
Detecting and Resolving
Firewall Policy Anomalies

Hongxin Hu, Student Member, IEEE,

Gail-Joon Ahn, Senior Member, IEEE, and Ketan Kulkarni

Abstract—The advent of emerging computing technologies such as service-oriented architecture and cloud computing has enabled

us to perform business services more efficiently and effectively. However, we still suffer from unintended security leakages by

unauthorized actions in business services. Firewalls are the most widely deployed security mechanism to ensure the security of private

networks in most businesses and institutions. The effectiveness of security protection provided by a firewall mainly depends on the

quality of policy configured in the firewall. Unfortunately, designing and managing firewall policies are often error prone due to the

complex nature of firewall configurations as well as the lack of systematic analysis mechanisms and tools. In this paper, we represent

an innovative policy anomaly management framework for firewalls, adopting a rule-based segmentation technique to identify policy

anomalies and derive effective anomaly resolutions. In particular, we articulate a grid-based representation technique, providing an

intuitive cognitive sense about policy anomaly. We also discuss a proof-of-concept implementation of a visualization-based firewall

policy analysis tool called Firewall Anomaly Management Environment (FAME). In addition, we demonstrate how efficiently our

approach can discover and resolve anomalies in firewall policies through rigorous experiments.

Index Terms—Firewall, policy anomaly management, access control, visualization tool.

Ç

1 INTRODUCTION

AS one of essential elements in network and information
system security, firewalls have been widely deployed

in defending suspicious traffic and unauthorized access to
Internet-based enterprises. Sitting on the border between a
private network and the public Internet, a firewall examines
all incoming and outgoing packets based on security rules.
To implement a security policy in a firewall, system
administrators define a set of filtering rules that are derived
from the organizational network security requirements.

Firewall policy management is a challenging task due to
the complexity and interdependency of policy rules. This is
further exacerbated by the continuous evolution of network
and system environments. For instance, Al-Shaer and
Hamed [1] reported that their firewall policies contain
anomalies even though several administrators including
nine experts maintained those policies. In addition, Wool [2]
recently inspected firewall policies collected from different
organizations and indicated that all examined firewall
policies have security flaws.

The process of configuring a firewall is tedious and error
prone. Therefore, effective mechanisms and tools for policy
management are crucial to the success of firewalls. Recently,
policy anomaly detection has received a great deal of

attention [1], [3], [4], [5]. Corresponding policy analysis tools,
such as Firewall Policy Advisor [1] and FIREMAN [5], with
the goal of detecting policy anomalies have been introduced.
Firewall Policy Advisor only has the capability of detecting
pairwise anomalies in firewall rules. FIREMAN can detect
anomalies among multiple rules by analyzing the relation-
ships between one rule and the collections of packet spaces
derived from all preceding rules. However, FIREMAN also
has limitations in detecting anomalies [3]. For each firewall
rule, FIREMAN only examines all preceding rules but
ignores all subsequent rules when performing anomaly
analysis. In addition, each analysis result from FIREMAN
can only show that there is a misconfiguration between one
rule and its preceding rules, but cannot accurately indicate all
rules involved in an anomaly.

On the other hand, due to the complex nature of policy
anomalies, system administrators are often faced with a more
challenging problem in resolving anomalies, in particular,
resolving policy conflicts. An intuitive means for a system
administrator to resolve policy conflicts is to remove all
conflicts by modifying the conflicting rules. However,
changing the conflicting rules is significantly difficult, even
impossible, in practice from many aspects. First, the number
of conflicts in a firewall is potentially large, since a firewall
policy may consist of thousands of rules, which are often
logically entangled with each other. Second, policy conflicts
are often very complicated. One rule may conflict with
multiple other rules, and one conflict may be associated with
several rules. Besides, firewall policies deployed on a
network are often maintained by more than one adminis-
trator, and an enterprise firewall may contain legacy rules
that are designed by different administrators. Thus, without a
priori knowledge on the administrators’ intentions, changing
rules will affect the rules’ semantics and may not resolve

318 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

. H. Hu and G.-J. Ahn are with the Security Engineering for Future
Computing (SEFCOM) Laboratory, and the Ira A. Fulton School of
Engineering, Arizona State University, PO Box 878809, Tempe, AZ
85287. E-mail: {hxhu, gahn}@asu.edu.

. K. Kulkarni is with the Emerson Network Power and the Ira A. Fulton
School of Engineering, Arizona State University, PO Box 878809 Tempe,
AZ 85287. E-mail: kakulkar@asu.edu.

Manuscript received 8 Apr. 2011; revised 5 Jan. 2012; accepted 10 Jan. 2012;
published online 30 Jan. 2012.
Recommended for acceptance by M. Singhal.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2011-04-0097.
Digital Object Identifier no. 10.1109/TDSC.2012.20.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

conflicts correctly. Furthermore, in some cases, a system
administrator may intentionally introduce certain overlaps in
firewall rules knowing that only the first rule is important. In
reality, this is a commonly used technique to exclude specific
parts from a certain action, and the proper use of this
technique could result in a fewer number of compact rules [5].
In this case, conflicts are not an error, but intended, which
would not be necessary to be changed.

Since the policy conflicts in firewalls always exist and are
hard to be eliminated, a practical resolution method is to
identify which rule involved in a conflict situation should
take precedence when multiple conflicting rules (with
different actions) can filter a particular network packet
simultaneously. To resolve policy conflicts, a firewall
typically implements a first-match resolution mechanism
based on the order of rules. In this way, each packet processed
by the firewall is mapped to the decision of the first rule that
the packet matches. However, applying the first-match
strategy to cope with policy conflicts has limitations. When
a conflict occurs in a firewall, the existing first matching rule
may not be a desired rule that should take precedence with
respect to conflict resolution. In particular, the existing first
matching rule may perform opposite action to the rule which
should be considered to take precedence. This situation can
cause severe network breaches such as permitting harmful
packets to sneak into a private network, or dropping legal
traffic which in turn could encumber the availability and
utility of network services. Obviously, it is necessary to seek a
way to bridge a gap between conflict detection and conflict
resolution with the first-match mechanism in firewalls.

In this paper, we represent a novel anomaly management
framework for firewalls based on a rule-based segmentation
technique to facilitate not only more accurate anomaly
detection but also effective anomaly resolution. Based on this
technique, a network packet space defined by a firewall policy
can be divided into a set of disjoint packet space segments.
Each segment associated with a unique set of firewall rules
accurately indicates an overlap relation (either conflicting or
redundant) among those rules. We also introduce a flexible
conflict resolution method to enable a fine-grained conflict
resolution with the help of several effective resolution
strategies with respect to the risk assessment of protected
networks and the intention of policy definition. Besides, a
more effective redundancy elimination mechanism is pro-
vided in our framework, and our experimental results show
that our redundancy discovery mechanism can achieve
approximately 70 percent improvement compared to tradi-
tional redundancy detection approaches [1], [6]. Moreover,
the outputs of prior policy analysis tools [1], [5] are mainly a
list of possible anomalies, which does not give system
administrators a clear view of the origination of policy
anomalies. Since information visualization technique [7]
enables users to explore, analyze, reason, and explain
abstract information by taking advantage of their visual
cognition, our policy analysis tool adopts an information
visualization technique to facilitate policy analysis. A grid-
based visualization approach is introduced to represent
policy anomaly diagnosis information in an intuitive way,
enabling an efficient anomaly management.1 In addition, we

implement a visualization-based firewall anomaly manage-
ment environment (FAME) based on our approach. To
evaluate the practicality of our tool, our extensive experi-
ments deal with a set of real-life firewall policies.

This paper is organized as follows: Section 2 overviews
the anomalies in firewall policies. Section 3 presents an
anomaly representation technique based on packet space. In
Section 4, we articulate our policy anomaly management
framework. In Section 5, we address the implementation
details and evaluations of FAME. Section 6 describes
several important issues followed by the related work in
Section 7. Section 8 concludes this paper.

