
A Collaborative Framework: for Privacy Protection

in Online Social Networks

Yan Zhu1,2, Zexing Hu1, Huaixi Wang3, Hongxin Hu4, Gail-Joon Ahn4

1 Institute of Computer Science and Technology, Peking University, Beijing 100871, China
2Key Laboratory of Network and Software Security Assurance (Peking University), Ministry of Education, China

3School of Mathematical Sciences, Peking University, Beijing 100871, China,
4Laboratory of Security Engineering for Future Computing (SEFCOM), Arizona State University, Tempe, AZ 85287, USA

Email: {yan.zhu.huzx.wanghx}@pku.edu.cn. {hxhu,gahn }@asu.edu

Abstract-With the wide use of online social networks (OSNs) ,
the problem of data privacy has attracted much attention.
Several approaches have been proposed to address this issue.
One of privacy management approaches for OSN leverages a key
management technique to enable a user to simply post encrypted

contents so that only users who can satisfy the associate security
policy can derive the key to access the data. However, the key
management policies of existing schemes may grant access to
unaurhorized users and cannot efficiently determine authorized
users. In this paper, we propose a collaborative framework
which enforces access control for OSN through an innovative key
management focused on communities. T his framework introduces
a community key management based on a new group-oriented

convergence cryptosystem , as well as provides an efficient privacy
preservation needed in a private OSN. To prove the feasibility of
our approach , we also discuss a proof-of-concept implementation
of our framework. Experimental results show that our construc­
tion can achieve the identified design goals for OSNs with the
acceptable performance.

I. INTRODUCTION

Online social networks (OSNs) have become an important
web service where people can publish and share resources
(personal tastes, blogs, or viewpoints) through different types
of relationships [1]. A number of social network sites have
recently emerged and they are becoming a popular and useful
approach in people's daily life. For example, people can
make friends with Facebook (http://www.facebook.com) or
MySpace (http://www.myspace.com). find job information in
Linkedln (http://www.linkedin.com). and so on. The availabil­
ity of information brings convenience to modern life while
significantly raising issues related to personal privacy. For
instance, personal private data may be used for promoting
unnecessary products, and resources may be abused by some
unauthorized users, etc.

It is crucial to effectively protect user privacy in OSN. A
significant amount of work for privacy protection on OSN
has been introduced [2]-[4]. For example, flyByNight [2] is
a Facebook application designed to protect the privacy of
messages exchanged between Facebook users. NOYB (short
for "None Of Your Business") [5] is another system targeted
at cryptographically protecting user privacy on Facebook.
Persona [3] is a private OSN which encrypts user data with
attribute-based encryption (ABE), allowing users to apply
fine-grained policies over users who may view their data.

Although some new techniques were introduced in these
solutions, it is still necessary for a centralized server to
enforce access control, which cannot protect the privacy of
users against the centralized server. Also, some solutions
implemented access control at client-side but their approach
should be synchronous, requiring multiple users to be online
simultaneously.

One of efficient ways for enforcing access control in OSN
is to allow users to put the encrypted data on the server and
then only the users who can derive the decryption key would
decrypt and access the data. Normally, it can be performed
through key management. The advantage of this approach is
that a user just simply posts her content but the unauthorized
users are not able to obtain the key. Some schemes based on
this idea have been proposed [6]-[8]. However, these schemes
based on traditional cryptographic techniques have limitations
when dealing with multiple groups in OSN since either users
must store multiple copies of encrypted data but are unable
to give data based on membership in multiple groups, or
users must know the identities of everyone to whom they give
access.

We believe that a practical and effective key management
access control scheme should provide the following properties:
I) Autonomy, once a user joins in a private OSN, he chooses
his public key and private key by himself and the OSN
manager cannot obtain his private key; 2) Independence, a
community is constructed by a set of trusted users and there is
no third party involved; 3) Collaboration, the kernel members
can collaborate to construct and maintain a private OSN
so as to reduce the maintenance complexity; 4) Anonymous
Authentication, OSN can verify the validity of the user's access
permission for a private OSN without a user's identity; and
5) Revocation, a community could revoke the permission of
authorized users permanently or temporarily.

A. Our Contributions

To meet the privacy needs of OSN, we present a solution.
which fulfills above-mentioned requirements. Our collabora­
tive framework can provide flexible, efficient privacy protec­
tions needed in a private OSN without the intervention of a
system manager. We briefly summarize the contributions of
our work in this paper.

TABLE I
COMPARISON BETWEEN TWO EXISTING OSN SHCEMES AND OUR SCHEME.

ftyByNight [2]
Cryptosystem EIGamallProxy encryption
Autonomy EIGamal managed by system manager;

Proxy Encryption by application proxy
Independence Yes
Collaboration No
Anonymous authentication No
Revocation No
Integrity checking No
Relationship transitive By group manager
Post message encryption One-time by client-side;

Each download by application proxy

• We propose a system architecture for a private OSN. In

this architecture community creators can collaborate to

manage and maintain their communities. There is no need

for a centralized management server to build PKC/PK[for

key exchange and to monitor the behavior of all users;

• We provide a community key management method for

our architecture based on a new group-oriented conver­

gence cryptosystem (GCC) . This method leverages the

following properties: the community is built on con­

vergence of some users' private keys, the upload and

download of resources provide the authentication and

integrity checking, as well as there exist efficient mecha­

nisms for access permission delegation and sophisticated

revocation; and

• To prove the feasibility of our architecture, a proof­

of-concept prototype of the proposed approach is im­

plemented by constructing a GCC cryptosystem and an

application of community key management method. Ex­

perimental results show that our construction can achieve

the identified design goals for protecting privacy in OSN

with the acceptable performance.

Table [summarizes the comparison results between fly­

ByNight [2], Persona [3], and our scheme. We can observe that

our approach have following advantages: autonomy, collab­

oration, anonymous authentication, revocation, and integrity

checking. These features could significantly mitigate privacy

risks in using OSNs.

B. Organization

The rest of this paper is organized as follows. We describe

the common cryptographic techniques for OSN and how to

comprise better cryptosystems in Section [I. We discuss the

system architecture of our private OSN in Section III. We

introduce the preliminaries of our GCC scheme and present

our basic construction for community key management in

Section [v. Section V discusses how the proposed approach

can be realized in a practical application. We describe the

related work in Section VI followed by the conclusion in

Section VII.

