.

The key of cache loading is to ensure that data is loaded to cache

and cache only, the rootkit should not be stored in RAM at any

point as it would make it visible to memory inspection.

3.2 Locking

The Cortex-A8 processor allows system software to lock up to seven

cache ways out of the total eight ways. This ability to maintain the

code persistently in cache is essential as cache is very volatile. Once

the rootkit is loaded, it should remain in memory as long as possible

so an attacker can maintain control over the infected system. While

using Cache-as-RAM enables us to better hide the malware, cache

locking allows the code to survive long enough to make it useful.

First, the cache corresponding to all the memory addresses to be

locked in cache will need to be flushed out. Second, the cache

way to be used is unlocked and the other ways are locked. This

means that any cache fills made by the LDR and STR instructions

will be made to the way that has been designated for the rootkit.

Lastly, once the rootkit has been loaded into cache the way that has

been reserved for the rootkit is locked and the rest of the cache is

unlocked. Consequently, the implementation of Cache-as-RAM to

store the rootkit gives it exceptional stealth as it can no longer be

detected by memory inspection tools. However, there is a trade-off

in storing the rootkit in cache. Cache is very volatile and even

though cache lines can be locked with hardware control, they will

still respond to cache maintenance instructions if they are called.

Therefore, when a cache flush is called the contents of the rootkit

will indeed be written out to memory.

3.3 Hiding

Having successfully loaded and stored the rootkit in cache, CacheKit

must now address the two main issues of remaining concealed. The

first problem is that even when locked, the cache lines are still

responsive to cache maintenance instructions. As stated, ARMv7

provides various cache maintenance instructions that can cause

the contents of the cache to be written out to memory. This is dan-

gerous because if the malicious code is flushed to memory then it

becomes detectable to memory inspection techniques. Similarly,

the second problem has to do with writing back to memory and

introspection from the normal world kernel. Detection methods

that sequentially map each physical page into the kernel memory

space would still be able to read the cache. Therefore, the idea of

mapping the cache lines to unused physical I/O address space is

proposed to resolve these issues with direct cache locking. While

mapping the cache to I/O address space does mean that an attacker

can maintain stealth by destroying the data since no backup mem-

ory exists, it also means that they lose the rootkit if it is ever flushed

from cache. Since the effectiveness of a rootkit depends on how

long it can remain hidden in the system this is a major trade-off

between stealth and persistence. Therefore, for CacheKit to be

most effective it is imperative to have an environment where data

can persist in cache.

4 DEFEATING CACHEKIT ATTACKS: NAÏVE

APPROACHES

In this section, we discuss several possible solutions to defeat

CacheKit attacks.

4.1 Naïve Prevention

First, we focus on preventing rootkits from hiding in Normal World

cache. According to the ARM Technical reference manual for the

Cortex-A8 [1], the CL bit determines whether or not cache locking

can be done in the Normal World. If CL is set (to 1) then cache

locking is available in both worlds. However, if the CL bit is cleared

(to 0) then cache locking is only available in the Secure World. At-

tempting to use registers associated with cache locking, namely

the L2 Lock Down Register, results in an undefined instruction

exception. Therefore, this provides a simple and direct solution to

preventing CacheKit attacks by disabling the cache locking capa-

bilities in the Normal World and only allowing trusted applications

running in privileged SW levels to lock cache entries. While this

would prevent such attacks entirely because the rootkits would no

longer be able to remain persistent in cache, it also limits a lot of

what NW users can accomplish in their applications.

Therefore, disabling cache locking may not be an option. Many

modern processors feature cache locking mechanisms to allow for

finer control of cache eviction policies and thereby improving the

cache hit rate. This can have a considerable impact on the perfor-

mance of a system if managed correctly [19]. For this reason, a wide

variety of processors across different manufacturers and proces-

sor families offer this option. Some of ARM’s Cortex and ARM11

processors allow for way locking in which locking is available at

the granularity of ways of a set-associative cache. Line locking is a

more fine-grained approach where it is possible to have a different

number of locked lines in different sets of the cache; Intel’s XScale,

the ARM9 family, and BlackFin 5xx family processors support this

kind of locking mechanism [18].