2 OVERVIEW OF ANOMALIES IN FIREWALL POLICIES

A firewall policy consists of a sequence of rules that define the
actions performed on packets that satisfy certain conditions.
The rules are specified in the form of hcondition; actioni. A
condition in a rule is composed of a set of fields to identify a
certain type of packets matched by this rule. Table 1 shows an
example of a firewall policy, which includes five firewall
rules r1, r2, r3, r4, and r5. Note that the symbol “�” utilized in
firewall rules denotes a domain range. For instance, a single
“�” appearing in the IP address field represents an IP address
range from 0.0.0.0 to 255.255.255.255.

Several related work has categorized different types of
firewall policy anomalies [1], [5]. Based on following
classification, we articulate the typical firewall policy
anomalies:

1. Shadowing. A rule can be shadowed by one or a set of
preceding rules that match all the packets which also
match the shadowed rule, while they perform a
different action. In this case, all the packets that one
rule intends to deny (accept) can be accepted
(denied) by previous rule(s); thus, the shadowed
rule will never be taken effect. In Table 1, r4 is
shadowed by r3 because r3 allows every TCP packet
coming from any port of 10.1.1.� to the port 25 of
192.168.1.�, which is supposed to be denied by r4.

2. Generalization. A rule is a generalization of one or a
set of previous rules if a subset of the packets
matched by this rule is also matched by the
preceding rule(s) but taking a different action. For
example, r5 is a generalization of r4 in Table 1. These
two rules indicate that all the packets from 10.1.1.�

are allowed, except TCP packets from 10.1.1.� to the
port 25 of 192.168.1.�. Note that, as we discussed
earlier, generalization might not be an error.

3. Correlation. One rule is correlated with other rules, if a
rule intersects with others but defines a different

HU ET AL.: DETECTING AND RESOLVING FIREWALL POLICY ANOMALIES 319

TABLE 1
An Example Firewall Policy

1. Our proposed methodology can be also extended to deal with the
anomalies in other kinds of policies, such as XACML-based policies [8].

action. In this case, the packets matched by the
intersection of those rules may be permitted by one
rule, but denied by others. In Table 1, r2 correlates
with r5, and all UDP packets coming from any port of
10.1.1.� to the port 53 of 172.32.1.� match the
intersection of these rules. Since r2 is a preceding
rule of r5, every packet within the intersection of these
rules is denied by r2. However, if their positions are
swapped, the same packets will be allowed.

4. Redundancy. A rule is redundant if there is another
same or more general rule available that has the same
effect. For example, r1 is redundant with respect to r2

in Table 1, since all UDP packets coming from any
port of 10.1.2.� to the port 53 of 172.32.1.� matched
with r1 can match r2 as well with the same action.

Anomaly detection algorithms and corresponding tools
were introduced by [1], [5] as well. However, existing
conflict classification and detection approaches only treat a
policy conflict as an inconsistent relation between one rule
and other rules. Given a more general definition on policy
conflict as shown in Definition 1, we believe that identifying
policy conflicts should always consider a firewall policy as a
whole piece, and precise indication of the conflicting
sections caused by a set of overlapping rules is critical for
effectively resolving the conflicts.

Definition 1 (Policy Conflict). A policy conflict pc in a firewall
F is associated with a unique set of conflicting firewall rules
cr ¼ fr1; . . . ; rng, which can derive a common network packet
space. All packets within this space can match exactly the same
set of firewall rules, where at least two rules have different
actions: Allow and Deny.

Similarly, we give a general definition for rule redun-
dancy in firewall policies as follows, which serves as a
foundation of our redundancy elimination approach.

Definition 2 (Rule Redundancy). A rule r is redundant in a
firewallF iff the network packet space derived from the resulting
policy F 0 after removing r is equivalent to the network space
defined by F . That is, F and F 0 satisfy following equations:
SAF ¼ SAF 0 andSDF ¼ SDF 0 , whereSA andSD denote allowed and
denied network packet spaces, respectively.

3 ANOMALY REPRESENTATION BASED ON PACKET

SPACE

3.1 Packet Space Segmentation and Classification

As we discussed in Section 2, existing anomaly detection
methods could not accurately point out the anomaly
portions caused by a set of overlapping rules. In order to
precisely identify policy anomalies and enable a more
effective anomaly resolution, we introduce a rule-based
segmentation technique, which adopts a binary decision
diagram (BDD)-based data structure to represent rules
and perform various set operations, to convert a list of rules
into a set of disjoint network packet spaces. This technique
has been recently introduced to deal with several research
problems such as network traffic measurement [9], firewall
testing [10] and optimization [11]. Inspired by those
successful applications, we leverage this technique for the

purpose of firewall policy anomaly analysis. Algorithm 1
shows the pseudocode of generating packet space segments
for a set of firewall rules R.2 This algorithm works by
adding a network packet space s derived from a rule r to a
packet space set S. A pair of packet spaces must satisfy one
of the following relations: subset (line 5), superset (line 10),
partial match (line 13), or disjoint (line 17). Therefore, one can
utilize set operations to separate the overlapped spaces into
disjoint spaces.

A set of segments S : fs1; s2; . . . ; sng from firewall rules
has the following two properties:

1. All segments are pairwise disjoint: si \ sj ¼ ;;
where 1 � i 6¼ j � n; and

2. Any two different network packets p and p0 within
the same segment (si) are matched by the exact same
set of rules: GetRuleðpÞ ¼ GetRuleðp0Þ; 8p 2 si; p0 2
si; p 6¼ p0, where GetRuleðÞ is a function to return all
matched rules of a network packet.

To facilitate the correct interpretation of analysis results,
a concise and intuitive representation method is necessary.
For the purposes of brevity and understandability, we
employ a two-dimensional geometric representation for
each packet space derived from firewall rules. Note that a
firewall rule typically utilizes five fields to define the rule
condition; thus, a complete representation of packet space
should be multidimensional. Fig. 1a gives the two-dimen-
sional geometric representation of packet spaces derived
from the example policy shown in Table 1. We utilize
colored rectangles to denote two kinds of packet spaces:
allowed space (white color) and denied space (gray color),
respectively. In this example, there are two allowed spaces
representing rules r3 and r5, and three denied spaces
depicting rules r1, r2, and r4.

Two spaces overlap when the packets matching two
corresponding rules intersect. For example, r5 overlaps with
r2, r3, and r4, respectively. An overlapping relation may
involve multiple rules. In order to clearly represent all
identical packet spaces derived from a set of overlapping

320 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

2. Similar partitioning functionalities were addressed in [9], [10] as well.

rules, we adopt the rule-based segmentation technique
addressed in Algorithm 1 to divide an entire packet space
into a set of pairwise disjoint segments. We classify the
policy segments as follows: nonoverlapping segment and
overlapping segment, which is further divided into conflicting
overlapping segment and nonconflicting overlapping segment.
Each nonoverlapping segment associates with one unique
rule and each overlapping segment is related to a set of rules,
which may conflict with each other (conflicting overlapping
segment) or have the same action (nonconflicting overlapping
segment). Fig. 1b demonstrates the segments of packet
spaces derived from the example policy. Since the size of
segment representation does not give any specific benefits
in resolving policy anomalies, we further present a uniform
representation of space segments in Fig. 1c. We can notice
that seven unique disjoint segments are generated. Three
policy segments s2, s4, and s7 are nonoverlapping segments.
Other policy segments are overlapping segments, including
two conflicting overlapping segments s3 and s5, and two
nonconflicting overlapping segments s1 and s6.

