
Common Criteria Requirements Modeling and its Uses for
Quality of Information Assurance (QoIA)

Deepak S. Yavagal, Seok Won Lee, Gail-Joon Ahn, Robin A. Gandhi
Dept. of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223-0001, USA.

{dsyavaga, seoklee, gahn, rgandhi}@uncc.edu

ABSTRACT

The Common Criteria for Information Technology Security
Evaluation (CCITSE), usually referred to as the Common Criteria
(CC), establishes a level of trustworthiness and confidence that
should be placed in the security functions of products or systems
and the assurance measures applied to them. CC achieves this by
evaluating the product or system conformance with a common set
of requirements set forth by it. To engineer a product that meets
the information assurance goals of CC, a structured and
comprehensive methodology is required to drive the activities
undertaken in all the stages of the software requirements
engineering (RE) process. Such a methodology is inevitable to
understand and attain the Quality of Information Assurance
(QoIA). As an effort in this direction, we focus on the use of
object-oriented ontology modeling as an effective way of
representing and enforcing the given common set of requirements
established by CC. Our methodology leverages novel techniques
from software requirement engineering and knowledge
engineering. This paper also describes how this methodology can
effectively realize CC-related requirements of the target systems
and help evaluate such systems for conformance to the
certification and accreditation (C&A) process.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –
Elicitation methods, Methodologies, Tools.

General Terms
Management, Design, Reliability, Security, Human Factors.

Keywords
Common Criteria, Requirements Modeling, Information
Assurance Metrics & Measures, Ontology.

1. INTRODUCTION
The ever growing need of Information Technology (IT) products
in various domains motivates the need for a well defined and

comprehensive methodology to establish appropriate assurance
levels about their security functions and features. Consumers
must able to measure, compare and evaluate various IT
products to understand their capabilities and limitations; both
functional and non-functional as accurately as possible.
National Institute of Standards and Technology (NIST) and
National Security Agency (NSA) have recently announced a
new collaborative effort to produce comprehensive security
requirements and security specifications. These security
requirements and security specifications are being developed
with significant industry involvement to address the needs of
consumers, developers and evaluators and are employed in the
new international security standard known as the CC (ISO/IEC
15408) [4].

The information assurance levels assigned by CC are known as
Evaluation Assurance Levels (EALs). In order to check system
compliance with a particular EAL, a set of activities are
prescribed which includes checking if all the necessary
security requirements have been identified, evaluating these
requirements against the user requirements, and eliciting new
requirements based on the objectives to be met. We identify
that the current practices followed by CC does not provide a
well defined methodology to utilize the requirements enforced
by it to drive the activities undertaken in all the stages of RE of
an IT product. A well defined methodology is crucial in
attaining the QoIA that most consumers demand from an IT
product that supports their needs. As an effort in this direction,
we propose object-oriented ontology modeling as an effective
modeling technique for CC requirements. Using the inherent
advantages of this technique we can effectively help
consumers to interpret the product specifications, developers to
realize the requirements and evaluators to effectively evaluate
compliance and practice the C&A process.
The rest of the paper is organized as follows. In Section 2, we
provide a brief overview of the CC process, followed by a
discussion of the limitations in the existing C&A practices in
Section 3. Section 4 discusses the benefits of using ontological
[8] engineering processes and how they contribute towards
achieving the IA goals set forth by CC for an IT product.
Section 5 provides a brief description about the Generic Object
Model (GenOM) [7] toolkit. In Section 6 we describe how
GenOM can be used to develop CC requirements
representations. Section 7 demonstrates, using examples, the
ways in which these representations can be utilized. Finally,
we present some concluding remarks and a discussion of our
future work in Section 8.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA,
USA. Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

In Proceedings of the 43rd Annual ACM Southeast Conference (ACMSE ‘05),
Vol. 2, pp. 130-135, March 18-20, Kennesaw State Univ. Kennesaw, Georgia. 2005