4.2 Naïve Detection

Given that it is most likely a part of a real-time or general embed-

ded system that depends on cache locking to give critical processes

timing predictability or the ability to meet stringent performance re-

quirements, we cannot move this functionality to the Secure World.

Not only would it affect the timing with the need for world switch-

ing but it would also greatly broaden the Trusted Code Base, defeat-

ing the purpose of having a small, isolated, trusted environment.

Therefore, it is necessary to enable cache locking in the Normal

World and thus we must be able to detect malicious attempts by a

potentially compromised Normal World OS.

Originally, we had considered that in order to detect an attack,

we would need not only the attempt to lock the cache but also

the remapping of a virtual address to a physical address that does

not correspond to system memory. That is, these two fundamental

necessities of CacheKit would be enough to determine that a

malicious user is attempting to hide code in the Normal World

cache. CacheKit prevents its data from being retrieved for forensic
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Figure 1: PIPT Caches prevent the retrieval of hidden data

purposes by mapping to the physical region of reserved unused

I/O so that if the cache is ever flushed, the malicious code is simply

lost and cannot be analyzed. However, these two functionalities

together make for a very specific signature that can most definitely

signal malicious activity. This is because while some time critical

programs may need instructions or data to be locked in the cache,

we would never need anything outside the System Memory Region

to be locked.

The first step is to detect if Normal World has attempted to lock

the cache by reading the value of the L2 Lock Down Register.
Anything other than 0 would indicate that one or more cache ways

are locked. If we are able to then find a page table entry that maps a

virtual address to a physical address outside of the System Memory

Region, wewould be able to detect a rootkit hiding in the cache. This

may require a page-table walk, because we have to check all entries

to ensure completeness. While a page-table walk is expensive, we

would only need to execute it when a lock is detected. In this

manner, we would then be able to force a cache flush or invalidation

to trigger a write back to memory. To ensure that we are able to

retrieve the malicious code we also have to modify the virtual

address that has an invalid mapping to a new, valid memory region

that we have reserved from Secure World for memory inspection.

However, we find that this approach will be ineffective in retrieving

the malicious data in the cache because even if we are able to re-

map the virtual address to a valid physical address, the L2 cache

in the ARM Architecture is Physically Indexed, Physically Tagged.

This means that once the re-mapped address has been loaded into

the cache, it is already too late to retrieve the data. This approach

would only work with a processor that supports both cache locking

and VIVT caches. In Cortex-A8, the L2 cache is Physically Indexed,

Physically Tagged (PIPT) [1]. This means that the tag and index bits

stored in the cache to identify which memory address the cache

line maps to are taken from the physical address and not the virtual

address.

As shown in Figure 1, even if we are successful in re-mapping the

virtual address to a valid physical address, once we flush the cache

the write to memory will be done according to the tag and index bits

stored with the respective cache lines. Therefore, once the rootkit

has been stored in the cache with the modified physical address that

points to reserved, unused I/O, any eviction will always be done to

this location. CacheKit creates a "black-hole" situation where once

it is in the cache, there is no retrieving it because there is no way to

access the tag and index bits of the cache other than with perhaps

a JTAG Debugger. Therefore, the only solution left is to develop

a defense mechanism to prevent rootkits, or any malicious code,

from being loaded into the cache in the first place. This makes a

detection solution considerably difficult. However, by leveraging

TrustZone technology, prevention is still possible.

5 DEFEATING CACHEKIT ATTACKS:

CACHELIGHT

In this section, we present CacheLight, a defense mechanism for

preventing malicious software from inhabiting the cache for any

significant period of time. We leverage the TrustZone Security

Extensions to ensure that even if an attacker is able to briefly com-

promise the Normal World kernel, they will not be able to leave

behind any malicious code in the Normal World cache. The main

idea is to expand on the most simple solution of disabling the ability

to lock the cache by clearing the CL bit. However, we still want

user programs that have time-sensitive operations in real-time and

embedded systems to be able to make use of the cache locking

mechanism. Therefore, we implement CacheLight as a Secure

World kernel function that can be called from Normal World kernel

to have the Secure OS perform the locking for the Non-Secure OS.