3.2 Grid Representation of Policy Anomaly

To enable an effective anomaly resolution, complete and
accurate anomaly diagnosis information should be repre-
sented in an intuitive way. When a set of rules interacts, one
overlapping relation may be associated with several rules.
Meanwhile, one rule may overlap with multiple other rules
and can be involved in a couple of overlapping relations
(overlapping segments). Different kinds of segments and
associated rules can be viewed in the uniform representation
of anomalies (Fig. 1c). However, it is still difficult for an
administrator to figure out how many segments one rule is
involved in. To address the need of a more precise anomaly
representation, we additionally introduce a grid representa-
tion that is a matrix-based visualization of policy anomalies,
in which space segments are displayed along the horizontal

axis of the matrix, rules are shown along the vertical axis,
and the intersection of a segment and a rule is a grid that
displays a rule’s subspace covered by the segment.

Fig. 2 shows a grid representation of policy anomalies for
our example policy. We can easily determine which rules
are covered by a segment, and which segments are
associated with a rule. For example, as shown in Fig. 2,
we can notice that a conflicting segment (CS) s5, which
points out a conflict, is related to a rule set consisting of
three conflicting rules r3, r4, and r5 (highlighted with a
horizontal red rectangle), and a rule r3 is involved in three
segments s5, s6, and s7 (highlighted with a vertical red
rectangle). Our grid representation provides a better under-
standing of policy anomalies to system administrators with
an overall view of related segments and rules.

4 ANOMALY MANAGEMENT FRAMEWORK

Our policy anomaly management framework is composed of
two core functionalities: conflict detection and resolution, and
redundancy discovery and removal, as depicted in Fig. 3. Both
functionalities are based on the rule-based segmentation
technique. For conflict detection and resolution, conflicting
segments are identified in the first step. Each conflicting
segment associates with a policy conflict and a set of
conflicting rules. Also, the correlation relationships among
conflicting segments are identified and conflict correlation
groups (CG) are derived. Policy conflicts belonging to
different conflict correlation groups can be resolved sepa-
rately; thus, the searching space for resolving conflicts is
reduced by the correlation process. The second step
generates an action constraint for each conflicting segment
by examining the characteristics of each conflicting segment.
A strategy-based method is introduced for generating action

HU ET AL.: DETECTING AND RESOLVING FIREWALL POLICY ANOMALIES 321

Fig. 2. Grid representation of policy anomaly. Fig. 3. Policy anomaly management framework.

Fig. 1. Packet space representation derived from the example policy.

constraints. The third step utilizes a reordering algorithm,
which is a combination of a permutation algorithm and a
greedy algorithm, to discover a near-optimal conflict resolu-
tion solution for policy conflicts. Regarding redundancy
discovery and removal, segment correlation groups are first
identified. Then, the process of property assignment is
performed to each rule’s subspaces. Consequently, redun-
dant rules are identified and eliminated.

4.1 Correlation of Packet Space Segment

Technically, one rule may get involved in multiple policy
anomalies. In this case, resolving one anomaly in an isolated
manner may cause the unexpected impact on other
anomalies. Similarly, we cannot resolve a conflict individu-
ally by only reordering conflicting rules associated with one
conflict without considering possible impacts on other
conflicts. On the other hand, it is also inefficient to deal
with all conflicts together by reordering all conflicting rules
simultaneously. Therefore, it is necessary to identify the
dependency relationships among packet space segments for
efficiently resolving policy anomalies.

Fig. 4 shows an example of segment correlation.3 Suppose
we add three new rules r6, r7, and r8 in the example policy
shown in Table 1. Several rules in this firewall policy are
involved in multiple anomalies. For example, r2 is associated
with three segments s1, s2, and s3. Also, we can identify r3, r5,
r6, and r7 are also associated with multiple segments. Assume
we need to resolve the conflict related to a conflicting segment
s3 by reordering associated conflicting rules, r2 and r5. The
position change of r2 and r5 would also affect other segments,
s1, s2, s4, s5, and s6. Thus, a dependency relationship among
those segments can be derived. We cluster such segments
with a dependency relationship as a group called correlation
group. Consequently, two correlation groups, group1 and
group2, can be identified in our example as shown in Fig. 4:
group1 contains seven segments and a rule set with five
elements (r1, r2, r3, r4, and r5); and group2 includes three
segments and three associated rules, r6, r7, and r8.

The major benefit of generating correlation groups for
the anomaly analysis is that anomalies can be examined
within each group independently, because all correlation
groups are independent of each other. Especially, the
searching space for reordering conflicting rules in conflict
resolution can be significantly lessened and the efficiency of
resolving conflicts can be greatly improved.

4.2 Conflict Resolution

Each conflicting segment indicates a policy conflict as well
as a set of conflicting rules involved in the conflict. Once
conflicts are identified, a possible way for a system
administrator to resolve conflicts is to manually change
the conflicting rules. However, as we addressed in Section 1,
resolving all conflicts manually is a tedious task and even
impractical due to the complicated nature of policy
conflicts. Thus, a practical and effective method to resolve
a policy conflict is to determine which rule should take
precedence when a network packet is matched by a set of
rules involved in the conflict. In order to utilize the existing
first-match conflict resolution mechanism implemented in
common firewalls, the rule expected to take precedence
needs to be moved to the first-match rule.

Our conflict resolution mechanism introduces that an
action constraint is assigned to each conflicting segment. An
action constraint for a conflicting segment defines a desired
action (either Allow or Deny) that the firewall policy
should take when any packet within the conflicting segment
comes to the firewall. Then, to resolve a conflict, we only
assure that the action taken for each packet within the
conflicting segment can satisfy the corresponding action
constraint. A key feature of this solution is that we do not
need to move a rule expected to take precedence to the first-
match rule at all times. Any rule associated with the conflict
on the same action (as a rule with the precedence) can be
moved to the first-match rule, guaranteeing the same effect
with respect to the conflict resolution. Thus, it is doable to
obtain an optimal solution for conflict resolution.

4.2.1 Action Constraint Generation

To generate action constraints for conflicting segments, we
propose a strategy-based conflict resolution method, which
generates action constraints with the help of effective
resolution strategies based on the minimal interaction with
system administrators. Fig. 5 shows the main processes of
this method, which incorporates both automated and manual
strategy selections.

Once conflicts in a firewall policy are discovered and
conflict correlation groups are identified, the risk assessment
for conflicts is performed. The risk levels (RL) of conflicts are

322 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 4. Example of segment correlation.

Fig. 5. Strategy-based conflict resolution.

3. Note that for conflict resolution we only need to examine the
correlation relations among conflicting segments.

in turn utilized for both automated and manual strategy
selections. A basic idea of automated strategy selection is that
a risk level of a conflicting segment is used to directly
determine the expected action taken for the network packets
in the conflicting segment. If the risk level is very high, the
expected action should deny packets considering the protec-
tion of network perimeters. On the contrary, if the risk level is
quite low, the expected action should allow packets to pass
through the firewall so that the availability and usage of
network services cannot be affected. Thus, conflict resolution
strategies (RS) can be generated automatically for partial
conflict segments by comparing the risk levels with two
thresholds, upper threshold (UT) and lower threshold (LT),
which can be set by system administrators in advance based
on the different situations of protected networks. If a risk
level of a conflicting segment is between the upper threshold
and the lower threshold, system administrators need to
examine the characteristics of each conflict, and manually
select appropriate strategies for resolving the conflict,
considering both network situations (e.g., risk levels of
conflicts) and contexts associated with conflicting rules
(e.g., priorities, creation time, authors, and so on). Thus, a
fine-grained conflict resolution can be carried out with
human cognition via the interaction facility with system
administrators. Since some strategies may be nondetermi-
nistic and could not generate a concrete action constraint
when applying to a conflict, system administrators need to
adjust the strategy assignments accordingly. As long as all
conflicts within a conflict correlation group are associated
with desired action constraints, these conflicts will be
ultimately resolved by reordering conflicting rules to satisfy
corresponding action constraints.