1

2. COMMON CRITERIA OVERVIEW
CC [4] provides a comprehensive list of various security
functions that products should include along with a list of
methods for assuring their safety. CC produces two types of
documents, Protection Profile (PP) and Security Target (ST). PP
is a document created by the stakeholder or a consumer that
identifies the security properties to be satisfied by the system. ST
is a document that identifies the functionalities that need to be
supported by the system being developed (called the Target of
Evaluation, or TOE). An ST is not required to meet the
requirements of a particular PP, but an ST could possibly meet
the requirements of one or more PPs.
Process of creation of PP and ST involves identification of
organizational security policies, stakeholders needs and
assumptions, the environment in which the TOE exists, and the
threats and vulnerabilities associated with the system. CC also
provides a toolbox that supports the creation of PPs and STs.
CC ToolboxTM [3] provides a static template for configuring
functional and assurance requirements and their relationships for
a specific information assurance product. The security objectives
to be satisfied by the TOE are derived from the environment it
operates. Finally, the applicable security requirements are
selected from a set of given CC security requirements, so that
they meet these objectives. The final draft of PP or ST should
clearly identify the dependencies between the environment where
the system is situated and the security requirements. It should
also assist the stakeholders in identifying how these security
requirements satisfy the objectives.
The security requirements provided by CC can be further divided
into functional requirements and assurance requirements. A
functional requirement specifies what the TOE should be able to
perform. Assurance requirements provide assurance about how
the objectives of the TOE are fulfilled. In CC, the term class is
used for the most general grouping of functional and assurance
requirements. We overview such structures in section 6.
In the next section we discuss some of the limitations of the
existing practices followed by CC.

3. LIMITATIONS OF THE EXISTING
METHODOLOGY
CC provides a set of security and assurance requirements from
the aspects of users, developers, and evaluators that needs to be
supported by the system under evaluation. CC requirements have
complex dependencies among them. Descriptions provided by
CC for the relevant terms are abstract in order to maintain general
applicability. This leads to ambiguities and it is often difficult to
find the right meaning and usage of the security requirements [9].
Furthermore, CC requires specifications and designs at different
levels of abstraction but does not provide any mechanisms to
achieve the same. Developers face difficulties in writing the
design documents, as making a clear distinction between the
details that belong to a higher level and lower level of abstraction
is not easy [9]. Hence, we identify the need to represent and
organize the security requirements in a way that contributes to
effective interpretation and enforcement, with well defined
methodology/tool support that facilitates such methods and
features.
The software system being evaluated is embedded within an
environment that caters to the goals and objectives to be achieved

by the organization [6]. Capturing the relationship between the
goals/objectives and the operating environment along with the
traceability links or dependencies between them is critical for
the successful evaluation and accreditation of the system. This
is essential for an effective secure software engineering
process as security is not an add-on functionality but rather it is
an emergent feature of the system in relationship with various
technical and non-technical factors in the environment that
houses it.
We also identify that the current practices of CC methodology
do not provide a way to effectively support the RE phases of
requirements elicitation, representation, discovery, verification
and management. To support these phases of RE we propose
the following research objectives based on CC.

• Requirements elicitation & representation: Build an
ontology of CC requirements that can transform static CC
requirements collections to active one that can be used by
people from different interests to gain empirical
understanding of the domain.

• Requirements defects discovery: Build methods to discover
defects such as missing requirements in CC requirements
and system requirements.

• Requirements organization & management: The amount of
documents perceived during CC evaluation and
accreditation process is large [5]. Therefore there is a need
to structure and organize such knowledge in a suitable
manner so that it can adapt to numerous requirements
changes often encountered due to rapid changes in
technology and business.

• Requirements verification and validation: Build a
methodology that can verify and validate specific PPs and
STs and assist their reassurance process.