This means that while users can still take advantage of the benefits

of cache locking for legitimate purposes, the Secure OS can have

better control over what gets locked in the cache and perform in-

tegrity checking to prevent malicious code from being loaded in.

This is implemented as an SMC which the Normal World can call

and the Secure World can then handle.

5.1 Workflow

The first step is to determine what arguments to pass with the SMC

to Secure World. In order to service the call, the SMC Handler in

Secure World must know:

(1) OP Code: The operation code to determine what the SMC is

for and properly handle the request.

(2) VA: The virtual address that corresponds to the data that the

NW wants to lock in cache.

(3) LockDownReg: the L2 Lockdown Register value to be used.
This determines which cache ways the Normal World wishes

to lock.

(4) Size: the size or amount of data to be loaded into the cache

from the base address (VA).

With these four arguments we have all the information we need

to load and lock the data into the cache on behalf of the Normal

World. More importantly, the data must first be loaded into physical

memory by the NormalWorld, which ensures that whatever is being

loaded into the cache is consistent with what appears in RAM and

therefore exposed to memory inspection tools.

Once we have established the necessary parameters to pass to

SecureWorld, we can detail the necessary work-flow, or steps, of the

approach as shown in Figure 2. Secure World has all the necessary

information to first verify that the request to lock memory is valid

by ensuring only memory regions allocated to Normal World are

being requested. Furthermore, all the data must first be loaded

into main memory by the Normal World, and is therefore available

to inspection, should Secure World find an invalid PA is given.

Otherwise, it can then go through the process of servicing legitimate
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Figure 2: Overall Workflow of CacheLight

requests and locking the requested memory in cache. The steps for

this case are detailed in the following sections.

5.2 Virtual to Physical Address Translation

Virtual address translation is provided by way of the Memory Man-

agement Unit. In ARMv7 the MMU works with the L1 and L2

memory system to translate virtual addresses to physical addresses

and controls accesses to and from external memory. Therefore, it

is enhanced with security extensions and multiprocessor exten-

sions to provide address translation and access permission checks.

Virtual-to-physical address mappings and memory attributes are

defined in main memory as page tables; each World has its own set

of page tables and TLB identifiers to remove the requirement for

context switch TLB flushes [1].

Therefore, the first step in preventing rootkits from being loaded

into cache is to translate the given VA to the PA. The ARMv7

Architecture provides VA to PA address translation operations using

registers from CP15. There is a Physical Address Register (PAR)
that holds the PA after a successful translation or the source of the

abort after an unsuccessful translation. It is a read/write register

banked in Secure and Non-secure states and accessible in privileged

modes only [1]. The PAR bits [31:12] contain the physical address

after a successful translation. Bits [11:0] are taken from the virtual

address to obtain the complete PA. To make use of this register for

our address translation we do VA to PA translation in the other

Secure or Non-secure state. The purpose of the VA to PA translation

in the other Secure or Non-secure state is to translate the address

with the current virtual mapping in the Non-secure state while the

core is in the Secure state [1]. To access the VA to PA translation

in the other Secure or Non-secure state, we write CP15 c7 with

Opcode2 set to 4 for privileged read permission. In this manner, the

given virtual address will be translated using the Normal World’s

translation tables and we can retrieve a PA to work with.

5.3 Verifying Memory Contents

Once we have the physical address we are able to determine it is a

valid address within the system memory. We can check if the PA

maps to I/O memory region, in which case we know we should not

allow such an address to be locked in the cache. Depending on the

implementation, it is also possible to check that the PA is within

the memory region allocated to the Normal World by the Secure

World for a much better, tighter security check. At this point we

can flush the cache and run the memory inspection tools of the

Secure World to retrieve and analyze the malicious code that the

attacker attempted to leave behind. Since in this scheme only the

Secure World is allowed to perform cache locking, we are able to

ensure that any memory that will remain in the cache does not

differ to what is in RAM and thus we can be certain that there is

no incoherence from what we are inspecting in the RAM and what

the system is executing in the cache.

On the other hand, if the request is for a valid physical address

then the secure world must be able to perform the loading and

locking of the requested memory region into the specified cache

way.