II. CRY PTOGRAPHY IN OSNs

The main task of cryptography in building a private OSN

is to restrict the information available in an appropriate range.

Persona [3] Our scheme
PKCIABE EIGamal/GCC
PKC managed by system manager; Full autonomy
ABE managed by group creator
Yes Yes, a set of trusted users
No Yes
No Yes
No Yes
No Yes
From friend to friend From friend to friend

One-time by client-side One-time by client-side

We make use of relationships or social links to represent this

range in a social network. For example, family, neighbor, co­

worker, boss, teammate, and other relations might define such

a relationship in a private OSN. [n this paper, the relationship

is simply termed "friend".

Encrypting sensitive information to protect it from misuse

is hardly a new concept, but the OSN setting is different

from typical group scenarios. One of the differences is that

the sender may not be in charge of group membership. For

example, Alice may post a message on Bob's wall, encrypted

for Bob's friends, without (necessarily) knowing the list of

Bobs friends. Another aspect of the OSN setting is that the

number of potential users might be very large in a group.

These two features lead to the deployment and management

of data in OSN arduous.

A. Limitations of Common Encryption Approach

In order to construct A private OSN setting, serval schemes

have been proposed in recent years . Although these schemes

adopted different cryptographic techniques, such as traditional

symmetric/asymmetric encryption [6], [7], [9], [10], as well

as attribute-based encryption (ABE) [3], [11], [12], they

have a same working model: To create a new group from

a list of known friends, Alice (the creator) encrypts a newly­

generated group key with the public key of each member of

the new group (obtained from PKC/PK[). She then distributes

this key to the members of that group and uses the key to

encrypt messages for the group. The information sharing can

be realized by exchanging the key within the groups. In this

model, the group key may be symmetric, in which case only

group members can encrypt for the group, or asymmetric,

which allows non-members to encrypt as well.

Although it looks as though this model has a simple

structure, it in fact requires not only the establishment of

a PKC/PK[system, but also requires a tedious task of key

management for the creator. Moreover, the users' public keys

based on PKCIPKI are used to distribute the group key in

this model. This means that all members in a social network

are managed and monitored by a centralized management

server. [n addition, this model has several usability and security

Issues:

• The user needs to store many community keys if he/she

belongs to several communities;

• There does not exist an efficient way to revoke the

member permanently or temporarily; and

• There does not exist an efficient way for anonymous

authentication with the view of tracing the behavior of

users and computer forensics.

Moreover, a group creators must carefully carry out various

maintenance work, such as deleting obsolete information,

keeping undesired readers off, and putting hot topics in order,

and so on.

B. Our Approach

Our approach, to protect sensitive information in web

services from unauthorized access, is to encrypt information

using user-controlled keys and to provide access to data using

user-controlled delegation. This approach is constructed on a

new group-oriented convergence cryptosystem (GCC), which

implements encryption and authentication for groups. The

most striking feature of this cryptosystem is that this system

is organized and managed in a spontaneous way without a

system manager. That is, a group of trusted users, not one

user, collaborate to manage and maintain a private community.

Moreover, this cryptosystem does not need a PKC/PKI system

to realize the exchange of group key.

To use GCC, each user in OSN generates the user's private

key by himself and registers a public label into the OSN. To

create a community, some known users with the same interest

(called as the creators of community) generate a community

key (CK) in a cooperation way. All of the creators' private keys

are valid for this community key. For each friend, a user can

then generate an access permission key (APK) corresponding

to his own private key and the friend's public label. Using the

private key and the community's APK, the user can decrypt

(or access) the shared information, but not encrypt (or publish)

the information into the community. The encryption operation

cannot be implemented unless a user holds the community

key.

In order to avoid the adoption of PKC/PKI systems, a

temporary public key generated from a user's private key can

be used to realize the exchange of encrypted key. In addition,

there exists an efficient authentication protocol, by which a

untrusted storage service provider (SSP) can check whether

or not a user belongs to a certain community.

Furthermore, in our model each user in OSN has only one

private key. Each time the user joins in a community, she will

be assigned an APK key from her friends, but this APK is

invalid for other users. This approach can effectively prevent

security problems caused by the loss of access permission key.

III. OUR SYSTEM ARCHITECTURE

In this section, we introduce a private OSN architecture

based on a group-oriented convergence cryptosystem. In this

architecture, a predominant method of sharing data in OSNs

is via collaborative applications.

A. Community and Member Category

Before we describe the framework of our scheme, we first

introduce an important concept - community, which is the core

notion of our approach. Following the traditional definition of

social network, a community is a loose collection of users

with the same interest. In our private OSN, a community is

organized and managed by collaborative Web applications. By

joining a community, one gains the right to create new contents

in this community and access others' contents. For instance,

the quintessential Facebook application, the Wall, is a peruser

forum that features posts and comments from the user and

his friends; the Facebook Photos application stores comments

and tags for each picture and displays them to friends; and

the Flickr photo management and sharing application allows

each photograph has a page where members of the Flickr

community can comment on photographs.

UTlfl.llthllri 7.eO u;;ers

Fig. 1. The system architecture for a private OSN.

We introduce a generic model to implement above­

mentioned collaborative OSN applications. Figure 1 shows

a system architecture for our model. In this architecture, a

third party is required to be responsible for the web-based

applications, as well as the storage of published data. Mean­

while, it also provides some services for users, such as Web

browser service. But we do not demand that this third party

is credible for a private OSN. Existing social network sites,

such as Facebook, Flickr, and Myspace, even cloud computing

platforms are appropriate environments applying our model.

In order to define the range of access control in a private

OSN, we classify the users in social networks into four

categories:

• Kernel members (KM): can create and manage a special

community by collaboration and have rights to publish,

delete, access or update resources released by other

members of the community;

• Full authorized members (FAM): have full rights to

publish and access resources in the community, but do

not have permissions to delete or update resources;

• Authorized members (AM): can access the resources by

using her own access permission, but cannot publish these

resources;

• Unauthorized users (UU): may not have permissions to

access resources published by community members.

Note that, it is technically possible using the "delete"

and "update" operations to compromise the security of a

community, for example, the malicious member can make use

of them to manipulate or forge others' opinions. Hence, it is

necessary for authorized members to restrict their maintenance

operations only for kernel members. Moreover, it is critical to

adopt an efficient authentication method to distinguish kernel

members from the others.