These objectives are crucial to achieve QoIA, especially in
providing effective and efficient ways to incorporate changes
in policies, regulations, requirements and new legislation into
the assessment process of an IT product to evaluate the
conformance to a set of security requirements. In the next
section we propose a methodology which is a combination of
novel software requirements engineering and knowledge
modeling techniques that assists in addressing the research
objectives described above.

4. OBJECT-ORIENTED ONTOLOGY
MODELING
To assist autonomous object interactions, use of machine
understandable ontologies created as a result of the RE process
has been pointed out in [1]. In this paper, we propose an
object-oriented ontology modeling approach which uses
ontologies as its primary method of modeling system
requirements. The objective here is to model the CC
requirements in a way that not only benefits the analysis and
evaluation of the deployed TOE functions and constraints but
guides the adopted RE process through all its phases. Through
object-oriented ontology modeling techniques we can
transform static requirements collections provided by CC, into
structures that link the objectives to be achieved by the system,
security requirements and the domain objects along with the
actions they are able to perform in the environment, from
various perspectives. Domain objects are concepts in the
environment that interact with each other in order to satisfy

2

security objectives and requirements of the system. They are
interdependent on each other for achieving a particular security
objective. The object-oriented ontology modeling process of
deriving hierarchical model of CC problem domain is shown in
Figure 1. It involves categorization and classification of CC
security requirements and related domain knowledge by creating
hierarchical representations of CC requirements, producing a
structure where the high level requirements identified in the non-
leaf nodes are decomposed into specific criteria in the leaf nodes.
In the next step the domain objects that help to realize the
requirements along with the security objectives that need to be
satisfied by the system are identified and modeled using
advanced object-oriented knowledge representation techniques.
Finally, traceability links are established between requirements,
objectives and domain objects and a Problem Domain Ontology
(PDO) is created. Such a model provides the necessary means to
understand and evaluate the effect of the system functions and
constraints in light of the concepts, properties and relationships
that exist in the application domain or environment.

Static CC Requirements

Hierarchical representation of
the Security Requirements

Structured CC Requirements

1. Identify Security Objectives
2. Identify the Domain Objects along

with their dependencies
3. Interconnect Objectives, Domain

Objects, CC requirements

Hierarchical Model of the Problem Domain

Security
Objectives

Structured CC
Requirements

Domain Objects &
Their Dependencies

Figure 1: Process to Create Hierarchical Model of CC

Requirements
The PDO augments the interpretation and efficiency in
enforcement of requirements held within, by giving the
opportunity to analyze them from different perspectives and
dimensions. It also provides a structured & comprehensive view
that helps consumers to interpret the product specifications,
developers to realize the requirements and evaluators to
effectively evaluate compliance and practice the C&A process.
The GenOM toolkit [7], introduced in next section aims at
providing complete tool support for creating hierarchical models
of the CC PDO using object-oriented ontology modeling
technique.

5. THE GenOM TOOLKIT
GenOM toolkit is constructed for the purpose of knowledge
acquisition and representation to aid the design and
implementation of any intelligent software application by using
object-oriented technologies. It addresses object modeling in its
representation, usage of objects in its application model and its
ability to aggregate evidence that supports the analysis of objects’
behaviors (through the associated properties and relationships
between objects). The harmonization of these characteristics
often determines the level of intelligence of the applications.

When a software computing paradigm converges toward
domain-independent interdisciplinary research, the objects (or
models) used in each application model should be
interoperable and reusable. GenOM is such an interoperable
and reusable object computing model.

Application 2 Critical Infrastructure
Protection (CIP)

Property
Model

Object
Model

Feature
Model

Instance
Model

Viewpoints
Model

Inference
Model

Knowledge Structure

Hierarchical Object Model

GenOM Rule Base

GenOM Knowledge Base

Data/
Information

Knowledge

Application
Layer

API
Layer

Foundation
Layer Visualization

Model

Collaboration
Model

Knowledge Representation Mediation / Mapping / Merging

Application 1 Application N

Figure 2: GenOM Conceptual Architecture

GenOM inherits the theoretical foundation of frame
representation in artificial intelligence and expands its
architecture so that its hierarchical object model can be easily
transformable and adaptable to other software design models in
various domain applications. It does this by building domain-
specific application layers on the GenOM foundation layer,
while GenOM itself serves as an integrated environment to
create, edit, browse, search and maintain objects. In addition,
GenOM provides mechanisms for mediating, mapping,
merging and integrating various types of knowledge
representation of domain-specific objects in the API layer as
shown in Figure 2.