Risk (security) levels are determined based on the
vulnerability assessment of the protected network. We have
recently seen a number of attempts for qualitatively
measuring risks in a network [12], [13], [14]. In our work,
we adopt the Common Vulnerability Scoring System (CVSS)
[15] as an underlying security metrics for risk evaluation.
Two major factors, exploitability of vulnerability (reflecting the
likelihood of exploitation) and severity of vulnerability
(representing the potential damage of exploitation), are
utilized to evaluate the risk level of a network system. Beside
those two factors, another important factor in determining
the criticality of an identified security problem is asset
importance value. Normally, system administrators place a
higher priority on defending critical servers than noncritical
PCs. Similarly, some machines are more valuable than
others. We use asset importance value to represent a service’s
inherent value to network attackers or system administra-
tors. Since the CVSS base score can cover both exploitability of
vulnerability and severity of vulnerability factors, we incorpo-
rate the CVSS base score and asset importance value to compute
the risk value for each vulnerability as follows:

Risk V alue ¼ ðCV SS Base ScoreÞ � ðImportance V alueÞ:
ð1Þ

To calculate the risk level of each conflicting segment, we
accumulate all risk values of the vulnerabilities covered by
a conflicting segment. In practice, system administrators
may mainly concern about the security risk (SR) of each
vulnerability in their network. In this case, an average risk

value needs to be calculated as the risk level of a conflicting
segment. In order to accommodate both requirements for
risk evaluation of a conflicting segment, we introduce a
generic equation for the risk level calculation as follows:

RLðcsÞ ¼
P

v2V ðcsÞðCV SSðvÞ � IV ðsÞÞ
�� jV ðcsÞj ; ð2Þ

where V ðcsÞ is a function to return all vulnerabilities that are
contained in a conflicting segment cs; CV SSðvÞ is a function
to return the CVSS base score of vulnerability v; and IV ðsÞ is a
function to return the importance value (with the range from
0.0 to 1.0) of service s. Also, we incorporate a coefficient factor
� (1

jV ðcsÞj � � � 1) that allows system administrators to
express their preferences in choosing average or overall risk
value to measure the risk of each conflicting segment. The
value of � can be decreased, in which case an administrator
cares more about the overall risk value. Otherwise, she/he can
increase the value of � until it reaches an average risk value.

Some general conflict resolution strategies for access
control have been introduced [16], [17], [18]. We classify
conflict resolution strategies for firewall policies into two
categories: network situation-aware strategy and policy-
oriented strategy. Note that other user-defined strategies [19]
can be implied in our conflict resolution mechanism as well.

Network situation-aware strategy. A system adminis-
trator adopts this strategy to resolve policy conflicts based
on the results of risk assessment of the network covered by
corresponding conflicting segments

. Deny-overrides. This strategy indicates that “deny”
rules take precedence over “allow” rules. In general,
a system administrator may directly take this
strategy to harden his network if the risk level of a
conflict is very high.

. Allow-overrides. This strategy states that “allow”rules
take precedence over “deny” rules. A system
administrator may apply this strategy to resolve a
conflict, which has a lower risk level.

Policy-oriented strategy. This strategy considers the
factors related to the policy definition, such as when was
the rule defined? what was the rule defined for? and who
defined the rule?

. Recency-overrides. This strategy indicates that rules
take precedence over rules specified earlier. As the
security requirements may change over a period of
time, an administrator may define new rules along
with his evolving security requirements which may
be in conflict with previous security requirements.
Obviously, in this case, newer rules should take
precedence over older rules.

. Specificity-overrides. This strategy states that a more
specific rule overrides more general rules. In a
firewall policy, shadowing and generalization con-
flicts can be identified by conflict detection tools. In
our solution, we treat shadowing and generalization
conflicts as the same case, since we resolve them
through rule reordering.

. High-majority-overrides. This strategy allows (denies,
respectively) a packet if the number of rules taking

HU ET AL.: DETECTING AND RESOLVING FIREWALL POLICY ANOMALIES 323

“allow” (“deny,” respectively) action is greater than
the number of rules taking “allow” (“deny,” respec-
tively) action.

. First-match-overrides. This strategy states that the first
matched rule takes precedence over others. This
strategy can be directly converted to the existing
firewall implementation.

. High-authority-overrides. This strategy states that a
rule defined by an administrator with a higher
authority level takes precedence.

Since some strategies are nondeterministic and adopting
only one strategy may not guarantee solving the conflict, it
is desirable to combine multiple strategies together to fulfil
the requirements of conflict resolution posed by a policy.
Our previous work in [20], [21] proposed a strategy chain to
address this issue and we incorporate such a strategy chain
in our firewall conflict resolution mechanism. Once each
conflicting segment has been assigned to appropriate
conflict resolution strategies, action constraints can be
generated based on the assigned strategies. Table 2
summarizes the constraint generation from those strategies.

4.2.2 Rule Reordering

The most ideal solution for conflict resolution is that all
action constraints for conflicting segments can be satisfied
by reordering conflicting rules. In other words, if we can
find out conflicting rules in order that satisfies all action
constraints, this order must be the optimal solution for the
conflict resolution. Unfortunately, in practice action con-
straints for conflicting segments can only be satisfied
partially in some cases.

Fig. 6 illustrates a scenario representing that action
constraints cannot be fully satisfied. In this scenario, four
rules intersect with each other in different conflicting
segments. The existing order of rules cannot satisfy the
fourth action constraint. In order to make the fourth action
constraint satisfied, r4 needs to be moved in front of r1.
However, this situation causes the violation against the

third action constraint. We can easily observe that all action
constraints cannot be satisfied simultaneously by any
permutation of conflicting rules in this scenario.

A naive way to find an optimal solution is to exhaus-
tively search all permutations of correlated conflicting
rules. We then compute a resolving score for each
permutation by counting how many action constraints can
be satisfied, and select the permutation with the maximum
resolving score as the best solution for a conflict resolution.
However, a key limitation of using the permutation
algorithm is its computational complexity which is Oðn!Þ.
Even though the search space can be significantly reduced
by applying our correlation scheme, the number of
correlated conflicting rules may still be large, leading to
the permutation algorithm unapplicable. Since the permu-
tation algorithm is time intensive and can be only used to
identify an optimal reordering for a small set of correlated
conflicting rules, an approximation algorithm is more
desirable. Although approximation algorithms can only
find a near-optimal solution, they are more efficient in
finding a solution comparing to the permutation algorithm.
To address this issue, we introduce a greedy algorithm,
which can be employed to resolve the conflicts containing a
larger number of correlated conflicting rules.

A greedy algorithm makes the locally optimal choice at
each stage with the hope of finding the global optimum. For
all conflicting rules in a correlation group, our greedy
conflicting resolution algorithm first calculates a resolving
score for each conflicting rule individually. Then, the rule
with the greatest resolving score is selected to solve the
conflicts: a position range with the best conflict resolution is
identified for the selected rule; and moving the selected rule
to the new position achieves a locally optimal conflicting
resolution. Applying the same processes to the remaining
rules recursively until all rules in the correlation group are
processed, the final order of the correlated conflicting rules
is a solution of the conflict resolution. Note that the
resolving scores for the remainder of rules should be
recalculated, since moving a rule may change the original
conflicting situation of a policy.

In our greedy algorithm, a critical process is to calculate
the resolving score for each conflicting rule within a conflict
correlation group. This process contains four steps as follows:

1. Generating position indicators for each conflicting seg-
ment. A position indicator of a rule for a conflicting
segment indicates a position range in which this rule
can stay so that the action constraint of the conflicting
segment is satisfied. Fig. 7 gives an example, which

324 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

TABLE 2
Constraint Generation from Conflict Resolution Strategy

Fig. 6. Partial satisfaction of action constraints.