5.3.1 Enabling and Disabling Interrupts. The first step is to disable

interrupts so that we cannot be pre-empted. To lock the given

memory, and only the given memory, in the given cache way(s) the

locking process must not be interrupted. Therefore it is imperative

that this code be within a non-preemtible critical section. Once the

locking is complete, Secure World can enable interrupts again.

5.4 Mapping Normal World Memory to Secure

World

With the virtualization extensions active in both worlds, it is nec-

essary to map a virtual address in the Secure World to the given

physical address from the Normal World. This means that the Nor-

mal World memory must be mapped in the Secure World as well.

Memory that both worlds have access to is referred to as World-

SharedMemory.World-SharedMemory is designated as non-secure
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Figure 3: Memory System for an ARM Core

since NW can only make non-secure accesses while SW can make

both secure and non-secure accesses. Now that valid VA entries

exist for Normal World physical addresses, Secure World can use

these to load the requested memory region and thereby create the

cache line entires on behalf of the Normal World. Given the PA that

the Normal World would like to lock, a helper function is defined

to build the offset within the physical Normal World memory and

add that offset to the virtual start address of the mapping within

the Secure World kernel, returning the Secure World VA for the

specified PA. Since memory is shared, this VA can be used to create

cache entries tagged as Non-Secure that will generate cache hits

when the Normal World attempts to access said memory, effectively

allowing the Secure World to create locked cache entries for the

Normal World.

5.5 World-Shared Memory

As mentioned in Section 2, all addresses are tagged with an addi-

tional NS bit to indicate what mode the entry belongs to. Normal

World is only able to access entries tagged with an NS bit equal to 1.

Therefore, when we load the data into the cache we have to ensure

that it is tagged with NS = 1 so that Normal World will have a cache

hit when it tries to do a look-up in the TLB. Figure 3 shows how

the memory system of a theoretical ARM processor might handle

the state associated with Security Extensions when accessing the

memory system [2].

First, the core processing logic attempts a data load, a data store,

or an instruction prefetch. The hardware passes the Virtual Address

(VA) and the current world (Non-Secure Table Identifier, or NSTID)

to the TLB to enable it to perform address translation. The NSTID

is passed by the hardware and depends on the current state of the

processor, not the NS bit. In this case the NSTID will represent a

secure world entry [2].

Then, the TLB loads the physical address and the NS-bit associ-

ated with the VA and NSTID it was passed, performing a page-table

walk and forcing NS=1 if NSTID=1 if necessary. The translation

tables are responsible for keeping track of the NS bit and whether

the VA resolves to a secure or non-secure physical address [3]. The

TLB then passes this information to the cache to perform the actual

data or instruction access. If the Secure World has mapped the non-

secure memory containing the data the NormalWorld wants to lock

in its translation tables, then the Secure World can directly access

the non-secure cache lines. Therefore, a Normal World application

can pass data to the Secure World though any level in the cache

hierarchy. This enables a high performance system in comparison

to solutions that require cached data to be flushed out of the cache

and in to external memory [2].

Therefore, when the loading and locking of memory is per-

formed, the resulting cache entires will be tagged with an NS bit

of 1 rather than zero. This means that when the Normal World

attempts to access this address that it requested Secure World to

load into the cache for it, it will generate a cache hit. Normal World

will find a cache entry that matches the PA translation with an NS

bit of 1, indicating that this memory is designated for Normal World

use and will return the data from that cache line. This also means

that Secure World can gain access to the Normal World cache if

it creates the necessary translation table entries by implementing

World-Shared Memory.

5.6 Locking NWMemory Into Cache From SW

Finally, we can now perform the loading and locking of the mem-

ory in the Secure World exactly as it would have been done in the

Normal World. We pass the virtual address, the value to use for the

L2 Lockdown Register, and the size of the data to load as argu-

ments. Therefore, Secure World has all the information required

to load and lock data to the requested cache ways. By implement-

ing World-Shared Memory, the Secure World can issue non-secure

memory accesses that create non-secure cache entires for the Nor-

mal World. When control is returned to the Normal World, the

legitimate process will be able to access the time-critical section

locked in the cache as intended. Therefore, this mechanism gives
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Table 1: Comparison of Different Defense Approaches.