Here we discuss some of the components used in our modeling
work. The object model is used to describe the concepts in the
domain. It also supports modeling of hierarchical structures
and thus provides support for single or multiple inheritance
mechanism. The property model is used to describe the
characteristics or attributes of objects. The features model is
used to describe the relationship or dependencies that exist
between objects. The instance model is used to model specific
instances for different objects existing in a domain. The
visualization components of GenOM are provided for the
object modeler and the instance modeler. The visualization
component of the object modeler facilitates the visualization of
the object hierarchies. Visualization for instance modeler
facilitates the visualization of instance interdependencies.
GenOM is associated with an inference engine which supports
reasoning based on the concepts, properties and features
defined in the ontology using Jena [2] inference capabilities.

GenOM provides ways for mapping, merging and integrating
domain-specific objects and thus serves as a knowledge base
for building object-oriented software applications. The next
section focuses on how the various concepts in the problem
domain of CC can be modeled using ontological engineering
process using GenOM toolkit.

3

6. REQUIREMENTS REPRESENTATION
AND ITS USES
In section 4 we discussed our methodology that transforms the
static CC functional requirements into a PDO that uses objects,
properties, features and instance knowledge modeling
components provided by GenOM. Following this methodology
and utilizing the inherent structure of the CC requirements,
shown in Figure 3, functional classes which are used to
categorize requirements in CC are modeled using the objects (or
Class) knowledge component in GenOM. A resulting example for
categorization of different functional classes in CC based on
GenOM knowledge modeling components is as shown in Figure
4. Functional classes in CC can be decomposed into several
functional families. This relationship can be modeled by
expressing the functional families as sub-classes of the class used
to model a functional class. Each functional family is associated
with a set of attributes to provide information of its behavior,
management information and audit data. Each attribute provides
information about the functional family from a particular aspect.
These attributes can be modeled using the properties knowledge
component used to describe an object knowledge component in
GenOM. Each functional family has a set of components
associated with it. These components are more specific in
describing the requirements of a particular security category of
the functional family. Again the components can be modeled
using the sub-class and super-class concepts supported by
GenOM. The non-hierarchical relationships between components
contained in a functional family can be expressed using the
features knowledge component in GenOM. The resultant model
preserves the structure of the CC requirements as well as adds to
their way of representation, making them more amenable to
analysis and traceable to and from various related entities in the
universe of discourse.
Well annotated user interfaces of GenOM to model objects and
features are shown in Figure 5 and Figure 6 respectively. To
represent the dependencies that exist between different
components in the functional families, the features knowledge
modeling component provided by GenOM
(Figure 6) can be used. Other dependencies and traceability links
that exist between goals/objectives of the system and
requirements that help to achieve them can also be modeled in a
similar fashion.
The specifications for different CC requirements can be
represented using the instances knowledge modeling component
in GenOM. We make this modeling choice as the specifications
describe in detail about how a particular security requirement of a
system is satisfied. Instances are used as a mechanism for storing
information indicating how the CC requirements are satisfied for
a particular security specification. The instances are always
traceable to their associated objects in GenOM. Thus it is
apparent that GenOM provides the means to logically structure &
organize specifications based on the associated requirements.
GenOM also supports visualization of the knowledge modeling
components to visually comprehend the models constructed.
Figure 7 shows the meta-level visualization of the conceptual
model for CC requirements constructed using GenOM. It
demonstrates how different concepts described in the CC
requirements categorization at the meta-level are related to each
other. Such visual representations can also assist consumer,
developer or evaluators to gain empirical understanding of the

requirements and the interdependencies that exist in the
domain to satisfy them. Visualization is also supported at the
instance level. This functionality can be used by concerned
stakeholders to visualize how specific instances of different
requirements in the functional families interact within a
particular system, in a graphical manner, allowing them to
visualize the directly related instances (security objectives,
dependent specifications, etc,.) that will be affected by the
change in a particular specification. This assists the
stakeholders in adapting to numerous requirement changes,
often encountered in the wake of changes in technology and
business.