B. Our Model and Architecture

Our private OSN model could be built in existing social net­

work platforms, such as Facebook, Orkut, etc, which usually

allow developers to create "applications" to extend the types

of information that can be stored, manipulated, and shared

using social network interfaces. Fig. 2 depicts a application

dataFlow for our architecture. In this model, an OSN Plat­

form API acts as a middleware for all interactions between

application providers and end users. End users, including

kernel members, (full) authorized members, and unauthorized

users, initiate contact with an application provider through a

URL on OSN platforms. The platforms interpret input data

along with these requests and pass their interpreted data via

the Internet to the application servers, whose addresses are

registered with platforms by the application developers. The

application server then performs requested actions based on

a platform-interpreted user input, perhaps including database

operations. The application server then delivers to the platform

an output page consisting of HTML and platform-specific

markup, including scripts. The platform then interprets this

output page, replacing the platform-specific markup with stan­

dard HTML and JavaScript, and delivers the interpreted output

page to end users. A cryptographic module based on ActiveX

is used to implement the decryption of output page in the

client's browser.

,----

I
I
I
I
I
I
I
I

I
I
I
I

�
I Inlerface

I
I
I

L
E� �e�

�

§ Module

Brower
Software

Request for ApD
URL ani. Innut

Panrneters

jicrub,ed Mput
Page ffilllL)

Request for ApD
URL and Input
Parameiec's ard

User Profile Oata

Social
Network
Platform

(Facebook,
MyS,acc, Fli okr)

I jXJtput Encryptee
Data

Fig. 2. The application dataFlow for our architecture.

Application
and Storage

Server

In this architecture, the resource publisher enforces access

control through encryption and key management on our Gee

scheme. Based on the above application dataflow, in Fig. 3 we

describe a flowchart for publishing and accessing resources as

follows:

• In a social network each user can choose a favorite label

and generate a private key by herself, and then register her

label into an OSN platform by UserRegister algorithm;

• When somebody wants to share resources with others,

she constructs a community together with a set of trusted

friends on an OSN platform by BuildCommunity algo­

rithm. Finally, each member gets a community key, which

can be used to access, manage and maintain the resources

in this community;

• When a user wishes to access a community, her friends

hold the community key can delegate an access per­

mission key (APK) to her by using DelegatePermission
algorithm;

• If one community member wants to post message and

resource into the community, she picks the community

key, invokes UploadResource algorithm to encrypt the

resource with her private key, and then transmits the

encrypted data to the storage server; and

• Anytime one community member can obtain the en­

crypted data from the sever, and invoke Download­
Resource algorithm to retrieve the original post or re­

source by her private key and APK.

Commnnity

Members
Client side

Social Application

Network And Storage
Platform Server

User label I seT label

��p�ri�va;(CkckC�} ---L _
U

_, _
cr

R_
e� giS _�

�I
H--+�=-�

Convergence C mmunily
l---,il!L nfol!!!n""na""tio!!!.. n --� BuildCommunitv I, +---"in+o::::nn=ah:::.:·Oll'-----l� "

Communily key

User's Private key Delegate I " I Permission
Acccss PcnnissiOll

Key (APK)

Posl or Rcsourcc _I Upload
Resource

I Enc� led Dala

I I

Posl or Resourcc I DO\\.11Ioad I Ene ted Data
I Rcsourcc 1I+--+----=F:..::.:::=--------1

Fig. 3. Cryptographic module and application flow for our architecture.

According to our description, we enforce access control

and key management at the client side by a group of kernel

members. In our architecture, we do not need to assume that

the system manager is trusted to manage a private OSN, so

that the community can be constructed in an autonomous

and collaborative way, without the involvement of a system

manager. To enable access control through key management

without a system manager, our design should satisfy several

important security and performance requirements, such as

autonomy, independence, collaboration, authentication, and

revocation.

IV. COMMUNITY KEY MANAGEMENT

In this section, we articulate our scheme for community
key management based on above-mentioned architecture. To
design this scheme, our work addresses following problems:
how do the kernel members define a community? how do the
authorized members generate and distribute the community
keys? how do the members grant access permissions corre­
sponding to a community? how does an untrusted third party
(e.g. the OSN platform) can authenticate the kernel members
of community?

TABLE IT
NOTATIONS AND SYMBOLS USED IN PAPER.

Term

u.id
u.sk
u.pm
u.pk
gk
Setup(li:)

Register(p, id)

Converge(S)

CKeyGen(u.sk, 2;)

CEncrypt
(u.sk, u.pm, gk, F)

CDecrypt
(u.sk, u.pm, C)
CVeriJY (F, C)

Permission
(u.sk, gk, ulid)

Revocation
(u.sk, gk, n, F)

EGSetup(u.sk,g)

EGEncrypt(u.pk, m)

EGDecrypt(u.sk, c)

KAuthenticate(A, B)

FAuthenticate(A, B)

Definition

u's label
u's private key
u's permission
u's Elgamal public key
a community key
Initiate the global parameter p of the system
by a security parameter Ii:

Choose private keys in terms of global param­
eter p and id
Generate convergence information 2; from the
set of public keys of all kernel members S
Build the community key gk with a user's key
u.sk and a convergence information 2;
Encrypt a resource F by using a user's key
u.sk, a member's permission u.pm, and a
community key gk
Decrypt the ciphertext C by using a user's
key u.sk and a member's permission u.pm
VeriJY the integrity of the resource F in the
ciphertext C
Generate the access permission of a commu­
nity by using a user's key u.sk, a community
key gk and a target user's label u' .id
Revoke a set of users n from a community
by using a user's key u.sk and a community
key gk
Generate EIGamal public key u.pk from a
user's key u.sk and a generator 9
EIGamal encrypt message m to obtain a ci­
phertext c with a public key u.pk
EIGamal decrypt ciphertext c with private key
u.sk
Authentication protocol between a kernel
member A and a verifier B
Authentication protocol between a (Full) au­
thorized member A and a verifier B

In view of those problems, we propose a community key
management scheme as follows: each user in OSN has an
unique private key generated by UserRegister algorithm, while
guaranteeing that OSN cannot know this key; community man­
agement mainly relies on three algorithms, Buildcommunity,

DelegatePermission and Revocation, to build community and
grantlrevoke access permissions without the help of OSN;
two algorithms, UploadResource and DownloadResource, are
employed for creating, requesting, updating and deleting re­
sources. In addition, a community maintains and enforces the
public community's member list (CML). The kernel members
may change the resource CML and revoke specific members to
the resources by cryptographic revocation algorithm. Addition-

ally, storage services in our model support two operations for
data storage and retrieval: upload and download, which are re­
realized by encryption and decryption operations on our GCC
scheme. In short, the algorithms described in this section are
able to allow different members to quickly and flexibly access
data and resources in terms of their permissions.