Approach Category Pros Cons

CacheKit

Detection

Detection - Flag potential malware and flush the cache

- Cannot verify existence of rootkit

- Cannot retrieve code for analysis or forensic pur-

poses

Disabling Cache

Locking in NW

Prevention

- Simple

- Direct

- No Overhead

- Done upon system initialization

- Cache locking mechanisms not available to nor-

mal user

- Processor might have been selected for those spe-

cific features

CacheLight Prevention

- Lightweight

- Overhead in set-up, not execution time

- Prevents loss of malicious code for analysis

- Control over what is locked in cached

- NW supports cache locking

- Additional world-switch overhead in set-up time

- Can still load malicious code into cache

the Secure World a lot of power and control over what gets loaded

into the cache, allowing it to ensure that there is no incoherency

with what is stored in memory and what is stored in Normal World

cache.

5.7 Comparing Approaches

To the best of our knowledge, there have been no other defense

mechanisms proposed against these kinds of attacks. Therefore, to

evaluate the best solution, we provide a comparison of the three ap-

proaches introduced here in Table 1. We conclude that, while there

is room for further work, the most robust and effective solution is

the CacheLight approach. In the following chapters we implement

and evaluate CacheLight in terms of security and performance.

6 CACHELIGHT IMPLEMENTATION

6.1 Genode: A Secure World OS

To defend against this new type of attack we first replicate the orig-

inal prototype scenario on the i.MX53 Development Board. Once

functionality was verified, we moved to deploy the defense envi-

ronment. The first step is to have a Trusted Execution Environment

(TEE) in the Secure World. After careful consideration we decided

to use the open-source Genode Project which supports the i.MX53.

Genode provides support for various Normal World operating sys-

tems, hardware platforms, and scenarios. The scenario we choose

was designed for the i.MX53 with TrustZone hardware capabilities.

The Linux kernel was modified such that certain kernel functions

could handle world switches using an SMC call to the Secure World.

The CacheKit attack module can then be cross-compiled for the

new target kernel in the Normal World and deployed on the new

Genode environment [16].

6.2 Building and Deploying The Environment

Using Genode 18.02, we build the Genode TrustZone Virtual Ma-

chine Monitor (TZ-VMM) scenario for the i.MX53 board. This build

generates a bootable image for the target board as specified in

the configuration file. The next step is to obtain the necessary

bootloader provided by Genode Labs and generate the boot image.

Finally, a bootable SD card is prepared for the board using both

the boot image and the Genode image generated earlier. Now we

have the Genode TZ-VMM running on the i.MX53 development

board. The details of using and understanding Genode and all of

the different scenarios can be found in their Foundations Book [12].

6.3 Deploying the CacheKit Attack

We replicated CacheKit on the i.MX53 development board, which

features a single ARM Cortex A8 processor. The project is imple-

mented as a kernel module that once installed on the board can use

the cache manipulation tools in ARM to successfully load, lock, and

conceal the rootkit in cache. Next, we must be able to cross-compile

the CacheKit attack module against the newmodified target kernel

running in the Normal World. Unfortunately, the modified kernel is

provided as a pre-compiled image in the Genode repository. There-

fore, we obtain the source code of the modified kernel and create

our own build. This then gave us a target to cross-compile the

CacheKit attack module against to be able to deploy it on the new

environment.

6.4 Deploying the CacheLight Defense

The Normal World kernel was modified such that certain kernel

functions could handle world switches using a Secure Monitor Call

(SMC) to the SecureWorld. According to their documentation, there

were six different SMC’s added to the Linux kernel [15]. However,

upon closer inspection of the current release, Genode 18.02, there

are actually only 4 SMC’s that are implemented. Furthermore, they

do not follow the ARM SMC Calling Convention [5], but rather

implement their own, simpler version of handling SMC’s. In Genode,

an SMC is still used to generate a synchronous exception that

is handled by Secure Monitor code running in Exception Level

3 (EL3). The Secure Monitor Mode handles the world switching

and then hands off the handling of the exception to the Virtual

Machine Monitor running as an unprivileged user-level component

in Genode. However, instead of using the ARM Calling Convention,

since there are only four different calls implemented, the function

to perform is simply passed as an argument in register R0. Registers
R1-R10 are then used to pass any necessary arguments to the Secure