Functional
Class

Class Name

Class
Introduction

Family
Behavior

Family
Leveling

Management

Audit

Family Name

Component
Identification

Dependencies

Functional
Families

Components

Functional
Elements

Figure 3: Requirements Structure in CC [4]

Security
Requirement

… … … … … … … … … … … … … … … …

… …

Class FAU:
Security audit

FAU_ARP.1

FAU_ARP.1.1

FAU_SAR: Security audit
Data generation

FAU_GEN.2

FAU_ARP: Security
audit automatic response

FAU_GEN.1

FAU_GEN.1.1 FAU_GEN.1.2 FAU_GEN.2.1

Class FCO:
Communication

… …
FCO_NRO Non-
repudiation of
origin

FCO_NRO Non-
repudiation of
receipt…

…

FCO_NRO.1 FCO_NRO.2

FCO_NRO.1.1

FCO_NRO.1.2

FCO_NRO.1.3

FCO_NRO.2.1

FCO_NRO.2.2

… …

Dependency: Audit
data generation

Functional
Class

Functional
Family

Components

Modeled using
Features (GenOM)

Modeled using
Objects (GenOM)

Functional
Element

Figure 4: Categorization of Requirements in CC

In the next section we demonstrate the ability of the modeled
CC requirements to effectively perform analysis from different
aspects using an example concerned with identifying the
security requirements for the authentication module for a
personal digital assistant (PDA) system.

7. EXAMPLE OF A PDA SYSTEM
It is apparent from the model construction procedure described
in the previous section that modeling in a GenOM environment
can be performed at two levels; schema/meta-level and
instance level. While modeling at the schema/meta-level,
concepts operating in the domain are modeled along with their

4

dependencies. At the instance level, different instances of the
concepts expressed at the schema level along with their
interactions are modeled. The modeling that takes places at these
two levels for the selected example is shown in Figure 8.

Hierarchical Model of the CC
Functional Requirements
showing Functional Class,
Functional Family, Component
and Functional Element

Displays Name, Description and
associated Properties of the Object
selected in the hierarchical Model

Displays the sub classes, super classes,
dependencies (relationships), instances
associated with the object selected in the
hierarchical Model

Figure 5: Object Model in GenOM

Feature Panel
Displays dependencies that exist
between different components in the
CC requirements structure

Captures the Name and Description
of the dependency selected in the
Feature Panel.

The From and To fields are used to
specify “From” which component
“To” which component the
dependency exists.

Figure 6: Feature Model in GenOM

For the chosen example, CC problem domain consists of the
following concepts or classes:

• Objectives: Used to specify the objectives that are to be
achieved by the system.

• Entities: Specifies the entities that help to achieve the
objectives of the system.

• Security Requirement: Stores various security requirements
to be considered by the system. The security requirements
structure provided by CC is modeled under this class.

The dependencies that exist between various classes are modeled
using the feature knowledge component provided by GenOM.
The CC problem domain for this example has the following
features:

• Satisfies: Connects an instance of class Objective to itself.
The “From” and “To” fields in the GenOM interface (Figure

6) are used to specify the two classes that this relationship
connects.

• Satisfied By: Connects an instance of class Security
Requirement to an instance of class Entity.

As GenOM models follow an object-oriented approach,
instances of any subclass of the class Entity can be used to
connect to an instance of Security Requirement by the
inheritance mechanism. Sub-classes inherit all the
dependencies from their parents.