Before we describe our construction, the symbols and
notations in our GCC scheme are showed in Table II. Detailed
descriptions for these notations and corresponding algorithms
are given in Appendix. We will make use of these symbols
and notations to elaborate our construction.

A. UserRegister

First of all, the system manager invokes Setup(�) to
generate a global parameter p and makes it public. Based on
this parameter, any user Ui in OSN may choose a favorite
label ui.id and generate his private key Ui.sk by invoking
Register(id). Then, the manager registers this label after the
user sends it to her.

Algorithm 1 UserRegister(�):

I: manager: p +- Setup(�);
2: u;: choose a favorite ui.id;
3: u;: Ui.sk +- Register(Ui.id);
4: ui --+ manager: ui.id;

Note that, the manager only needs to execute Setup(�) one
time and does not know the user's private key.

B. BuildCommunity

The BuildCommunity function allows a set of trusted users
to build a community. In our scheme, a community is built
by collaboration of a set of users, rather than defined by
one user alone. Furthermore, the community key is obtained
by convergence of information of these members, instead of
specified by one user or the system manager.

For a set of trusted users S = {Ul,'" ,Um}, anyone in S,
called the dealer, can build the community key gk as follows:
the dealer chooses a random generator 9 E G for this commu­
nity, and distributes it to all users in S; each user in S returns a
temporary public key ui.pk (as the commitment of his private
key) in terms of 9 for i E [1, m]; next, the dealer generates
a convergence information � from all temporary public keys
{ul.pk,··· ,um.pk}, and then builds the community key gk
in terms of CK eyGen(u.sk,�) without the help of manager.

Algorithm 2 BuildCommunity(dealer, S):

I: dealer: 9 +- Random(p); II to generate a random integer.
2: dealer --+ S: distribute 9 to all members in S;
3: u;: ui.pk +- EGSetup(Ui.sk, g);
4: Ui --+ dealer: ui.pk;
5: dealer: � +- Converge(S = {ul.pk,··· ,um.pk});
6: dealer: gk +-CKeyGen(u.sk, �);
7: dealer --+ S: distribute gk to all members in S;

C. DeiegatePermission

The permission delegation is a process to transfer the
pennission of a member in the community to her friends.
By DelegatePennission algorithm, the members delegate the
"read" right of a community to the external users. In order
to avoid a unbounded delegation, we require that only kernel
members and full authorized members can employ this algo­
rithm to delegate access permissions. This algorithm includes
two steps: 1) the access permission pm is generated in terms
of the user's label; and 2) the access permission pm is securely
transmitted from the member to her friends. We make use of
EIGamal encryption to build a secure channel.

Algorithm 3 DelegatePennission(Ui, Uj):

I: Ui: g +-- obtain from gk;
2: ui --+ Uj: g;
3: Uj: Uj.pk +-- EGSetup(uj.sk,g);
4: Ui +-- U{ Uj .pk;
5: U(Uj.pm +-- Permission(Ui.sk,gk,Uj.id);
6: Ui: c +-- EGEncrypt(uj.pk, Uj.pm);
7: ui --+ Uj: c;
8: Uj: uj.pm +-- EGDecrypt(uj.sk, c);

To assign the pennission, the member Ui firstly retrieves
the generator g in the community key gk and sends it to her
friend Uj. On receiving g, Uj sets up a temporary EIGamal
public key in terms of EGSetup(uj.sk,g) and returns the
public key to Ui. And then Ui computes the access permission
of Uj by his private key, the data received from Uj and the
community key gk. Next, Ui encrypts the pennission with Uj'S
temporary public key and sends it to Uj. Finally, Uj decrypts
the ciphertext with her private key and recovers the access
permission.

If the member Ui wishes to delegate the "write" right to her
friend, she only needs to transmit the community key besides
the pennission pm. That is, Ui merely replaces the line 6 by
c +-- EGEncrypt(Uj .pk, mj .pmllgk), where II denotes the
concatenation operation for two strings.

D. UploadResource

The Upload Resource function is a process that a kernel
member or a full authorized member publishes a message
for the community. Since the encryption is introduced, the
member must hold a valid community key gk to implement
this process. Thus, authorized members have no permission
to publish messages. In addition, we propose an efficient
authentication protocol- F Athenticate(A, B) - to check the
identification of members. This process can prevent illegal
users to submit invalid ciphertexts to the community.

Suppose the member Ui wants to publish resource F for a
special community G. Firstly, the Ui interacts with the social
network platform (SNP) to verify whether she is an authorized
member. After the Ui passes the authentication protocol, she
can encrypt the message and then submit the ciphertext to SNP.
Finally, the SNP uploads the ciphertext to a storage service
provider (SSP).

Algorithm 4 UploadResource(Ui, F):

I: U +-+ SNP: b +-- FAthenticate(Ui,SNP);
2: if b is true then

3: Ui: C +-- Encrypt (Ui.sk, Ui.pm, gk, F);
4: Ui --+ SN P: C;
5: SNP --+ CSP: upload(C);
6: end if

E. DownloadResource

The DownloadResource function allows a member to access
messages in a private OSN. In order to improve the perfor­
mance, this function is executed on the cryptographic module
of end user. By using the user's private key sk and the access
pennission pm for a certain community, any member Ui can
decrypt encrypted resources obtained from the social network
platform and the storage server according to the algorithm
Decrypt (Ui.sk, Ui.pm, C). Hence, all authorized members in
a private OSN can retrieve encrypted data from the storage
service provider.