Fig. 7. Example of position indicators for a rule.

demonstrates the generation of position indicators for
a rule r8. The rule r8 in this example involves in four
conflicts. In order to fulfill the action constraint of the
first conflicting segment (cs1), r8 should stay after r2.
Thus, a position indicator (pi1) can be generated as:
Positionðr8Þ > 2. To satisfy the action constraint of
the second conflicting segment, r8 needs to be moved
in front of r5. Another position indicator (pi2) is
generated as: Positionðr8Þ � 5.

2. Generating position ranges. Based on the position
indicators generated for a rule, we sort the range
bounds in an ascending order, and then employ a
plane sweeping technique [22] to obtain the disjoint
position ranges (pr) for the rule. Using the same
example in Fig. 7, two position indicators pi1 and pi2
can identify three ranges for the selected rule:
pr1 : ½1; 2�, pr2 : ½2; 5�, and pr3 : ½5; 8�.

3. Calculating a resolving score for each position range.
The resolving score of a position range represents
the impact of resolving conflicts when moving the
selected rule to this position range. Moving the
selected rule to a position range satisfies some
action constraints, but may also violate some other
action constraints. Thus, the resolving score for a
position range with respect to the selected rule can
be calculated by subtracting the number of violated
action constraints from the number of satisfied
action constraints. For example, if we move r8 to the
range pr1. The resolving score in this case is equal to
0, since the action constraint of cs1 will be satisfied
but the action constraint of cs2 will be violated in
such a particular situation.

4. Choosing the maximum range score as the resolving score
of selected rule. Since one rule may have multiple
associated position ranges. In order to achieve the
effectiveness of conflict resolution, it is necessary to
move the rule to a position in the range with the
maximum resolving score. Thus, we use the max-
imum resolving score of a position range to
represent the resolving score of selected rule.

In order to achieve the objective of resolving conflicts
effectively and efficiently, our conflict resolution mechanism
adopts a combination algorithm4 incorporating features
from both permutation and greedy algorithms. A threshold
N for selecting a suitable rule reordering algorithm to
resolve a conflict can be predefined in the combination
algorithm. When the number of conflicting rules is less than
N , the permutation algorithm is utilized for resolving
conflicts. Otherwise, the greedy algorithm is applied to
resolve conflicts.

4.3 Redundancy Elimination

In this step, every rule subspace covered by a policy

segment is assigned with a property. Four property values,

removable (R), strong irremovable (SI), weak irremovable (WI),

and correlated (C), are defined to reflect different character-

istics of each rule subspace. Removable property is used to

indicate that a rule subspace is removable. In other words,

removing such a rule subspace does not make any impact

on the original packet space of an associated policy. Strong
irremovable property means that a rule subspace cannot be
removed because the action of corresponding policy
segment can be decided only by this rule. Weak irremovable
property is assigned to a rule subspace when any subspace
belonging to the same rule has strong irremovable property.
That means a rule subspace becomes irremovable due to the
reason that other portions of this rule cannot be removed.
Correlated property is assigned to multiple rule subspaces
covered by a policy segment, if the action of this policy
segment can be determined by any of these rules. We next
introduce three processes to perform the property assign-
ments to all of rule subspaces within the segments of a
firewall policy, considering different categories of policy
segments discussed in Section 3.1

1. Property assignment for the rule subspace covered by a
nonoverlapping segment. A nonoverlapping segment
contains only one rule subspace. Thus, this rule
subspace is assigned with strong irremovable prop-
erty. Other rule subspaces associated with the same
rule are assigned with weak irremovable property,
except for the rule subspaces that already have
strong irremovable property.

2. Property assignment for rule subspaces covered by a
conflicting segment. The first rule subspace covered
by the conflicting segment is assigned with strong
irremovable property. Other rule subspaces in the
same segment are assigned with removable property.
Meanwhile, other rule subspaces associated with
the first rule are assigned with weak irremovable
property except for the rule subspaces with strong
irremovable property.

3. Property assignment for rule subspaces covered by a
nonconflicting overlapping segment. If any rule sub-
space has been assigned with weak irremovable
property, other rule subspaces without any irremo-
vable property are assigned with removable property.
Otherwise, all subspaces within the segment are
assigned with correlated property.

Fig. 8 illustrates the result of applying our property
assignment approach, which performs three property assign-
ment processes in sequence, to a firewall policy with eight
rules. We can easily identify that three rules, r3, r5, and r8, are
removable rules, where the removable property is assigned to

HU ET AL.: DETECTING AND RESOLVING FIREWALL POLICY ANOMALIES 325

Fig. 8. Example of property assignment.

4. The pseudocode of conflict resolution algorithm is omitted in this
paper due to the space limitation.

all subspaces. In addition, by examining the correlated rules
r2, r4, and r7, which contain some subspaces with correlated
property, r2 and r7 can be identified as redundant rules and
removed from the policy. However, if we leverage traditional
redundancy detection method [1], [6], which is limited to
detect pairwise redundancies, to this example, only two
redundant rules r2 and r7 can be discovered.

5 IMPLEMENTATION AND EVALUATION

Our framework is realized as a proof-of-concept prototype
called Firewall Anomaly Management Environment. Fig. 9
shows a high-level architecture of FAME with two levels.
The upper level is the visualization layer, which visualizes
the results of policy anomaly analysis to system admin-
istrators. Two visualization interfaces, policy conflict viewer
and policy redundancy viewer, are designed to manage
policy conflicts and redundancies, respectively. The lower
level of the architecture provides underlying functional-
ities addressed in our policy anomaly management
framework and relevant resources including rule informa-
tion, strategy repository, network asset information, and
vulnerability information.

5.1 Implementation of Anomaly Management
Framework in FAME

FAME was implemented in Java. Based on our policy
anomaly management framework, it consists of six compo-
nents: segmentation module, correlation module, risk
assessment module, action constraint generation module,
rule reordering module, and property assignment module.
The segmentation module takes firewall policies as an input
and identifies the packet space segments by partitioning the
packet space into disjoint subspaces. FAME utilizes
Ordered Binary Decision Diagrams5 to represent firewall
rules and perform various set operations, such as unions
([), intersections (\), and set differences (n), required by the
segmentation algorithm. A BDD library called JavaBDD
[24], which is based on BuDDy package [25], is employed
by FAME. Once the segmentation of packet space is

identified, FAME further identifies different kinds of
segments and corresponding correlation groups. In risk
assessment module, Nessus [26] is utilized as a vulnerability

scanner to identify the vulnerabilities within a conflicting
segment. Network address space of each conflicting
segment is fed into Nessus to get the vulnerability
information of a given address space. Nessus produces
the vulnerability information in a “nbe” format. The risk
assessment module utilizes tissynbe script [27] to parse the
Nessus results and store the vulnerability information to a
vulnerability database. A risk calculator retrieves vulnerability
information, such as CVSS base score and asset importance
value, to calculate the risk level of each conflicting segment.

5.2 Implementation of Visualization Interfaces in
FAME

FAME provides two policy viewers to visualize the outputs
of policy conflict analysis and policy redundancy analysis.
Each viewer offers two kinds of visualization interfaces: one
interface shows an entire snapshot of all anomalies; another
interface shows a partial snapshot only containing anoma-
lies within one correlation group.

Fig. 10 depicts interfaces of FAME conflict viewer. The
grid representation shows accurately how a set of rules
interacts with each other. FAME conflict viewer has the
ability to show an overview of the entire conflicts as well as
portions of the policy conflicts, that need to be examined in
depth for conflict resolution, based on correlation groups.
As illustrated in Fig. 10a, all conflicting segments and
conflict correlation groups are displayed along the hor-
izontal axis at the top of the interface. All conflicting rules
are shown along the vertical axis at the left of the interface.
Each grid cell represents a rule’s subspace. In our interface,
the icons for conflicting segments indicate four different
states with respect to conflicting resolution. One icon
represents a conflicting segment with the state of strategy
unassigned. Two other icons indicate conflicting segments
with the state of strategy assigned with “Allow” action
constraint and strategy assigned with “Deny” action
constraint, respectively. The fourth icon indicates a con-
flicting segment with the state of conflict unresolved. In
addition, this interface allows an administrator to set the
risk level thresholds for automatically assigning strategies.