Class FCS: Cryptographic Support

Class FCS: Cryptographic SupportFCS_CKM: Cryptographic
Key Management

String: Audit FCS_CKM

String: Management FCS_CKM

FCS_CKM.3

FCS_COP.1

String: Audit FCS_COP.1

FCS_CKM.3.1

FCS_COP.1.1

FCS_CKM.1

FCS_CKM.1.1

FCS_CKM.2

FCS_CKM.2.1 FCS_CKM.4

FCS_CKM.4.1

Sub Class

Sub Class
Sub Class

Sub Class

Sub Class

Sub ClassSub Class

Sub Class

Sub Class

Sub Class

Sub Class

Sub Class

Feature: Cryptographic Key
Destruction

Feature: Cryptographic Key
Generation

Feature: Cryptographic Key
Generation

Feature: Cryptographic Key
Distribution

Figure 7: Meta-level Visualization of Conceptual Model

The PDA authentication module strives to achieve secure
authentication in a reliable manner without affecting
performance. Hence, we identify the three objectives to be
satisfied by the system as: “Secure Authentication”,
“Reliability” and “Performance”. The three objectives are
modeled as instances of class Objective and they are connected
by the Satisfies relationship. i.e. “Reliability” Objective
Satisfies (helps in satisfying) “Secure Authentication”
Objective.
For simplicity, consider a single security requirement:
“Achieve password based authentication” for the
authentication module of the PDA system. This specification
(or requirement) can be modeled at the instance level as an
instance of class Security Requirement. This particular
specification has been identified by browsing and identifying
the various CC security requirements needed to satisfy it. The
browsing and identification can be achieved by utilizing the
Security Requirement structure in the object model of GenOM.
In order to satisfy this requirement we need two classes Actor
and System and the relationship between these two classes is
modeled as a feature Authenticates and is read as System
Authenticates Actors. At the instance level, based on the above
schema/meta-level, we create an instance of class Actor as
“Administrator” and instance of class System as “PDA
System”.
We connect the “PDA system” and “Administrator” using an
instance of the feature Authenticates in order to satisfy the
“Achieve password based authentication” requirement. In
order to make this fact more explicit we connect the “Achieve
password based authentication” instance with “PDA System”
and “Administrator” instances, using instances of the Satisfied

5

By feature defined at the schema level. Based on the type of
authentication performed by the PDA system on the
administrator, reliability and performance of the system are
affected. An instance of feature Authenticates between the “PDA
system” and “Administrator” instances will affect the reliability
and performance of the system, therefore we further connect it
with ”Reliability” and “Performance” instances using an instance
of the feature Affects.
GenOM is also associated with an inference engine [2] which can
be used for two purposes. First, to identify the emergent behavior
the system resulting due to changes in specifications and second,
to identify the missing or hidden requirements or specifications
that would be necessary to achieve the goals/objectives of the
system under consideration.

Administrator
(Actor)

PDA
(System)

Authenticates

Achieve Password based Authentication
(Security Requirement)

Secure Authentication
(Objective)

Reliability
(Objective)

Satisfies Satisfies

Affects
Affects

Performance
(Objective)