World. Upon a world-switch the Monitor will save the state of the

Virtual Machine, including these registers, so that the Secure World

can have access to them. The VMM then simply checks the value

in R0 to determine what function the Normal World needs it to

perform for the SMC and expects any relevant arguments in the
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Table 2: SMC Implementation in Modified Linux

SMC Number Function

0 FRAMEBUFFER

1 INPUT

2 SERIAL

3 BLOCK

4 LOCK

other registers [15]. This makes it fairly simple for us to add and

define our own, fifth, SMC for a request to Secure World to lock

memory in the cache. The table below shows the different SMC’s

that Genode had already implemented with the addition of our own

"LOCK" SMC with code 4.

As shown in Table 2 our SMC has a function code of 4, this is

passed through register R0 and is used to determine what function

the Secure World needs to perform and the respective arguments

in the remaining registers. In our case, we pass the following argu-

ments:

(1) R1 is the virtual address to be loaded and locked in the cache.

(2) R2 contains the lock down register value to be used. This

determines which cache ways the Normal World wishes to

lock

(3) R3 the size or amount of data to be loaded into the cache

from the base address in R1

With these three arguments we have all the information we need

to load and lock the data into the cache on behalf of the Normal

World. More importantly, we have the location of the data before it

gets stored in the cache which allows us to regulate what can be

locked into the Normal World cache. Once the request is handled

by Genode, it restores the VM’s state and switches back to Normal

World operations.

After we have implemented an SMC for CacheLight in the

Genode core, we need to define what happens once it is called by

the Linux kernel. The SMC would be called whenever the Normal

World has some code that needs to be locked in the cache. The

Normal World would load the operation code, virtual address, value

for the lock down register, and size of data to be loaded into the

respective registers and perform an SMC. Once Genode reaches

the exception handling for the call, we need to be able to create an

entry in the cache with the data requested by the Normal World

that is accessible by Normal World. Overall, the entire process is

implemented as roughly 200 lines of C and assembly code in the

Secure World kernel which is a minimal increase in the Trusted

Code Base (TCB) of the Secure World.

Genode utilizes the ARM Virtualization Extensions for the TZ-

VMM scenario [17]. Therefore, to establish World-Shared Memory,

the Genode bootstrap process is modified to map the RAM region

that is later allocated to the Normal World VM to a designated vir-

tual address space in the Secure World. Once defined, the mapping

can be added in the Platform constructor of the bootstrap process

to create the page table entries in the Secure World for the Normal

World RAM space, effectively creating World-Shared Memory. The

entries are created with the necessary flags, among them the NS bit

that indicates the virtual addresses resolve to non-secure physical

space.

Figure 4:World-SharedMemoryAllows SecureWorld toCre-

ate Non-Secure Cache Entries for Normal World

Once we deploy CacheLight, we are able to detect whenever

the CacheKit module is attempting to lock malicious code into the

cache. By doing security checks on the PA being locked into cache,

CacheLight can detect anomalous behavior and if needed deploy

inspection tools. If the attempt to lock the cache is malicious, it

can then flush the caches and run memory introspection tools to

determine the nature of the attack and retrieve any relevant data for

forensic analysis. On the other hand, if the request is determined

to be legitimate, CacheLight can service it by taking advantage of

world-shared memory.

7 EVALUATION

In this section we verify the ability of the two worlds to share

data through any level of the cache hierarchy using World-Shared

memory as well as the performance impact of CacheLight.

7.1 Effects of World-Shared Memory

For CacheLight to work, Secure World must be able to create

cache entries tagged with a non-secure NS bit that Normal World

can then access. While Normal World is forced by hardware to

only make non-secure memory accesses, Secure World has the

option to perform both secure and non-secure accesses. The type

of access made is determined by the NS bit in the first-level Page

table descriptor [3]. This NS bit defines the physical address space,

Secure or Non-secure, for all of the Large pages and Small pages of

memory described by that table. For accesses from Secure state, it

determines whether the access is to Secure or Non-secure memory.