Clicking on a group name box of the interface in Fig. 10a,
another window as shown in Fig. 10b is displayed with the
targeted conflicts that an administrator needs to examine
and resolve. In this interface, the number of visible entities
is reduced to only display conflicting segments in one
correlation group and a list of conflicting rules associated
with this group. This significantly eliminates administra-
tors’ workloads in resolving conflicts by highlighting
conflicts within a group. For resolution strategy selection,
the administrator needs to further examine rule information
for selecting suitable strategies for each conflicting segment.
When the administrator clicks the icon of a conflicting
segment, the detailed information related to the conflict is
displayed in a window as shown in Fig. 10c.6

326 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 9. Architecture of FAME.

5. BDD has been demonstrated as an efficient data structure to deal with
a variety of network configuration analysis [5], [23].

6. FAME redundancy viewer was also developed in a similar fashion.
We elide the discussion of redundancy viewer in this paper.

5.3 Evaluation of FAME

For FAME evaluation, we utilized a number of firewall
policies and associated information required by our tool
from different resources. Most of them are from campus
networks and some are from major ISPs. Our experiments
were performed on Intel Core 2 Duo CPU 3.00 GHz with
3.25 GB RAM running on Linux kernel 2.6.16.

5.3.1 Evaluation of Conflicting Segment Generation and

Correlation

Table 3 shows the evaluation results generated by the
segmentation and correlation engine of FAME. The number
of conflicting segments, the number of conflict correlation
groups, the number of large conflict correlation groups (the
rule number is greater than six) and the number of
conflicting rules in the largest correlation group are given
in this table, which also contains the execution time
required by the segmentation module of FAME for
identifying conflicting segments (i.e., detecting conflicts),
as well as the one required by the correlation module of
FAME for identifying correlation groups among conflicting
segments. Note that all measurements were based on the
system time stamps in our experiments.

In Table 3, the number of large conflict correlation
groups and the number of conflicting rules in the largest
correlation group give us the evidences that manual conflict
resolution for a large size of firewall policies is almost
impossible. Also, we can observe that the segmentation and
correlation processes are efficient enough to handle a larger
size of firewall policies, such as policy G and policy H in
the table.

5.3.2 Evaluation of Conflicting Rule Reordering

Algorithm

We have addressed that permutation and greedy algorithms
can be used for reordering conflicting rules, and our conflict
resolution mechanism utilizes a combination algorithm
incorporating the features of both permutation and greedy
algorithms to achieve a more effective and efficient conflict
resolution. In order to evaluate our proposed method, we
measured the effectiveness and efficiency of three algo-
rithms implemented in the rule reordering module of FAME
using two metrics, resolved conflicts (RC) and resolving time.

Table 4 summarizes our evaluation results. It shows that
the permutation algorithm can always achieve an optimal
conflict resolution for all policies except policy H. We were
unable to resolve the conflicts in policy H using the
permutation algorithm, because there exist a larger size of
conflicting rules in some correlation groups. From Table 3,
we can notice that the number of the largest group member
of policy H is eighteen. Also, it shows that the resolving time
required by the permutation algorithm increases exponen-
tially as the number of conflicting segments increases.
Hence, the permutation algorithm is infeasible to the
policies with a large size of conflicting rules, although it
can achieve an optimal solution.

Regarding the greedy algorithm, Table 4 shows that it
can only achieve a near-optimal conflict resolution for all
firewall policies. However, as the size of conflicting rules
increases, the time taken by the greedy algorithm increases
almost linearly as opposed to an exponential increase in
case of using the permutation algorithm.

HU ET AL.: DETECTING AND RESOLVING FIREWALL POLICY ANOMALIES 327

Fig. 10. Interface of FAME conflict viewer.

TABLE 3
Segmentation and Correlation Evaluation

TABLE 4
Rule Reordering Algorithm Evaluation

For the combination algorithm with the default threshold
(N ¼ 6), the results in Table 4 show that the number of
resolved conflicts by the combination algorithm is greater
than the greedy algorithm and almost equal to the optimal
solution achieved by the permutation algorithm. The
computation time is acceptable for all policies as well.
Therefore, it represents higher efficiency and effectiveness
in conflict resolution.

5.3.3 Evaluation of the Effectiveness of Conflict

Resolution Approach

Three metrics, resolution rate, risk reduction, and availability
improvement, were adopted to evaluate the quality of
conflict-resolved policies generated by our conflict resolu-
tion approach. We adopted average risk value (from 0.0 to
10.0) as the risk level of each conflict segment, and fixed
upper and lower thresholds as 8.0 and 2.0, respectively, in
our experiments.

First, we evaluated the conflict resolution rate of our
strategy-based approach, which is reflected by the number
of resolved conflicts (i.e., satisfied action constraints). We
compared the results of applying our strategy-based
approach with the results of directly applying the existing
first-match mechanism for conflict resolution. As shown in
Fig. 11a, we could observe that directly applying the
existing first-match mechanism can only solve an average
63 percent of conflicts. However, when applying our
strategy-based approach, an average 92 percent of conflicts
could be resolved in our experiments. Moreover, for some
small-scale policies, we noticed that FAME was capable of
resolving all policy conflicts.

In general, when conflicts in a policy are resolved, the
risk value of the resolved policy should be reduced and the
availability of protected network should be improved
comparing with the situation prior to conflict resolution.
To evaluate the risk reduction and availability improvement
of our conflict resolution approach, we compared the
results of conflict-resolved policies with the original policies
as well as the best case and worst case with respect to the
conflict resolution. The best case of a conflict resolution is
achieved when all action constraints assigned to the
conflicting segments can be satisfied. The worst case
considering the security risk is that all packets covered by
conflicting segments are allowed to pass through a firewall.
And the worst case considering the availability is that all
packets covered by conflicting segments assigned with
“allow” action constraints are denied.

We evaluated each policy described in Table 3 based on the
risk values caused by corresponding conflicts, considering
four situations: worst case, best case, original policy, and resolved
policy. The security risk value of a policy (p) can be calculated
by aggregating the risk levels of conflicting segments that take
“allow” action to any matched packets as follows:

SRðpÞ ¼
X

csi2CSðpÞ:isAllowedðÞ
RLðcsiÞ: ð3Þ

Note that CS(p) returns all conflicting segments of a
policy (p) and the function isAllowed() is used to identify all
conflicting segments taking “allow” actions. From Fig. 11b,
we noticed that the security risk values of the conflict-
resolved policies are always reduced, compared to the
security risk value of the original policies. Our experiments
showed that FAME could achieve an average 45 percent of
risk reduction. We could also notice that the security risk
values of the conflict-resolved policies are very close to the
security risk values of the best case. It further indicates that
FAME can achieve a higher rate of conflict resolution.

To measure the impact of conflict resolution on network
availability, we were able to calculate an availability loss (AL)
value for each policy. Computing the availability loss value
for a policy only need to consider the conflicting segments of
the policy whose action constraints are “allow,” but carrying
out “deny” action to all matched network packets. Suppose
these conflicting segments can be returned by a function
isForceDenied() and we utilize the equation ð10�RLðcsÞÞ to
derive the availability value of a conflicting segment cs. The
availability loss value of a policy is calculated as follows:

ALðpÞ ¼
X

csi2CSðpÞ:isForceDeniedðÞ
ð10�RLðcsiÞÞ: ð4Þ

Evaluation results depicted in Fig. 11c clearly show that
the availability loss value for each conflict-resolved policy is
lower than that of corresponding original policy, which
supports our hypothesis that resolving policy conflicts can
always improve the availability of protected network.