Algorithm 5 AccessResources(Ui, C):

1: U(F +-- Decrypt(ui.sk, Ui.pm, C)
2: Ui: b +-- CVerify(F, C)
3: if b is true then

4: Ui: Message is intact and output F
5: end if

In order to check the integrity of message, the Gee scheme
provides an efficient verification algorithm CVerify for the
ciphertext by using the cryptographic Hash function. Hence,
once the ciphertext has been decrypted, the member can verify
whether the decrypted message is intact. If the result of this
process is true, then the message can be returned to the Web
browser.

F Revocation

The Revocation function allows to exclude a set of members
R from all authorized members. To avoid the disclosure of
privacy, the revocation is an efficient mechanism to maintain
the security of a private OSN during long-tenn running.
With the help of revocation algorithm in the Gee scheme,
we can implement the revocation as follows: given a set
of revoked members R (obtained from the user's public
labe!), the kernel or full authorized member can invoke the
Revocation(Ui.sk, gk, R, F) to encrypt the message F by us­
ing the private key and the community key. Such a revocation
does not mean the authorized user will no longer access any
resource in the group.

Algorithm 6 Revocation (Ui, R, F)

1: U(C +--Revocation(Ui.sk, gk, R, F)

If kernel members wish to revoke permanently an authorized
member, she only needs to add this member into the revoked

members list (RML) in the community, and then makes this

RML public. While uploading the message into the commu­

nity, it simply requires that the member uses this RML as the

set R to encrypt the message.

Note that, in the GCC scheme the number of revoked users

is strictly less than the number of kernel users in the group.

In order to enhance the capacity of revocation, we can easily

increase the number of revoked users by using some random

keypair when the community key is generated.

V. IMPLEMENTATION AND ApPLICATION

A. Implementation of the Gee scheme

An experimental GCC cryptosystem was implemented to

demonstrate the feasibility of our scheme. This system was

developed with standard C++ language in QT environment,

which supports cross-platform deployment. This system con­

sists of three modules: Cryptographic Module, Private Social

Network Platform, and Browser Software. In the cryptographic

module, we adopted GNU multiple precision arithmetic library

(GMP) to handle integers of arbitrary precision. Then, a finite

field arithmetic library was constructed to realize the run-time

environment of elliptic curve and pairing-based cryptosystems

(in terms of PBC liberty from Stanford University). In addi­

tion, a Group-Oriented Convergence Cryptosystem library was

developed based on the finite field arithmetic library to realize

various GCC algorithms. Finally, the GCC algorithms worked

with a lightweight private social network platform to provide

encryption, authentication and key-label management services

for Web browsers.

B. Application for a Blog management

We build a Blog management system where users are able

to control access to her data without a third-party. This system

supports the editing and publishing of blog posts, comments,

and images. Posted data in this system are divided into two

categories: public data that is visible to all users; and protected

data that is visible only to the members of community that

defined by the user. All Blog contents are stored at a server.

The architecture of our application is represented in Fig. 4.
HTML Data

Post new � data

A--� .------,Ww""hi:"',h':::'i=, ::'ienT.:cr'f.yp=ted"---l�
----'

by community key

Server

Data IrIML

Fig. 4. The Blog system architecture.

Server

Once a user is about to post new data to her blog, she

first decides which data is public and which data should be

protected. For the protected data, she decides which members

of community may have access to her data, then encrypts this

data with her keys and corresponding community key. Public

data together with encrypted data are sent to the server. When

somebody in the system browse user A's blog, she gets data

from the server. The public data is directly displayed to her,

while the protected data is displayed with a default page which

means this data is meaningless to the visitor. To view the entire

content, she first has to examine the header of ciphertext to

check whether she has permissions to access the community.

[f she is an authorized user, she can decrypt the ciphertext

and view all contents; Otherwise, the protected data are still

unknown to her.

Fig. 5 shows an example of our implementation. [n this

example, when a user downloads a HTML page from a private

OSN, she can only see the public data and some gray frames

which denote encrypted data (see Fig. 5 (a)). Note that, there

exists an ActiveX control on the top of two sub-figures, which

implements the functions of cryptographic module in Fig. 3.

[n order to display the encrypted data, the user must click the

button on this ActiveX control and then input the user's private

key and access permission for this community. If the key

and the permission are valid for this community, the ActiveX

control would decrypt the encrypted data and display them to

the user. The result is showed in Fig. 5 (b).

VI. RELATED WORKS

There has been a substantial amount of work addressing the

problem of privacy protection in social networks. One area

of research is to protect user's privacy by enforcing access

control. For example, Carminati et al. [11] proposed an rule­

based access control model which allowed users to specify

access rules for their contents. An access rule consists of

the resource identifier and a set of conditions which must be

satisfied to be allowed to access the resource. A requestor

is authorized to access an resource only if he provides the

resource owner with a proof that she satisfies at least one

of the corresponding access rules, by means of relationship

certificates. This scheme enforces access control at client side.

[n addition, they proposed a mechanism to enforce access

control for web-based social networks [[3].

Besides protection of resources, some recent works address

the privacy of relationships in social networks, since avail­

ability of information on relationships (trust level, relationship

type) gives rise to security concerns: knowing who is trusted

by a user and to what extent being trusted disclose a lot about

user's thoughts and feelings. For example, Carminati et al. [4]

described an access control model on relationship protection.

[n this model, the relationship certificates are encrypted using

symmetric cryptographic algorithm and are treated as a re­

source: a certificate is granted only one satisfies a distribution

rule, which is analogous to the access rule. Ferrer et al.

[7] introduced a public-key protocol for private relationships,

where certificates were encrypted asymmertrically and signed.

But this scheme has drawbacks: relationship strengths are

revealed to intermediate users and it requires multiple users

!ttj.tQ2J""ltl;-:-M---"-;::lll:-" -::",-,,,--":n=,, -:::n.-"I;:-''' ---''---�--------------::l3 �$tilj IMm "1 tflItCItllalhttl"ll1oc..Iho,t·I773ITnt/hckht.

TR Editors' blog

Thursday, May 20, 2010
Insights, opinions, and our

editors' analysis of �e latest in Federal Agenties Woo Setwity Researchers
emergmg technologtes

BlogTopics

» Android

» Carol Bartz

» developer

» Google

I) IEEE Symposium on

Security and Privacy

» personalization �

Government representatives outline the ClUTent U.S cybersecurity research and

development goals

�
Tags: �,research, cvber wanare, IEEE Symposium on Security and Privacy.