However, it is ignored by accesses from Non-secure state [2]. In

a cacheable secure memory access, the linefill is requested using

secure access and the data is tagged in the cache as secure data.

In a cacheable non-secure memory access, the linefill is requested

using non-secure access and if no security error is received, the

data is tagged in cache as non-secure data. Therefore, the NS bit

that is used to tag the cache records the type of memory access that

was made, allowing Secure World to cause allocation of non-secure

lines into the cache.

Figure 4 shows the effects of implementing World-Shared Mem-

ory to be able to create and lock non-secure cache lines from the
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Table 3: Performance Impact of CacheLight When Locking

One Cache Way

CPU Cycles Nanoseconds Percent of

Total

Total Time 1,930,060 1,930.06 100

Locking Time 654,733 654.73 33.92

World-Switch

Overhead

1,272,500 1,272.50 65.93

CacheLight

Overhead

2,827 2.83 0.15

Secure World. As shown, if there is no WSM then Secure World

generates a secure memory access and the cache entries created

and locked are tagged as secure. If the Normal World attempts to

access that memory, it gets a miss in the cache and has to load that

same address but with a non-secure tag which it would be unable

to lock in the cache. However, with WSM, the Secure World can

create and lock cache entries tagged as non-secure. Then, when the

Normal World attempts to access that memory, it will get a hit in

the cache and can use the locked entires. Therefore, it is possible to

restrict cache locking capabilities to the Secure World for security

measures while still allowing legitimate Normal World programs

to request locked non-secure cache entries from Secure World.

7.2 Performance Evaluation

To defend against malware that attempts to evade memory intro-

spection tools, CacheLight incurs some overhead in the cache

locking process. In a typical system, a Normal World privileged

program can directly perform the locking, however, with Cache-

Light there are additional security checks and World-Switches

that must occur. Therefore, to measure the performance impact of

CacheLight the approach is split into three parts. First, there is the

essential and necessary locking and loading of the cache which is

code that runs regardless of whether CacheLight is implemented

or not. In addition, there is the overhead of the security checks

and address translations done by CacheLight. Finally, that leaves

the overhead of switching to and from Secure World to lock the

cache. Timing analysis of these three parts is performed using the

available ARM Performance Monitoring Unit. Since, the overhead

portions are constant with respect to the size of the data being

locked, analysis is performed for locking a single cache way of size

32 kB.

As shown in Table 3, theWorld-Switch to and from SecureWorld

is the main source of overhead for CacheLight. In this experiment,

with the i.MX53 running Genode, it makes up almost 66% of the

time taken for CacheLight to process a valid lock request for a

single cache way. However, this is unavoidable as switching be-

tween worlds is necessary for the implementation. This can only be

addressed by how the ARM architecture handles a World-Switch or

the efficiency of the Genode monitor code for switching between

worlds. Furthermore, while it is considerable, it is a one-time cost

of setting up the locked cache lines and therefore should occur

scarcely. On the other hand, the actual overhead of the security

measures of CacheLight is minimal.

8 RELATEDWORK

Overtime, rootkits and the methods for detecting and defending

against them have been in an evolutionary race of hide and seek.

Originally, persistent rootkits needed to modify nonvolatile storage

to survive system power cycles which meant that file integrity

checking tools could effectively detect them [14]. Therefore, rootkits

switched to reside only in the operating system kernel memory

to defeat this storage-based detection. To detect this new type of

rootkit, defenders acquire the system memory using a dedicated

secure coprocessor [21] or physical hardware [8]. In their search

to acquire higher root privileges, attackers have developed several

different rootkits. Virtual machine based rootkits (VMBR) insert a

customized malicious hypervisor beneath the currently running

operating system [22]. Firmware based rootkits infect the firmware

on I/O devices [13] or the system BIOS [11].

As their counterpart, new hardware and software rootkit de-

tectors with higher privilege are also proposed. Hypervisors are

commonly used to introspect the untrusted operating system [6].