5.3.4 Evaluation of the Effectiveness of Redundancy

Removal Approach

We also evaluated our redundancy analysis approach based
on those experimental firewall policies. We conducted the
evaluation of effectiveness by comparing our redundancy
analysis approach with traditional redundancy analysis

328 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 11. Evaluation of conflict resolution.

approach [1], [6], which can only identify redundancy
relations between two rules. Fig. 12 depicts the results of
our comparison experiments. From Fig. 12, we observed that
FAME could identify an average of 6.5 percent redundant
rules from the whole rules. However, traditional redundancy
analysis approach could only detect an average 3.8 percent of
total rules as redundant rules. Therefore, the enhancement
for redundancy elimination was clearly observed by our
redundancy analysis approach compared to traditional
redundancy analysis approach in our experiments.

6 DISCUSSIONS

The main limitation of CVSS is that it treats vulnerabilities
individually without considering attack interdependencies
on target networks. Therefore, it may be insufficient to
evaluate overall security of a network configuration run-
ning multiple services by counting the number of vulner-
abilities or adding up the CVSS scores. Attack graphs can be
used to model causal relationships among vulnerabilities
and capture security interactions within an enterprise
network [28], [29]. There have been some attempts at
calculating quantitative metrics by attack graphs [14]. It is a
promising direction to combining CVSS metrics with attack
graphs to achieve a more fine-grained risk assessment for the
protected network when performing conflict resolutions in
firewall policies.

Our experimental results show that around 92 percent of
conflicts can be resolved by using our FAME tool. There
may still exist requirements for a complete conflict resolution,
especially for some firewalls in protecting crucial networks.
We believe our FAME tool can help achieve this challenging
goal. First, FAME provides a grid-based visualization
technique to accurately represent conflict diagnostic in-
formation and the detailed information for unresolved
conflicts, that are very useful, even for manual conflict
resolution. Second, FAME resolves conflicts in each conflict
correlation group independently. That means a system
administrator can focus on analyzing and resolving con-
flicts belonging to a conflict correlation group individually.

We may have another way to adjust the thresholds for
conflict resolution with respect to the network situation
change based on the risk analysis of entire network protected
by the firewall. When the network situation deteriorates,
such as discovering some severe vulnerabilities within the
protected network or services, the system administrator may

adjust the thresholds to a lower value to enable the firewall to
fortify the security of the network perimeter. Otherwise, if the
network situation ameliorates, such as fixing significant bugs
or vulnerabilities of the protected network or services, the
thresholds can be tuned to a higher value to improve the
availability and utility of the network services. Moreover, it is
possible to carry out this process in an automated fashion by
teaming up with other network security measures such as
intrusion detection systems. Thus, such a conflict resolution
mechanism can be also considered as an important step
toward adaptive security management in which networks can
be evaluated and legitimately hardened by continuously
monitoring dynamic changes in the network and service
vulnerabilities.

7 RELATED WORK

There exist a number of algorithms and tools designed to
assist system administrators in managing and analyzing
firewall policies. Lumeta [30] and Fang [31] allow user
queries for the purpose of analysis and management of
firewall policies. Essentially, they introduced lightweight
firewall testing tools but could not provide a comprehensive
examination of policy misconfigurations. Gouda et al. [32]
devised a firewall decision diagram (FDD) to support
consistent, complete, and compact firewall policy generation.
Bellovin et al. [33] introduced a distributed firewall model
that supports centralized policy specification. Several other
approaches presenting policy analysis tools with the goal of
detecting policy anomalies are closely related to our work.
Al-Shaer and Hamed [1] designed a tool called Firewall
Policy Advisor to detect pairwise anomalies in firewall rules.
Yuan et al. [5] presented FIREMAN, a toolkit to check for
misconfigurations in firewall policies through static analysis.
As we discussed previously, our tool, FAME, overcomes the
limitations of those tools by conducting a complete anomaly
detection and providing more accurate anomaly diagnosis
information. In particular, the key distinction of FAME is its
capability to perform an effective conflict resolution, which
has been ruled out in other firwall policy analysis tools.

Hari et al. [34] provided an algorithm for detecting and
resolving conflicts in a general packet filter. However, they
can only detect a specific correlation conflict, and resolve
the conflict by adding a resolving filter, which is not
suitable for resolving conflicts identified recently in firewall
policies. Fu et al. [35] examined conflict detection and
resolution issues in IPSec policies, which is not directly
applicable in firewall policy analysis. Also, there exist other
related work to deal with a set of conflict resolution
strategies for access control including Fundulaki and Marx
[16], Jajodia et al. [17] and Li et al. [19]. These conflict
resolution mechanisms can be accommodated in our fine-
grained conflict resolution framework.

There are several interfaces that have been developed to
assist users in creating and manipulating security policies.
Expandable Grid is a tool for viewing and authoring access
control policies [36]. The representation in Expandable Grids
is a matrix with subjects shown along the rows, resources
shown along the columns, and effective accesses for the
combinations of subjects and resources in the matrix cells.
The SPARCLE Policy Workbench allows policy authors to

HU ET AL.: DETECTING AND RESOLVING FIREWALL POLICY ANOMALIES 329

Fig. 12. Evaluation of redundancy removal.

construct policies in a natural language interface, which are
in turn translated into machine-readable policies [37]. Even
though these tools are useful for authoring access control
policies, they cannot effectively represent the results of
policy analysis for firewalls.

8 CONCLUDING REMARKS

In this paper, we have proposed a novel anomaly manage-
ment framework that facilitates systematic detection and
resolution of firewall policy anomalies. A rule-based
segmentation mechanism and a grid-based representation
technique were introduced to achieve the goal of effective
and efficient anomaly analysis. In addition, we have
described a proof-of-concept implementation of our anom-
aly management environment called FAME and demon-
strated that our proposed anomaly analysis methodology is
practical and helpful for system administrators to enable an
assurable network management.

Our future work includes usability studies to evaluate
functionalities and system requirements of our policy
visualization approach with subject matter experts. Also,
we would like to extend our anomaly analysis approach to
handle distributed firewalls. Moreover, we would explore
how our anomaly management framework and visualiza-
tion approach can be applied to other types of access
control policies.

ACKNOWLEDGMENTS

This work was partially supported by the grants from the
US National Science Foundation (NSF-IIS-0900970 and
NSF-CNS-0831360) and US Department of Energy (DOE)
(DE-SC0004308). All correspondence should be addressed
to: Dr. Gail-Joon Ahn, ASU, PO Box 878809, Tempe,
Arizona 85287.

REFERENCES

[1] E. Al-Shaer and H. Hamed, “Discovery of Policy Anomalies in
Distributed Firewalls,” IEEE INFOCOM ’04, vol. 4, pp. 2605-2616,
2004.

[2] A. Wool, “Trends in Firewall Configuration Errors: Measuring the
Holes in Swiss Cheese,” IEEE Internet Computing, vol. 14, no. 4,
pp. 58-65, July/Aug. 2010.

[3] J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete
Analysis of Configuration Rules to Guarantee Reliable Network
Security Policies,” Int’l J. Information Security, vol. 7, no. 2, pp. 103-
122, 2008.

[4] F. Baboescu and G. Varghese, “Fast and Scalable Conflict
Detection for Packet Classifiers,” Computer Networks, vol. 42,
no. 6, pp. 717-735, 2003.

[5] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra, and C.
Davis, “Fireman: A Toolkit for Firewall Modeling and Analysis,”
Proc. IEEE Symp. Security and Privacy, p. 15, 2006.

[6] E. Lupu and M. Sloman, “Conflicts in Policy-Based Distributed
Systems Management,” IEEE Trans. Software Eng., vol. 25, no. 6,
pp. 852-869, Nov./Dec. 1999.

[7] I. Herman, G. Melançon, and M. Marshall, “Graph Visualization
and Navigation in Information Visualization: A Survey,” IEEE
Trans. Visualization and Computer Graphics, vol. 6, no. 1, pp. 24-43,
Jan.-Mar. 2000.