Satisfied BySatisfied By

Features

Authenticates

From: System

To: Actor

Satisfies

From: Objective

To: Objective

Satisfied By

From: Security Requirement

To: Entity

Affects

From: Authenticates

To: Objective

Objective

THING

Security
Requirement

Entities

System Actor

Schema Level or
Meta Data

Instance Level

Figure 8: Ontology for a PDA System in GenOM

In the context of the example, if the “Achieve password based
authentication” requirement is changed to “Achieve biometric
Authentication”, then the system needs to be re-evaluated to
check if the initial objectives set forth by the system are still
satisfied. The change from password based authentication to
biometric authentication will cause a change in the authentication
type between the “PDA system” and “Administrator” which will
in turn affect the “Reliability” (improves reliability) and
“Performance” (decreases performance) Objectives which will in
turn affect the “Secure Authentication” objective of the system.
The inference engine can assist the analysis based on such cause-
effect reasoning and provide better support for the evaluation
process. The inference engine can be also used for analyzing how
a particular objective of a system can be achieved using the
existing specifications, other objectives and instances modeled in
the domain. For example, the inference engine can identify how a
set of specifications (instances of Security Requirement) and
specific actors (instances of Actor) can be used to achieve a
certain objective. Such information would help the evaluator to
verify, if all the necessary pieces of information have been
considered to achieve a certain objective of the system.
The links between different instances in the domain act as
traceability links between requirements, domain entities and
objectives. Following this approach there exist traceability links
between the high level objectives of the system to low level
requirements or specifications, which aids the consumers,
evaluators and developers to better understand, analyze and
reason about the requirements. Also, the process of validating the
system can be performed in an effective and efficient manner.

8. CONCLUSION AND FUTURE WORK
To create a product that meets the information assurance goals
of CC, it is necessary to adopt a structured and comprehensive
methodology that systematically utilizes the requirements set
forth by CC to drive the activities undertaken in each stage of
RE. In this paper we present, object-oriented ontology
modeling as an effective modeling technique to represent CC
requirements, which can help consumers, developers and
evaluators to better understand these requirements in the
application domain and effectively enforce the current
practices in the C&A process.
Although the process of building a PDO is difficult and time
consuming, once we have such a ontology in place, it is
reusable across multiple systems. Such a representation can be
useful, especially in providing an effective and efficient way to
incorporate changes in policies, regulations, functional and
non-functional requirements, and new legislations into the
assessment process of an IT product. Our future work involves
investigating the use of modeling techniques to systematically
drive the RE process in a planned and predictable manner by
engineering a framework that utilizes the models created so
that we can identify and materialize functional requirements as
well as assurance requirements to achieve high QoIA.

9. REFERENCES
[1] Breitman, K.K. and Leite, J., Ontology as a Requirements

Engineering Product, In Proceedings of the IEEE Int'l RE
Conf., Mini-tutorial on Ontology Development, 2003

[2] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A., Jena: Implementing the Semantic Web
Recommendations, Kevin Wilkinson Digital Media
Systems Laboratory HP Laboratories Bristol, 2003

[3] CC ToolBoxTM. Developed by SPARTA, Inc. for the
National Information Assurance Partnership (NIAP)
http://cctoolbox.sparta.com

[4] Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and general model, ,
Part 2: Security functional requirements, Part 3: Security
assurance requirements, August 1999 Version 2.1

[5] Hearn, J., Does the common criteria paradigm have a
future?, National Cryptologic Museum, Security &
Privacy Magazine, IEEE, Jan.-Feb. 2004

[6] Jackson, M. The Meaning of Requirements. Annals of
Software Engineering, Vol. 3, pp: 5-21, Baltzer Science
Publishers. 1997

[7] Lee, S.W. and Yavagal, D., GenOM User’s Guide,
Technical Report, Department of Software and
Information Systems, University of North Carolina at
Charlotte, 2004

[8] Swartout, W. and Tate, A. Ontologies. In Intelligent
Systems, IEEE, 14 (1), pp. 18-19, Jan/Feb 1999

[9] Vetterling, Monika., Wimmel, G., Wisspeintner, A.,
Secure systems development based on the common
criteria: the PalME project, In ACM SIGSOFT symposium
on Foundations of software engineering, Charleston, SC,
USA, 2002

6

	INTRODUCTION
	COMMON CRITERIA OVERVIEW
	LIMITATIONS OF THE EXISTING METHODOLOGY
	OBJECT-ORIENTED ONTOLOGY MODELING
	THE GenOM TOOLKIT
	REQUIREMENTS REPRESENTATION AND ITS USES
	EXAMPLE OF A PDA SYSTEM
	CONCLUSION AND FUTURE WORK
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