However, vulnerabilities are frequently found in the hypervisors.

This gave rise to the use of hardware features, such as security

extensions in various processors. In this paper, we cover ARM

TrustZone, however, each developer has their own set of hardware

security extensions. For example, AMD has SVM [10] and Intel

provides TXT [25]. These hardware features provide a TEE with

guaranteed isolation and the highest privilege that defenders can

claim as their own. CacheKit seeks to exploit weaknesses in these

new hardware defense features to evade detection by the OS kernel.

Another proposed design that has much the same goals is Shadow

Walker, as it exploits the I-TLB and D-TLB coherency problem in the

Intel architecture to hide the rootkits [23]. There is also an imple-

mentation called Cloaker that can hide its presence by locking the

page translation it altered in the translation look-aside buffer [9].

However, none of these have ever been able to avoid the last-level

defense of memory inspection. Thus, we note that CacheKit pro-

vides a new level of stealth as it is able to evade physical memory

inspection by hiding in the Normal World cache.

CacheKit is the only one able to evade the physical memory

check. Furthermore, by mapping the cache lines to unused I/O space

we ensure that the malicious code cannot be examined. In the worst

case, it is evicted and then destroyed before it can be inspected

and analyzed. To the best of our knowledge, there have been no

proposed defenses against this new kind of attack, leaving many

ARM systems vulnerable and exposed.

9 FUTUREWORK

While this initial implementation of CacheLight shows great po-

tential, there are further applications and checks forwhich CacheKit

could be leveraged to tighten security. For example, limiting or reg-

ulating how much of the cache a request can lock. Furthermore,

there is the case where a rootkit is loaded, but not locked, in the

cache with a remapped address so the attempt fails. However, this

attempt would not be retrievable for analysis, therefore, in such

cases valuable forensic data is lost about the attack and attacker.

Perhaps there could be work done to expand the robustness of

the approach in such cases. Finally, there is still more work that

Session 4:  Countermeasures Against Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

73



can be done on the response after an attack is detected and veri-

fied. Looking deeper into the what inspection tools to run in case

CacheLight flags potential malicious code and the appropriate

response mechanisms to employ if the tool does find malicious code

in memory.

10 CONCLUSION

In this paper we present CacheLight, a lightweight approach to

preventing malicious use of cache locking mechanisms while allow-

ing time-critical applications to legitimately utilize them to ensure

execution times in embedded and real-time systems. CacheLight

allows the Normal World to perform cache locking through request-

ing it as a service from the Secure World. All that is needed is a

minimal increase in the Trusted Code Base to handle a new SMC,

which the OS running in the TEE can then validate and verify to

prevent any malicious code from being hidden in the cache.

Upon world switch, the Secure World can now handle and verify

the validity of any cache lock request to ensure that any data that

will persist in the cache not only maps to a valid address in mem-

ory but is also consistent with what is present in main memory;

effectively bringing the contents of the cache to light. Additionally,

because the Secure World does not hand control back to Normal

World after verifying the address, but rather performs the loading

and locking on behalf of the Normal World, the attacker cannot

bypass the security checks by passing different addresses in the

arguments. Should CacheLight find that the attempt to lock the

cache is malicious, it can then flush the caches and run memory in-

trospection tools to determine the nature of the attack and retrieve

any relevant data for forensic analysis. On the other hand, if the

request is determined to be legitimate, CacheLight can service it

by taking advantage of World-Shared Memory.

Therefore, CacheLight can successfully prevent malicious code

from hiding from SW introspection tools in the NW cache for

any significant amount of time. Additionally, while we present a

solution for the ARM architecture, the approach can be generalized

to any architecture that employs the same execution separation

idea. If the attack can be modified to a new architecture, then so

can the defense. Moreover, CacheLight incurs the overhead of

a world-switch for the set-up of the time-critical data. However,

the initial setup of locking data in the cache is already expected

to be expensive so that the performance and timing requirements

can be met once the setup is done and the application running.

CacheLight makes additional overhead to the setup process but

not the execution of the time-critical process that requested the lock.

Given that it provides security against an otherwise undetectable

attack, the trade-off in setup time is extremely worthwhile.
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