�,NSF

� I Add a Comment I E'illMJ.iok

(a) An example of a private OSN before decryption.

TR Editors' blog

Insights, opinions, and our
Thursday, May 20, 2010

editors' analysis of the latest in Federal Agencies Woo Seewity Researchers
emergmg technologtes

Blog Topics

)) Android

) Carol Bartz

)) developer

)) Goocle

)) IEEE Symposium on

Security and Privacy

» personalization

�

Government representatives outline the current U.S, cybersecurity research and

development goals.

By Erica Naone

Representatives of the National Science Foundation, the Department of Homeland

Security, and the Office of the Director ofNationallntel1igence came yesterday to the

IEEE Symposium on Security and Privacy in Oakland, CA, to describe the federal

goverrunent's ClUTent wish list for cybersecurity research, The representatives described

three main ways that the federal government is interested in spending its money on

academic work

First, they asked for "moving target' technologies. The idea here is that current systems

favor attackers--the defender's system remains the same and the attacker is able to

hammer away at it until exploits are found, With moving targets, federal government

agencies hope to shift this scenario to make it harder and more expensive for attackers to

�e?etrate systems. The idea is that syste�: th�t ar
=

,
�

co

_

mp

_

l,

_

x
�

�

_

d
_
'''

�
ilY

,_
chru;g
�

'd
�

by __ =.=J

(b) An example of a private OSN after decryption.

Fig. 5. An example of a private OSN before decryption (left) and after decryption (right).

to engage in a protocol for each new access. [n [8], a similar

scheme which also protects the relationship strengths was

introduced.

Another way of enforcing access control is by means of

key management. Some recent papers addressed this problem

by using access hierarchy, which is considered as a social

network graph. Atallah et al. [14] introduced a hierarchy

key management scheme based on hash functions and CCA­

secure encryption in terms of relationship hierarchy on social

networks. [n this scheme, if there exists a path from node A to

node B in the access graph, then A can derive B's key only

using its own key and hash functions. In [15], a provably­

secure time-bound hierarchical key assignment scheme was

also proposed. Frikken et al. [10] introduced a novel scheme

based on [[4]. [n their scheme, users specify access policies

based on distance in the social network, and access control

is enforced via key management. Moreover, this scheme is

decentralized and does not require users to be online at the

same time.

Some new cryptographic techniques were introduced into

online social networks as well. In [12], a fine-grained access

control scheme through attribute-based encryption (ABE) has

been proposed. [n this cryptosystem, the ciphertexts are la­

beled with sets of attributes, and the private keys are associated

with access structures that control which ciphertexts a user is

able to decrypt. Furthermore, in [3] a new OSN architecture

(called as Persona) is also used to hide the user data with

ABE, allowing users to apply fine-grained policies over who

may view their data. This architecture achieves privacy by

encrypting private contents and prevents misuse of a user's

applications through authentication based on traditional public

key cryptography (PKC).

Some recent works also focus on the area of privacy pro­

tection within some existing social network sites (SNS). For

example, the solution in [16] offers the users' access control

of their sharing data by hiding and mapping the selected

information into a third-party storage. [n [5], the personal

information is encrypted with a pseudo-random substitution

cipher from a public dictionary. However, this approach works

only for encrypting personal data from a relatively small

domain, and does not support encrypting free entries. [n [[7],

a Facebook application called as f1yByNight was presented to

protect private data by storing it in encrypted form. By using

traditional cryptosystem, the client-side encrypts the message

with public-keys and decrypts ciphertext with private-key. This

application places significant trust in the Facebook servers and

relies on them to enforce key management.

V[1. CONCLUSIONS

[n this paper, we introduced a scheme where resources

are shared among communities, which means only members

of a community have access to its resources. Adopting a

community key management, we were able to keep users'

resources confidential, even towards the system manager. In

our framework, a random session key is used and encapsulated

for each encryption, and only members can derive the session

key and decrypt it correctly. Our proof-of-concept prototype

clearly demonstrated that our scheme is practical to OSNs,

allowing us to generate community keys with the manageable

computation overhead.

ACKNOWLEDGMENTS

This work of Gail-J. Ahn and Hongxin Hu was partially

supported by the grants from National Science Foundation

(NSF-IIS-0900970 and NSF-CNS-0831360). The work ofYan

Zhu, Zexing Hu, and Huaixi Wang was partially supported by

National Development and Reform Commission (under project

"a monitoring platform for web safe browsing") and China

Next Generation Internet CNG[Project (CNG[-09-0[-[2).

REFEREN CES

[1] W. Luo, Q. Xie, and U. Hengartner, "Facecloak: An architecture for
user privacy on social networking sites," in CSE (3). IEEE Computer
Society, 2009, pp. 26-33.

[2] M. M. Lucas and N. Borisov, "Jlybynight: mitigating the privacy risks
of social networking," in SOUPS, ser. ACM International Conference
Proceeding Series, L. F. Cranor, Ed. ACM, 2009.

[3] R. Baden, A. Bender, N. Spring, B. BhattachaJ:iee, and D. Starin, "Per­
sona: an online social network with user-defined privacy," in SlGCOMM,
P. Rodriguez, E. W. Biersack, K. Papagiannaki, and L. Rizzo, Eds.
ACM, 2009, pp. 135-146.

[4] B. Carminati, E. Ferrari, and A. Perego, "Private relationships in social
networks," in [CDE Workshops. IEEE Computer Society, 2007, pp.
163-171.

[S] S. Guha, K. Tang, and P. Francis, "Noyb: privacy in online social
networks," Proceedings of the first workshop on online social networks,
pp. 49-S4, 2008.

[6] B. Carminati and E. Ferrari, "Privacy-aware collaborative access control
in web-based social networks," in DBSec, ser. Lecture Notes in Com­
puter Science, V. Atluri, Ed., vol. S094. Springer, 2008, pp. 81-96.

[7] J. Domingo-Ferrer, "A public-key protocol for social networks with
private relationships," in MDAI, ser. Lecture Notes in Computer Science,
V. Torra, Y Narukawa, and Y Yoshida, Eds., vol. 4617. Springer, 2007,
pp. 373-379.