[8] H. Hu, G. Ahn, and K. Kulkarni, “Anomaly Discovery and
Resolution in Web Access Control Policies,” Proc. 16th ACM Symp.
Access Control Models and Technologies, pp. 165-174, 2011.

[9] L. Yuan, C. Chuah, and P. Mohapatra, “ProgME: Towards
Programmable Network Measurement,” ACM SIGCOMM Com-
puter Comm. Rev., vol. 37, no. 4, p. 108, 2007.

[10] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer, “Policy
Segmentation for Intelligent Firewall Testing,” Proc. First Workshop
Secure Network Protocols (NPSec ’05), 2005.

[11] G. Misherghi, L. Yuan, Z. Su, C.-N. Chuah, and H. Chen, “A
General Framework for Benchmarking Firewall Optimization
Techniques,” IEEE Trans. Network and Service Management, vol. 5,
no. 4, pp. 227-238, Dec. 2008.

[12] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring
Network Security Using Dynamic Bayesian Network,” Proc.
Fourth ACM Workshop Quality of Protection, 2008.

[13] M. Sahinoglu, “Security Meter: A Practical Decision-Tree Model to
Quantify Risk,” IEEE Security and Privacy, vol. 3, no. 3, pp. 18-24,
May 2005.

[14] R. Sawilla and X. Ou, “Identifying Critical Attack Assets in
Dependency Attack Graphs,” Proc. 13th European Symp. Research in
Computer Security (ESORICS), 2008.

[15] P. Mell, K. Scarfone, and S. Romanosky, “A Complete Guide to the
Common Vulnerability Scoring System Version 2.0,” Published by
FIRST—Forum of Incident Response and Security Teams, June 2007.

[16] I. Fundulaki and M. Marx, “Specifying Access Control Policies for
XML Documents with Xpath,” Proc. Ninth ACM Symp. Access
Control Models and Technologies, pp. 61-69, 2004.

[17] S. Jajodia, P. Samarati, and V.S. Subrahmanian, “A Logical
Language for Expressing Authorizations,” Proc. IEEE Symp.
Security and Privacy, pp. 31-42, May 1997.

[18] T. Moses, “Extensible Access Control Markup Language
(XACML), Version 2.0, Oasis Standard,” Internet, http://
docs.oasis-open.org/xacml/2.0/accesscontrol-xacml-2.0-core-
spec-os.pdf, 2005.

[19] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin,
“Access Control Policy Combining: Theory Meets Practice,” Proc.
14th ACM Symp. Access Control Models and Technologies, pp. 135-
144, 2009.

[20] J. Jin, G. Ahn, H. Hu, M. Covington, and X. Zhang, “Patient-
Centric Authorization Framework for Sharing Electronic Health
Records,” Proc. 14th ACM Symp. Access Control Models and
Technologies, pp. 125-134, 2009.

[21] J. Jin, G. Ahn, H. Hu, M. Covington, and X. Zhang, “Patient-
Centric Authorization Framework for Electronic Healthcare
Services,” Computers and Security, vol. 30, no. 2, pp. 116-127, 2011.

[22] J. Bentley and T. Ottmann, “Algorithms for Reporting and
Counting Geometric Intersections,” IEEE Trans. Computers,
vol. 28, no. 9, 1979.

[23] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi,
“Network Configuration in a Box: Towards End-to-End Verifica-
tion of Network Reachability and Security,” Proc. Int’l Conf.
Network Protocols (ICNP ’09), pp. 123-132, 2009.

[24] “Java BDD,” http://javabdd.sourceforge.net, 2012.
[25] “Buddy Version 2.4,” http://sourceforge.net/projects/buddy,

2012.
[26] “TENABLE Network Security,” http://www.nessus.org/nessus,

2012.
[27] “Tissynbe.py,” http://www.tssci-security.com/projects/

tissynbe_py, 2012.
[28] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical Attack

Graph Generation for Network Defense,” Proc. 22nd Ann.
Computer Security Applications Conf. (ACSAC), 2006.

[29] X. Ou, W. Boyer, and M. McQueen, “A Scalable Approach to
Attack Graph Generation,” Proc. 13th ACM Conf. Computer and
Comm. Security, pp. 336-345, 2006.

[30] A. Wool, “Architecting the Lumeta Firewall Analyzer,” Proc. 10th
Conf. USENIX Security Symp., vol. 10, p. 7, 2001.

[31] A. Mayer, A. Wool, and E. Ziskind, “Fang: A Firewall Analysis
Engine,” Proc. IEEE Symp. Security and Privacy, pp. 177-189, 2000.

[32] M. Gouda and X. Liu, “Firewall Design: Consistency, Complete-
ness, and Compactness,” Proc. 24th Int’l Conf. Distributed Comput-
ing Systems (ICDCS ’04), p. 327, 2004.

[33] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Implement-
ing a Distributed Firewall,” Proc. Seventh ACM Conf. Computer and
Comm. Security, p. 199, 2000.

[34] A. Hari, S. Suri, and G. Parulkar, “Detecting and Resolving Packet
Filter Conflicts,” Proc. IEEE INFOCOM, pp. 1203-1212, 2000.

[35] Z. Fu, S. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu,
“IPSec/VPN Security Policy: Correctness, Conflict Detection and
Resolution,” Proc. Int’l Workshop Policies for Distributed Systems and
Networks (POLICY ’01), pp. 39-56, 2001.

330 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

[36] R. Reeder, L. Bauer, L. Cranor, M. Reiter, K. Bacon, K. How, and
H. Strong, “Expandable Grids for Visualizing and Authoring
Computer Security Policies,” Proc. 26th Ann. SIGCHI Conf. Human
Factors in Computing Systems, pp. 1473-1482, 2008.

[37] C. Brodie, C. Karat, and J. Karat, “An Empirical Study of Natural
Language Parsing of Privacy Policy Rules Using the SPARCLE
Policy Workbench,” Proc. Second Symp. Usable Privacy and Security,
pp. 8-19, 2006.

Hongxin Hu is currently working toward the
PhD degree from the School of Computing,
Informatics, and Decision Systems Engineering,
Ira A. Fulton School of Engineering, Arizona
State University, Tempe. He is also a member of
the Security Engineering for Future Computing
Laboratory, Arizona State University. His current
research interests include access control mod-
els and mechanisms, security and privacy in
social networks, and security in distributed and

cloud computing, network and system security and secure software
engineering. He is a student member of the IEEE.

Gail-Joon Ahn received the PhD degree in
information technology from George Mason
University, Fairfax, Virginia, in 2000. He is an
associate professor in the School of Computing,
Informatics, and Decision Systems Engineering,
Ira A. Fulton Schools of Engineering and the
director of Security Engineering for Future
Computing Laboratory, Arizona State University.
His research interests include information and
systems security, vulnerability and risk manage-

ment, access control, and security architecture for distributed systems,
which has been supported by the US National Science Foundation
(NSF), National Security Agency, US Department of Defense, US
Department of Energy (DOE), Bank of America, Hewlett Packard,
Microsoft, and Robert Wood Johnson Foundation. He is the recipient of
the US Department of Energy CAREER Award and the Educator of the
Year Award from the Federal Information Systems Security Educators
Association. He was an associate professor at the College of Computing
and Informatics, and the founding director of the Center for Digital
Identity and Cyber Defense Research and Laboratory of Information
Integration, Security, and Privacy, University of North Carolina,
Charlotte. He is a senior member of the IEEE.

Ketan Kulkarni received the master’s degree in
computer science from Arizona State University.
He was also a member of the Security Engineer-
ing for Future Computing Laboratory, Arizona
State University. He is currently working as a
software engineer at Emerson Network Power.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HU ET AL.: DETECTING AND RESOLVING FIREWALL POLICY ANOMALIES 331

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