[8] J. Domingo-Ferrer, A. Viejo, F. Sebe, and U. Gonzalez-Nicohis, "Pri­
vacy homomorphisms for social networks with private relationships,"
Computer Networks, vol. S2, no. IS, pp. 3007-3016, 2008.

[9] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi,
and P. Samarati, "Preserving confidentiality of security policies in data
outsourcing," in WPES, 2008, pp. 7S-84.

[10] K. B. Frikken and P. Srinnivas, "Key allocation schemes for private
social networks," in Proceedings of the 8th ACM workshop on Privacy
in the electronic society, 2009, pp. 11-20.

[11] B. Carminati, E. Ferrari, and A. Perego, "Rule-based access control
for social networks," in aTM Workshops (2), ser. Lecture Notes in
Computer Science, R. Meersman, Z. Tari, and P. Herrero, Eds., vol.
4278. Springer, 2006, pp. 1734-1744.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters, "Attribute-based en­
cryption for fine-grained access control of encrypted data," in AC M
Coriference on Computer and Communications Security, 2006, pp. 89-
98.

[13] B. Carminati, E. Ferrari, and A. Perego, "Enforcing access control in
web-based social networks," ACMTrans. In! Syst. SecUl:, vol. 13, no. I,
2009.

[14] M. 1. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, "Dynamic and
efficient key management for access hierarchies," AC M 7)'ans. In! Syst.

Secur., vol. 12, no. 3, 2009.

[IS] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci, "Provably­
secure time-bound hierarchical key assignment schemes," in ACM Con­
ference on Computer and Communications Security, A. Juels, R. N.
Wright, and S. D. C. di Vimercati, Eds. ACM, 2006, pp. 288-297.

[16] A. Tootoonchian, S. Saroiu, Y Ganjali, and A. Wolman, "Lockr: Better
privacy for social networks," in In Proc. of the 5th coNEXT, 2009.

[17] M. M. Lucas and N. Borisov, "Flybynight: mitigating the privacy risks
of social networking," in WP ES, V. Atluri and M. Winslett, Eds. ACM,
2008, pp. 1-8.

ApPENDIX

A. Symbol lists

For the sake of clarity, we show the symbols used in the
GCC scheme as follows:

TABLE III
NOTATION AND SYMBOLS IN OUR SCHEME.

Notation II Meaning

U All the users in the social network
S A subset of users
R A subset of revoked users
p The global parameters of the system
pk,sk The public and private keys of one user
gk The community key

f.l Authorization information granted to user
M,V Vandermonde matrix and its inverse matrix
G,GT Groups used in bilinear map

Hl A secure hash function that maps strings to G

H2 A hash function that maps element in GT to {O, l}n
� The convergence information

B. Definition of Group-oriented Convergence Cryptosystem

Definition 1 (Group-oriented Convergence Cryptosystem
(GCC)). A GCC scheme is a collection of polynomial-time
algorithms (Setup, Register, Converge, CKeyGen, CEncrypt,
CDecrypt, CVerify, Permission, Revocation) and two authen­
tication protocols (KAuthenticate, FAuthenticate) such that:

• Setup(/i;) --+ {p} is a probabilistic algorithm run by the
social network manager to initiate the global parameter
of the system. It takes as input a security parameter /i;,
outputs the system parameter p.

• Register(p, id) --+ {sk} is an algorithm used to choose
the private key. It takes as input the global parameter p
and the id, outputs a private key sk.

• Converge(S) --+ {�} is an algorithm run by the dealer
to generate convergence information. It takes as input a
set of public keys of all kernel members S, and outputs
the convergence information �.

• CKeyGen(sk,�) --+ {gk} is an algorithm run by dealer
u to build a community. It takes as input u's private
key sk, and convergence information �. It outputs the
community key gk.

• CEncrypt(sk,pm,gk,F) --+ {C} is a probabilistic algo­
rithm run by the resource owner to securely publish his
resource for a special community. It takes as input the
private key sk, the permission pm, a community key gk,
and the resource F. It outputs the valid ciphertext C.

• CDecrypt(sk,pm, C) --+ {F} is a deterministic algo­
rithm used to decrypt the ciphertext. It takes as input
the private key sk, the permission pm, the ciphertext C,
and outputs the plaintext F.

• CVerify(C, F) --+ {tTue, fa lse} is a deterministic al­
gorithm run by the decipher to verifY the integrity of
resource F in the ciphertext C. It takes as input resource
F and a ciphertext C. It outputs true if F is integrated ,
outputs false otherwise.

• Permission(sk,gk,id) --+ {pm} is an algorithm run by
a community's member to grant reading right to user.
Let C denote the community. It takes as input the private
key sk, the community key gk, and the target user v's id
id. It outputs a permission pm which enables v to access
resources in C but couldn't publish data for C 's members.

• Revocation(sk,gk,R,F) --+ {C} is an algorithm run
by resource owner to publish resource, while a set of
authorized users R are excluded from being able to
decrypt the ciphertext. It takes as input the secret key
sk, the community key gk, a subset of revoked user R,

and the resource F. It outputs the ciphertext which can
not be decrypted by users in R.

• KAuthenticate(A, B) --+ {true,false} is a protocol to
verifY whether A is kernel member of a community C.
If so, A can publish resource at B .

• FAuthenticate(A, B) --+ {true,false} is a protocol to
verifY whether A is full authorized user of a community
C. If so, A can publish resource at B.

• Setup (Ii:) : Given a security parameter Ii: E Z+, the system manager does:

I. Generate a random Ii:-bits prime q, two groups iG, iGT of order q, and an admissible bilinear map e : iG x iG --+ iG11.
2. Choose the symmetric encryption/decryption algorithm (E, D), two cryptographic hash functions HI : {a, 1}* --+ iG and H2 : iGT --+ {a, l}n,

where n is the size of encryption key. The system parameter is p = (q, iG, iGT, e, n, HI, H 2, E, D).

• Register (p, id): Choose a random integer y E Z� as this user's the private key, while id should be an integer in Z�.

• Converge (S): Given a set of kernel members S = {"It 1 , ... ,"ltm}, the algorithm firstly collects the information 1jJ = {(Xl, gYl), (X2, gY2), .
(xm,gYm)}) from S, then

I. Suppose the underlying interpolation polynomial is j(x) = ao + L�-;-l aixi. Since gYk = g!(XkJ, we get m equations:

= gYk, k = 1 ... m.
2. Let A = (ao,al,a2,'" ,am_l)T, Y = (Yl,Y2,Y3,'" ,Ym)T

be the unknown exponents, the Vandermonde matrix: !vI = (mi,j) =

(xi-1),1 <::: i, j <::: m. Compute the inverse of matrix M: M-l
= (Vi,j), 1 <::: i, j <::: m

3. Since !vIA = Y, then A = M-1y, ga; = TIj=l(gYj . Output 2; = {g8 = gan,gal,'" ,gam_I}.

• CKeyGen (sk, 2;): Let private key be y, convergence information 2; be {g8, gal, ... ,gam_1 }
1. For 1 <::: k <::: m -1: choose a random lk ER Z� that is not the same as previous, compute g!(lk) = g8. TI�-;-l(ga;)(lk);.
2. The community key is gk = {g, (h,g!(ll»), ... ,(lm_l,g!(lm-1»)).

• CEncrypt (sk, pm, gk, F): Let private key be y, permission be /L, community key be {g, (h, g!(lll), ... , (1m-I, g!(lm-1»)}
I. Compute p = gY if the encrypter is kernel user or p = /L if he is full authorized user. Recover g8 = pAn TI�-;-l(g!(I;»)A;, where

Ai = TIOS:kS:m-l,k7'i Ikl':.l; (mod p), 10 is encrypter's id.

2. Choose a random integer r E Z;, compute the hash of F: Hl(F) E iG and g82T = (Hl(F)/g8t.
3. Choose a random session key ek ER iGT, compute the header of ciphertext

hdr = (g,gr,g82T,ek · e(Hl(F),gr), (h,e(g1',g!(lll)), ... ,(lm_l,e(gr,g!(lm-1»))).

4. Compute the symmetric encryption key: K = H2(ek), encrypt the file symmetrically, i.e. CF = E(K, F). Output the ciphertext C
(hdr, CF).

• CDecrypt (sk, pm, C): Let private key be y, permission be /L, and ciphertext header be hdr = (g, Cl, C2, C3, (h, Tl), ... ,(lm-l, T m-l))
1. Compute p = gY if the encrypter is kernel user or p = /L if he is full authorized user. Recover the session key ek with the following equation:

ek =
C3

e(Cl, p)An . TI�-;-l(Ti)A; . e(g, C2)

where Ai = TIOS:kS:m-l,k7'i Ikl�l; (mod p), 10 is the decipher's id.

(1)

2. Recover the symmetric decryption key K = H2(ek), decrypt ciphertext body with K, i.e. F = D(K, CF) where D is the decryption
algorithm and C F is the ciphertext body.

• CVeriJY (F, C): Let ciphertext header of C be hdr = (g, Cl, C2, C3, (h, Tl), ... ,(lm-l, Tm-l)) . Compute ek as described in CDecrypt algorithm,
then compute hash value HI (F) and <:; = ek . e(HI (F), Cl). If <:; = C3, then output "true". Output "false" otherwise.

• Permission (sk, gk, id): Let private key be y, community key be {g, (h, g!(ll»),'" ,(lm-l, g!(lm-ll)} and target user's id be Xl.
1. Obtain 2;={g8, gal, ... ,gam_l} by calling Converge((x, gY), (h, g!(lll), ... , (1m-I, g!(lm_l»), X is delegator's id.

2. Compute g!(xll = g8. TI�-;-l(ga; ,outputs the permission pm = g!(Xl).

• Revocation (sk,gk,R,F) : Let private key be y, community key be {g,(h,g!(lll),··· ,(lm_l,g!(lm-l»)}, and the revoked users be
{"lt1,"lt2,'" ,"Itt). This algorithm has five steps, but steps 1,2,5 are the same as steps 1,2,4 in CEncrypt algorithm separatively. We describe
steps 3,4 as follows:

3. Choose a random session key ek ER iGT and call Converge((x,gY), (h,g!(h»), ... ,(lm_l,g!(lm-l») algorithm to obtain
:E={gS, gal, ... ,garn-1}

4. Suppose the public keys of revoked users are {Xl, X2, ... ,xt}, compute the header of ciphertext as:

hdr = (g, gr, g821', ek . e(H(F), g1'), (h, Tl), ... ,(lm-t-l, Tm-I-t), (Xl, Tm-t), ... , (Xt, Tm-l)).

, for m -t < i < m -1.

• K Authenticate (A, B): Let A's id and private key be x, y, the public information B holds is {e(g, g)8, (h, e(g, 9)!(l1l), ... ,(1m-I, e(g, 9)f(lm-ll)}
1. B chooses a random integer t E Z� and sends it to "It
2. A chooses a random integer r E Z�, computes w = r + yt and ¢ = e(g, gt, then sends {w, ¢, x} to B

3. B computes v = (¢WAO j¢1"(AO-l») TI�-;-l[e(g,g)!(I;)V;t, where Ai = TIOS:kS:m-l,k7'i lk
l�l; (mod p) for {lo = x,h,'" ,1m-I}.

4. If v = ¢. [e(g, g)8]t, then B outputs "success". Otherwise B outputs "failure".

• FAuthenticate (A, B): Let A's id be x, A's permission be /L, A's community key be {g, (h, g!(ll»),'" ,(lm-l, g!(lm-1»)}, and the public
information B holds is {e(g,g)8, (h,e(g,g)f(lll), ... ,(lm_l,e(g,g)f(lm-ll)):

I. B chooses two random integer {Xl, t E Z�} and sends them to "It
2. A chooses a random integer r E Z�, computes ¢ e(g, gt and obtains 2;={g8, gal, ... ,gam_l} by calling

Converge((x,/L), (h,gf(lll), ... ,(lm_l,g!(lm-l»).
3. A computes gf(X1) = g5 . TI�-;-l (ga; and w = e(g, gt . [e(g, gf(X1)]t, then sends {w, ¢} to B.
4. B computes v = (wAn j¢AO-l) . TI�-;-l (e(g, g)!(l;))A;t, where Ai = TIOS:kS:m-l,k7'i lk

l�l; (mod p) for {lo = Xl, h, ... ,1m-I}.
5. If v = ¢. [e(g, g)8]t, then B outputs "success". Otherwise B outputs "failure".

